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ON SMOOTHED PROBABILITY DENSITY ESTIMATION
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K.I. ABpbuL-AL* and J. L. GELUK*

Abstract

The main object of this paper is to study properties of the estimator

Fr = oK (52

n =1 a; a;

under the assumption of stationarity of the sequence (X,).

0. Introduction

Suppose a sample of observations X, X,, ---, X, is identically distributed with
density function f. Much research in recent years is concentrated on studying pro-
perties of the kernel estimator

Fuo=—t SK(FEY), 0.1)

na, =1 an

where {a,}, n=1, 2, --- is a given sequence of positive numbers such that a,—0 (n—co0)
and K is a given kernel. Recently properties of the estimator 7, are studied under
the assumption of stationarity of the sample. See Masry [10] for the case of a sta-
tionary continuous-time process and Castellana and Leadbetter [4] for an approach using
d-sequences. In case of dependence it can be expected that properties of the estimator
Fn» can be improved if the window width is not necessarily the same for each observa-
tion, that means the estimator

Ful)= =
n

1

5 ;i K(i;TXL) 0.2)

is considered. Earlier research concerning f, in case of independent observations is done
by Devroye [7], Samanta and Mugisha [11], who extended results of Yamato [13], and
Davies [5].

One of the results (Theorem 1.3) in this paper is that (in case of dependence) for
a suitable choice of the sequence {a,} the variance of the estimator f,, is smaller than
the variance of the usual estimator f,. Moreover, under suitable assumptions, the
estimator f, is asymptotically normal. This is shown in Theorem 2.4 which contains
a result about an estimator for f’ as well. Finally Section 3 contains uniform con-
vergence results, weakly as well as strongly.
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1. Pointwise Consistency

In this section we determine the asymptotic behaviour of the bias and the variance
of the estimator f,,. In order to obtain the asymptotic estimates the sequence {a,} has
to be sufficiently smooth. It turns out that regular variation in this case is an appro-
priate property for the sequence {a,}. Lemma 1.1 below contains the basic ingredient
for the proof of Theorem 1.3.

LEMMA 1.1. (See Bojanic and Seneta [2]) Suppose {a,} n=1, 2, --- is a sequence
of positive numbers. Then

im appzi/an=x"% (x>0) for some a>—1 (1.1

if and only if

a1l 1 .
}1152 " ]g‘{ o " ar with a>—1. (1.2)

A sequence {a,} satisfying the assumptions of the above lemma is called a regularly
varying sequence. For more properties the reader is referred to [9].

COROLLARY 1.2. If ¢,>0 for n=1,2, ---, ¢co~a, (n—c0) and the sequence {a,}
satisfies the assumptions of the above lemma, then
A, 2

lim = L1

new N j=1c;  a+l’

THEOREM 1.3. Suppose {X,} is a stationary sequence of random variables. Let fA7‘[>
be defined by

r=0, 1. (L.3)

x—Xj>,

2 1o 1
) i
frem=-35 .

< T+1
=1 Qaj

K(T)(
Suppose that the following conditions hold :
(1) the sequence {a,} is non-increasing and satisfies (1.1) for some a>0.
(ii) K is a symmetric differentiable density such that |KT™u)|<c, SK(T)(H>2dZt<oo
for r=0, 1, SIK/(u)[du<oo and there exists ¢, such that for all z=R, t>0 we have
HEKD(z) | <c | KT(2)] for r=0,1. (1.4)
(iii) The joint density f,fx, v) of X, and X; (=2, 3, -+-) is uniformly bounded in
x,y and j and satisfies

sup 33| £1,(x, )= (0)f ()| SM<oo, (1.5)

where [ is the marginal density of X;. Then if x,y are continuity points of f we have
for r=0,1
(0 if x#Fy
limnal** cov(f P (x), [P )= 1 o , (1.6)
e -——l+(2r+l}—af'\x)SI\.m(u)zdu if x=y.

