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ON SMOOTHED PROBABILITY DENSITY ESTIMATION

               By 

K. I. ABDUL-AL' and J. L. GELUK*

                     Abstract 

   The main object of this paper is to study properties of the estimator 

                (x)1n 1 K                   Cx—X~                 fn=n ~ai a 

under the assumption of stationarity of the sequence (X7).

0. Introduction 

   Suppose a sample of observations X1, X2, • • • , Xn is identically distributed with 

density function f. Much research in recent years is concentrated on studying pro

perties of the kernel estimator 

          _ 1 n((x—X)                  fn(ti)—nan iK\an2),(0.1 
where { a n } , n=1, 2, • • • is a given sequence of positive numbers such that a n,--*0 (n—>co) 
and K is a given kernel. Recently properties of the estimator 77, are studied under 
the assumption of stationarity of the sample. See Masry [10] for the case of a sta
tionary continuous-time process and Castellana and Leadbetter [4] for an approach using 
3-sequences. In case of dependence it can be expected that properties of the estimator 
fn can be improved if the window width is not necessarily the same for each observa
tion, that means the estimator 

fn(x)= 1 1----K(---------~)(0.2) 
n i=i a, ai 

is considered. Earlier research concerning fn in case of independent observations is done 
by Devroye [7], Samanta and Mugisha [11], who extended results of Yamato [13], and 
Davies [5]. 

   One of the results (Theorem 1.3) in this paper is that (in case of dependence) for 
a suitable choice of the sequence { a 7,}  the variance of the estimator fn is smaller than 
the variance of the usual estimator In. Moreover, under suitable assumptions, the 
estimator in is asymptotically normal. This is shown in Theorem 2.4 which contains 
a result about an estimator for f' as well. Finally Section 3 contains uniform con
vergence results, weakly as well as strongly.
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1. Pointwise Consistency 

   In this section we determine the asymptotic behaviour of the bias and the variance 

of the estimator fn. In order to obtain the asymptotic estimates the sequence {an} has 

to be sufficiently smooth. It turns out that regular variation in this case is an appro

priate property for the sequence { an}  . Lemma 1.1 below contains the basic ingredient 
for the proof of Theorem 1.3. 

   LEMMA 1.1. (See Bojanic and Seneta [2]) Suppose {an}  n=1, 2, • • • is a sequence 

of positive numbers. Then 

lim a[nx7/an=x-a (x>0) for some a>-1(1.1) 

if and only if 

                                              n 

                 lim an= 1                  n-00n~a ~=a-f-1with a>—l.(1.2) 

   A sequence { an} satisfying the assumptions of the above lemma is called a regularly 

varying sequence. For more properties the reader is referred to [9]. 

   COROLLARY 1.2. If cn>0 for n=1, 2, ••• , cn an (n—*oo) and the sequence {an} 
satisfies the assumptions of the above lemma, then 

n limnE---= 1  
                                     n j=1 cj a4-1• 

   THEOREM 1.3. Suppose {Xn} is a stationary sequence of random variables. Let f ir) 

be defined by 

n 

              {nr)(x)=— E1 1r=0, 1.(1.3) n,=1 ajla 

Suppose that the following conditions hold: 

   ( i ) the sequence {an} is nonincreasing and satisfies (1.1) for some a>0. 

   (ii) K is a symmetric differentiable density such that I K(r)(u) I <c, SK(r)(u)2du <0,0 
for r=0, 1, I K'(u) I du<00 and there exists c1 such that for all t>0 we have 

t 1 K`r)(tz) I� c1 I K`r)(z) I for r=0, 1. (1.4) 

   (iii) The joint density f 1j(x, y) of X1 and Xj (j=2, 3, •••) is uniformly bounded in 
x, y and j and satisfies 

sup E I f 1;(x, y)—f(x)f(Y)  I M<oo ,(1.5) 
x, y J=2 

where f is the marginal density of X1. Then if x, y are continuity points of f we have 

for r=0, 1 
0if x#y 

lim na;i+2rcov(f nr)(x), jnr)(y))= 1(1.6) n—>oo--------------------f (x).K(r)(u)2du if x=y. 
                                    11-(2r+1)a 