PrOOF. Since a>0, we have a,—0 as n—co.
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7za}fzrcov<f§{’(x>, fﬁr)(}’),\‘* _1_ ! a_:;z; cov <[{(r><%xi>’ Km(;\";i»

n j= J
t aizr 2 (a 1>1 - CoV (Km( x;Xj ) Km(’y;—xi»
1< :~ <n i@k J 3
=:1,+1,. (.7

First we estimate I,. We have by stationarity

L) o)

J J

COV, :=COV [K(”(

:ajgmwz)m”( y;x +2)f(x—a,2)dz

—a';’-SK"’(z) f(x—ajz)dngm(z) Fly—a,2)dz. (1.8)

In case x=y we apply Lebesgue’s dominated convergence theorem to find

var K‘”( x;Xj )Najf(l')SKU)(Z)QdZ (j—0) (1.9)
] o

for »=0, 1 at each continuity point x of f.
Application of Lemma 1.1 and Corollary 1.2 now gives

1

L= 1+@2r+Da

f(x)SK"’(z)zdz-i—o(l) as n—oo
at continuity points x of f.

In case x#y we can estimate the first terme on the right-hand side in (1.8) as
follows. By assumption we have

|0 fKo@KA(PTEEEE ) g 0z
J i
Ze, j a§g1<<r><z>1<<r><y4x+ajz>f(x—ajz)dz1

~c.ajf(x) i K(”(J’~X)5K‘r>(z)dz

(j—00),

hence the first term on the right-hand side in (1.8) is O(a?) (j—<0). We can estimate

the second term by using Lebesgue’s dominated convergence theorem. As a consequence

cov,=0(a% as j—co in case x+#y. Using (1.8), Lemma 1.1 and similar arguments as

above, we find I,=0(a,) as n—oo in case x+#y. Finally we give an estimate for I,.
Since the sequence {a,} is nonincreasing, we have

|1, < 152;571 o cov<K<”<~L;j(j>, K<r>(ig;X—’*));
e co

1= k n

—f(x—2)f(y—z)|dzdz,. (1.10)



202 K.I. Aepvr-AL and J.L. GELuk

From stationarity we have

1 . .
— 2 N fale—z, y—z)— f(x—2)f(y—z5)]
N 1sj<ksn

—k+1
n :L]fw(x*zl, y—z)—flx—z)f(yv—2z,) | <M,

n
=2
k=2

the last inequality being true by assumption (iii). Moreover, a similar inequality holds
in case j>k.
Combination with (1.4) and (1.10) gives

|1, <2a nMcng KD KD (z2) | dzdz,

:2anMc¥{5lK”>(z)[dz}z. (1.11)

REMARK. Note that if a=(0, 1), then ¢,—0 and na,—oo (n—oo). Hence in this
case we have var fn(x)—»o (n—oo0) at all continuity points of f (under the assumptions
of Theorem 1.3).

THEOREM 1.4. Suppose the sequence {a,} satisfies the assumptions of Lemma 1.1
with O<a<% and K isa symmetric density with 5[2]31((2)dz<oo. Assume that X, X,, -
are identically distributed with density f.

If 7,(x) is as defined before, f is 3 times differentiable in a neighbourhood of x
and f”(x)+0, then

Efu(x)— f(x)~ ”(x)a‘;’zSZZK(z)dz (n—c0). (1.12)

1
2(1—2a) f

PrOOF. Since K is symmetric, we have, using Taylor’s theorem

. 1 =
Efalo—fin=— S|K@fx—a,0— (0} dz
:7—11j:1S]((Z){—ajzf'(,r)—}—ﬁ;z;f//(x)+0<a§23>}d2

- % f,,(x>(gzzmz>dz)%;zl @1+o))  (n—co).

Application of Lemma 1.1 finally gives (1.12).
Under the assumptions of Theorem 1.3 and Theorem 1.4 we find that the mean
square error is equal to

N 1
EAfu0)=FOP= f<x>51<2<z>dz ni

n

i (K)o

1
na,

>+0(a7’z) (n—00).