    PROOF. Since a>0, we have an---›0 as n o.
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1 nXX;   nari+2rcov(f~r)(x), f~r)(y))=-E—n(i( -------3)K(r)(_----------))                                                      2+2r            n j=1 a,a;a; 

                    1         an 2r__ +72(a jk\1rcov(K(r)( xaJJ ~'K(r)(3akk  ))                                                                         1=J,k-n 

        _ : 11+12.(1.7) 

First we estimate L. We have by stationarity 

covl :=cov [K(r)( xaXJ),K(r)( YaXJ )J 
                    =a;.K(r)(z)K(r)( y—x +z)f(x—ajz)dz 

                                \\ a, 

—a;.CK(r)(z)f(x—ajz)dzK(r)(z)f (y—a,z)dz. (1.8) 
In case x= y we apply Lebesgue's dominated convergence theorem to find 

                        x—X var K(r)(' )ajfxKz)2dz (j(1.9) 
a; 

for r=0, 1 at each continuity point x of f . 

   Application of Lemma 1.1 and Corollary 1.2 now gives 

I1 1+(2r+1)a------------f (x4K(r)(z)2d                                        z+o(1) as 72400 

at continuity points x of f . 

   In case x� y we can estimate the first terme on the right-hand side in (1.8) as 
follows. By assumption we have 

aj.K(r)(z)K(r)(  y—x+ajz  )f(x_ajz)dz~i 

                         aK(r)(z)K(r)(y—x+a;z)f(x—a,z)dz 

I —c1aJf(x) K(r)(y—x).K(r)(z)dz , 
hence the first term on the right-hand side in (1.8) is O(a,) 0.---D0). We can estimate 
the second term by using Lebesgue's dominated convergence theorem. As a consequence 
cov1=0(a;) as j oc in case x # y. Using (1.8), Lemma 1.1 and similar arguments as 
above, we find I1=0(an) as n-->no in case xi y. Finally we give an estimate for I2. 

   Since the sequence {an}  is nonincreasing, we have 

          II21< anE1------cov(KT(() x—Xj ),K(r)( y—Xk ))        n,afakajak 

C an E JJ1--------- li(r)(  z1  )K(r)(z2) I fJk(x—z1i,—z2) 

                               1 

              njr
kk<_rtajak aj a                        ~j, 

—f (x —z1)f (y —Z2) I dzl dz2 .(1.10)
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    From stationarity we have 

1 E I
.f,k(x—z1, y—z2)—f(x—z1)f(y—z2)I 

n 1`JGkan 

n n—k+1                  = E niflk(x—z1iy—z2)—f(x—z1)f(y—z2)1 

the last inequality being true by assumption (iii). Moreover, a similar inequality holds 

in case j > k. 

   Combination with (1.4) and (1.10) gives 

'21<_2anlici~J I K`r)(z1)K`r'(z2)I dzldz2 

                   =2anMei{r 1 K(r'(z) I dz}2.(1 .11) 
   REMARK. Note that if aE(0, 1), then an—>0 and nan—*co (n->oo). Hence in this 
case we have var fn(x)—>0 (n—÷00) at all continuity points of f (under the assumptions 
of Theorem 1.3). 

   THEOREM 1.4. Suppose the sequence { a al satisfies the assumptions of Lemma 1.1 

with 0<a<-2 and Kisa symmetric density with.C1 zI3K(z)dz<00. Assume that X1, X2, ••• 
are identically distributed with density f. 

   If fn(x) is as defined before, f is 3 times differentiable in a neighbourhood of x 
and f "(x) # 0, then 

            E/n(x)—f(x)1 f"(x)az2K(z)dz(1.12) (n—~oo 2(1-2a)) 

   PROOF. Since K is symmetric, we have, using Taylor's theorem 

EJn(x)—f(x)=1 EK(z){f(x—a;z)—f(x)}dz 
n j-1 

                = 1 E.fK(z){—a;zf'(x)+a22 f"(x)+O(a;z3)}dz                                    nj-1 

                                                                      n 

                     2 f /(x) \Jz2K(z)dz) nEa.1(1+o(1)) (n—> co) . 

Application of Lemma 1.1 finally gives (1.12). 

   Under the assumptions of Theorem 1.3 and Theorem 1.4 we find that the mean 

square error is equal to 

E{fn(x)—f(x)}2= 1+a f (x).K2(z)dz--------9lan 
+ 4(l2a)2 f"(x)26z2K(z)dz) an+o( n1------)+o(an) (nco). 

   It is easily seen that in case a,=cnra, the optimal choice for a is 1/5. In that 

case we have
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   5(~2      E{fn(x)—f(x)}2= l6f(-v)(Jh2(z)dz)c-1-} 36 .f"(r)26z2K(z)dz) c~}ra =~~. 
   The optimal choice of c then finally depends upon the kernel K. Depending upon 

the kernel and the values of f(x) and f"(x) the result may be better or worse than 

the usual estimate.

2. Asymptotic Normality 

   In this section we prove asymptotic normality of the estimator fn in case the 
sequence of random variables {Xn} satisfies an array form of the strong mixing condi
tion. 
   DEFINITION 2.1. The stationary sequence {X,,} has strong mixing coefficients an,1 if 

                 cn, i :=max sup ; P(AB)—P(A)P(B) I 
                                                                                      in-1 AEO(o, i) 

13E6(1+1, n) 

for 1 <_ l n —1, where a(i, j) is the a-field generated by 1X5  ; 1 < k < j } . 

   We need two lemmas. The first is due to Volkonskii and Rozanov [12]. 

   LEMMA 2.2. Suppose X1, X2j • • • , Xm are random variables measurable with respect 

to or(iif /2),, Q(Zm, Jm) respectively, where O<?1<j2<22<<Zm<~mC72, 

ik+1—jk_l>1 and I Xk I <1, 1<k<in. Then 

                 1E(Xk) H EXk<16(m-1)an, 
                    k=1k=1 

where an, i is as in (2.1). 

   LEMMA 2.3. If the sequence {an} satisfies (1.1) and z=r(n), m=m(n) are such that 

r(n)m(n),,,n (n->co), then E 1/ak,-n/(1 a)ran (n-›oo). 
k=1 

   PROOF. Define f(x) :=1/a[x]. Since the function f satisfies f (tx)/ f (t)--*x+a (t-400) 

for x>0, convergence is uniform on compact intervals of (0, oc) (see de Bruijn [3]). 

Moreoverf(s)dsxf(x)/(1+a) (x—>x). As a consequence 

mm+1m+1n /T 

            E11/akr=~1f([s]z)dsjf(s7)ds^of(sz)ds 
                            1n                       =zfof(u)dutin/(1±a)zan (n-~oo). 

   THEOREM 2.4. Suppose the assumptions of Theorem 1.3 are satisfied. Assume that 
there exists a sequence of integers k n (n _ 1) for which 

(n/a01i2an,kn > 0 and kn=o(nan)112 (n-+co).(2.3) 

Then if aE(0, 1) (see 1.1)) at each continuity point x of f") 

(f( (x)—Ef nr)(x))co(nan +')1,2(2.4) 
where 

        j 11/2                  co=co, r=l1+(2r+1)af (x)CK")(z)2dz}(2.5)



204 K.I. ABDUL-AL and J. L. GELCK

has the standard normal limiting distribution for r=0 and r=1. 

   PROOF. From (2.3) it follows that there exists a sequence 2„ such that 2„--~ 

(n*a),Ankn=o(nan)'12 and An(n/an)"2an,kn—>O (n co). 
   We write the expression in (2.4) as a sum of in blocks of length z (the large blocks 

(S,)) and in blocks of length T' (the small blocks (S2)), where 7n=[n/(r+ ')], and a 
resulting block. Define T, T' by T=[An'(nan)1"2] and T'=kn. Note that T, T' depend on 

n, nan-a c since a(0, 1) and 

7=o(nan)1"2, r'=o(T) and i2 an,r --> 0 (n--4cc). (2.6) 

Now for 

    {n2rCo         t1)/2_     (fn)(x)—EJf(x))co~an+122=an2~IK(,)( C-2  )_( xt~ai 
_ ~.(2.7) 

t=1 

We write 

nm m 

E E Yj+ E E Yj+ E Yj= : S1+S2+S3 i=1 k=1jE,1k=1                          k, n jE-1k, nJE-rn 
where 

Ak, n= {(k1)(T+T')+1, ••• , (k1)(rdT'H--T} 

                     !1k, n= {(k —1)(7+79+7+1, ••• , k(T-i-T')} 
and 

11n={2n(T+T')+1, ••• , n}. 