It is easily seen that in case a,=cn~% the optimal choice for a« is 1/5. In that
case we have
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» 5 ) 25 ( oorrs SR
SN 12 —=J 2 £ (202> et Bt ///{‘.,\2 72 /2) z 4 —‘/a‘
E{f(x)—f(x)} {6 J\.\)(E[\ w,d\.>c + 36 J(x) Q Kiz)d > ctpn
The optimal choice of ¢ then finally depends upon the kernel K. Depending upon

the kernel and the values of f(x) and f”(x) the result may be better or worse than
the usual estimate.

2. Asymptotic Normality

In this section we prove asymptotic normality of the estimator f, in case the
sequence of random variables {X,} satisfies an array form of the strong mixing condi-
tion.

DEeFINITION 2.1. The stationary sequence {X,} has strong mixing coefficients a,,, if

@, = max sup |P(AB)—P{A)P(B)|

1gisn-1 A4S0 (0, )
B&o(i+1,n)

for 1</<n—1, where o(z, j) is the o-field generated by {X,; 1<2<j}.

We need two lemmas. The first is due to Volkonskii and Rozanov [12].

LEMMA 2.2. Suppose X, X,, -+, Xn are random variables measurable with respect
to oy, 1), 0, J2), =, 6(Gm, Ju) respectively, where 0=7,<j,<ip< <in<Jjm=n,
lpri—Je2lz=1 and 1 X, | £, 1£kZm. Then

iE(ﬁle)rﬁlEXk <16(m—Da,.,

where a,,; 1s as in (2.1).
LEMMA 2.3. If the sequence {a,} satisfies (1.1) and t=t(n), m=m(n) are such that

c(m)ym(n)~n (n—co), then éll/akrwn/(l—{—a)m,, (n—oo).

PRrROOF. Define f(x):=1/ar,). Since the function f satisfies f(tx)/f({t)—xT* (t~>00)
for x>0, convergence is uniform on compact intervals of (0, cc) (see de Bruijn [3]).

Moreover ij(s)dswxf(x)/(l+a) (x—o2). As a consequence
éll/ak,:yn“f([s]r)dSNijlﬂf(sr)dsAJS:/Tf(sz')ds

:-l—(nf(u)duwn/(l—%a)ran (n—cc),
T.Jo

THEOREM 2.4. Suppose the assumptions of Theorem 1.3 are satisfied. Assume that
there exists a sequence of integers k, (n=1) for which

(n/a.)"an e, —>0 and k,=o(na,)”? (n—co). 2.3)
Then if a=(0, 1) (see 1.1)) at each coniinuity point x of f

(FOO—EFQ (e nayHye, (2.4)
where
1
1+@r+1Da

-f (x)SK“’(z)zdz}'”z (2.5)

Co=Co, r:{
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has the standard normal limiting distribution for r=0 and r=1.

Proor. From (2.3) it follows that there exists a sequence 2, such that A,—cc
(n—a), A kp=o0(na,)"* and A,(n/a,)"*az, »,—0 (n—co).

We write the expression in (2.4) as a sum of m blocks of length = (the large blocks
(S)) and m blocks of length ¢/ (the small blocks (S,)), where m=[n/(z-+7')], and a
resulting block. Define z, ¢’ by r=[4;'(na,)*’*] and z’=%,. Note that 7, 7’ depend on
n, na,—co since a=(0, 1) and

r=o(na,)'"?*, 7v'=o(r) and %an,,f —> 0 (n—o0). (2.6)
Now for
(9 ‘”(\f))cova”*‘n:ié a(n” a?il {Km( —Xi ) EK(* aiY )}
= é: Y;. 2.7)
We write
Sv=3 3 vt 3 2 Yk D V=SS,
where
Ay = {(k=D)(z+1")+1, -, (k=D +7")+7}
AL = (k=D 4t)+r+1, -, kr+c')}
and

Al={m(z+<)+1, -, n}.