   First we show that var S2—>0 as n—>oc. Using (1.9) we find 

              Coan----------}1~-m-.c-~ C1  
      varS2<_L;J~ ~r+l 

nk=1jE1aJ 

2Cpan 1  
~~~COV<r) —X,<r) —Xk + 12 1`=j<_n ajak~Ka,)'KCak~~ 

where c,> f (x)K(r)(z)2dz is a constant. 
1 T'     Si

nce E  2r+1^2r+1 (n—>co), Lemma 2.3 together with (1.11) show that 
               _Ik           ,E, n a3akr 

                                a2nr+1                                       n 
                   var S2-C2 'T•or+1 +c3an=c2T,/r+c3an -->0 

72Tan 

as n—>co, where c2 and c3 are constants. 

   Since ES2=0 this implies P([ S21 > s) <var S2/s2—>0 as n--00. Similarly we find that 

S3 tends to zero in probability. As a consequence, the asymptotic distribution of 

E YZ, if it exists, is the same as for S1. 
2=1 

   We claim that the asymptotic distribution (if it exists) of S, is the same as the 

distribution of S',= rk where rk= E Y1 and the rk's are independent. Indeed, by 
JEAk, n 

Lemma 2.2, E(exp(it rk))— II exp (it rk) is bounded by 16(m-1)an, 16 —n ;.-00 
k=1k=17
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 (n->cc) (see (2.6)). 

   Finally we prove that S{-----D > AT, where N is the standard normal distribution. First 

we show that var S{>1 as n->co. 

var7k=var E, Y;= E var E (covY;, Yi)=T1,k+T2,k. 
;E-.1kn ?=J Ik,n 

Note that by (1.9) and Lemma 2.3 we have 

                             ~r+12               anC o/ T 
1,k~E2r+2a(x)K(r)(z)2dz 

j~llknn aj 

                1  CZan           +1kz(k -1)r 
                                 (r)~

o                 1~(2r F1)a nf (x)K(z)-dz~akr+1a Ik+i)r(2.8) 
   Moreover, with I2 as defined in (1.7), we have 

E T2, k II2I=0(an) (n->co) (as in (1.11)). 
                                k=1 

   Summation over k = { 1, 2, • • • , ml then gives 

                             a2n+1mz 
               varS1'-----> 1 as n-> co . 2r+1                           n a m~ 

   Finally we verify that the Lindeberg condition 

           n 1
0 for each>0 (2.9)           ->E 

                              k=1 
------ E{r I(1 Tk>I=sSm)}- 

where S;n=var Si, is satisfied. 

   By the definition of Y; (see (2.7)) and assumption (ii) in Theorem 1.3 we have 

                                       SS~ ,/a21 2cco                  T k-IlTjICE ----- 
jai n j=(k-1)' n a;+1 • 

   In view of Lemma 1.1 the last expression is asymptotic to 

                a(2r+1)'2kr _(k -1)r(ra;,"+"12             C'n { r-'-1r=1}_0~n )(n-->cc) 
                nakra(k1)nakrr+1 

where c' is a constant. Since the sequence {a ,l} is nonincreasing and nan-->oo, we 
have 0(ran2r+1)12/ ../ ak+1)=a(1), so that P(17k I >r)=0 for all n sufficiently large. This 

finishes the proof of (2.9) since S)-1.

3. Unif orm Convergence 

   In this section a uniform error measure, namely 

IFn) :=sup I.f )(x) f (r)(x) I (3.1) 
x---R 

is discussed. Under suitable conditions regarding the strong mixing coefficients an, 

and the sequence Ian}  and restrictions on the kernel K, it will be shown that W nr)
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converges to 0 weakly as well as strongly. We define the functions ¢, k and 0, by 

¢(t)=~eitx f(x)dx 

k(t)=)'eitxK(x)dx 
and 

                                 1n                                                        iaX 
                        ¢n(t)=n~ej . 

   THEOREM 3.1. Assume {Xn} is a sequence of stationary random variables. Suppose 

the following conditions hold for some integer r>0. 

   ( i ) K is symmetric. 

   (ii) k is nonincreasing on R+ and tmk(t) —L'(—oc, Ole) for 0<m<r, 
   (iii) the sequence {an} is nonincreasing, an-->0 (n—*cc) and nan(r+'—>OD (n—fG=) 

   (iv) the strong mixing coefficients an,1 (see (2.1)) satisfy the condition 

                                                                         n-1 

liman, j<~ , 
n-os j=1 

(v) f(m)(x) is bounded and continuous for 0<_in _r. 

    Then W-0 as n-00. 

   PROOF. Similar to the proof of Theorem 3.8 in Abdul-Al and Siddiqui [1]. Since 

k L'(—cc, 00) we have K(x)=(221)-'`eitxk(t)dt (see e. g. Feller [8] XV. 4, Lemma 2). 
In view of assumption (ii) we may differentiate r times to find 

K(r)(x)=(2:7)-1(_il treitxk(t)dt. (3.2) 
   By substitution in (1.3) we find 

                   fnr)(x)=(27rn)-1 f E(—t)reit(xxj)k(a;t)dt. (3.3) 
j-1 

   Hence we have 

Vn :=supJ7(x)-Ef nr'IC--------27rnJtr{eitX j—d(t)} k(aft) dt.                  sER

Since an is nonincreasing and k is nonincreasing, this implies 

                  Vn 1SI tIrI on(t)—¢(t)i I k(ant)';dt. (3.4) 
27 

Hence, by Fubini's theorem and Schwarz' inequality, 

EVn< 2
7rJ {0'2(0n(t))}1/2I trk(ant)I dt. (3.5) 

By stationarity and Lemma 2.2 we have
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       62(0n(t))= 1 E l eitx —¢(t)12+ 22E(1/—j+1)E[eit(X 1Yj)—Eeith  1Eeitxj] 
                                          n j=2 

                 4 32 n-1                       -+----E a n. • .               n n 
j=i 

Combination with (3.5) gives 

 ELn= 2 
                           rc-1 <1t'tt)(l-r8 E a„;)112  -->0 as71-~0~ , henceVn—>0. (3.6) 

   7L71anj=i 

Since f(x) and its first r derivatives are bounded and continuous and lim K(m)(u)=0 

for 0217�. r (this follows from (3.2) by application of the RiemannLebesgue Lemma), 

we have 

        1—u1x—u          Efnr'(x)=a—t~i~r~ ' a~ )f(u)du=-----(2,7~K( a, )f(r)(u)du.•                                        •

Application of Lemma 1 in Yamato [13] then gives 

sup Efnr)(x)— f(r)(x)10 as 71 -*c . 
xER 

Combination with (3.6) finishes the proof. 

   In the remainder of this section we discuss strong uniform convergence. We omit 

the proof which is similar to the proof of theorem 3.9 in Abdul-Al and Siddiqui [1] 

(using Lemma 4.1 in Davydov [6]). 
   THEOREM 3.2. Suppose IX,} is a sequence of stationary random variables satisfying 

the following conditions. Suppose conditions (i) and (ii) of Theorem 3.1 hold and 

   ( i ) f is uniformly continuous, 

(ii) the sequence 1a71} satisfies an—*0 (n-->00) and 

                                        24(r+1)<CO, n=1nan 

   (iii) xrK(x)—>0 (x—oo), and 

   (iv) E(sup an, j)<O°. j=1 n 
Then 

           {TV. P. 1                  sup!n)(x)— f(r)(x)l ------------>0 as 71 cc . 
s`R
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