First we show that varS,—0 as n—cc, Using (1.9) we find

_"-z%la"lgj<k§n (ljlak ECOV<K(”( x;] ) KU)( dek )>|

where cl>f(x)31(“’(z)9dz is a constant.
1 7’

Since 3} Fwa—gr? (n—cc), Lemma 2.3 together with (1.11) show that
JEdE, kT
2r+1
var ;= — — 7 oyt =t/ e —> 0
n

as n-»co, where ¢, and ¢, are constants.
Since ES,=0 this implies P(|S,|>¢)<varS,/s?—0 as n—co. Similarly we find that
S; tends to zero in probability. As a consequence, the asymptotic distribution of

n
Y, if it exists, is the same as for S,.
i=1
We claim that the asymptotic distribution (if it exists) of S, is the same as the
m
distribution of S{:kZ rx where y,= > Y, and the y,’s are independent. Indeed, by
=1

JcAk n

(exp(it élrk)) Hexp (itye)t is bounded by 16(m—1)a,, -v~16—a,, =0

Lemma 2.2,
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(n—coc) (see (2.6)).

Finally we prove that S{—Dn\”, where N is the standard normal distribution. First
we show that varS{—1 as n—-co.

vary,=var > Y,= X varY;+ X (covV,, Y)=T,+Ts:.
e

jEdg n Jj= n i Jézljl, n

Note that by (1.9) and Lemma 2.3 we have

2r+1 2
T 3 St rofreoeras

=T, nooa¥r?
1 ciay+t . kr (k—Dr
~ XNK(z)dz ——), .
1+@2r+Da  n f(\)g (@) d‘(a‘i?“ a%tly, ) (2.8)

Moreover, with I, as defined in (1.7), we have

T = |11=0(as) (n—co) (as in (1.11).

1

Ms

3

Summation over £<={1, 2, ---, m} then gives

2r 1
var S{~ a:l anzlil 1 as n—eco.
Finally we verify that the Lindeberg condition
m 1 »
}gx 5 Elvil(iye|=ZzeS)t — 0 for each ¢>0 (2.9)

where S3=var S|, is satisfied.
By the definition of Y; (see (2.7)) and assumption (ii) in Theorem 1.3 we have

k(') \/Qi""'l 2¢c,

< 2 v, 2 .
!7“—;51;2,,11 J‘—"j=(k41)r N/n a5+l

In view of Lemma 1.1 the last expression is asymptotic to

, af“””[ kz —— (k—lﬁ'}* (Ta;zzrﬂ)/z) (n—co)
Vo laEt aits. Vrap

where ¢’ is a constant. Since the sequence {a,} is non-increasing and na,—co, we

have O(za@*V"*/~/ 1 aii)=o0(l), so that P(|y,|>¢)=0 for all n sufficiently large. This
finishes the proof of (2.9) since S;—1.

3. Uniform Convergence

In this section a uniform error measure, namely

W i=sup| F ()= F ()] 3.1)
=R

is discussed. Under suitable conditions regarding the strong mixing coefficients a,,;
and the sequence {a,} and restrictions on the kernel K, it will be shown that W
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converges to 0 weakly as well as strongly. We define the functions ¢, # and ¢, by
gt)=\e'"f(x)dx
le(t)zge“r]((x)dx
and
¢ <t>:i nzeit.»'\'].
K n S :
THEOREM 3.1. Assume {X,} is a sequence of stationary random variables. Suppose
the following conditions hold for some integer r=0.
(i) K is symmetric.
(ii) % is non-increasing on R* and t™k(t)=L'(—ce, o) for 0<m<r,

(iii) the sequence {a,} is non-increasing, a,—0 (n—cc) and na%™ P—oc (n—oo),
(iv) the strong mixing coefficients a,,; (see (2.1)) satisfy the condition

___n-1
lim 2) a,, <oz,

n—oo j=1

(v) [™(x) is bounded and continuous for 0=m<r.

Then W,‘PSO as n— oo,
PrROOF. Similar to the proof of Theorem 3.8 in Abdul-Al and Siddiqui [1]. Since

ke L (—co, o) we have K(x):(Zr;)“Se‘“rk(t)dt (see e.g. Feller [8] XV. 4, Lemma 2).
In view of assumption (ii) we may differentiate » times to find
Ko(x)=@m) " (—iy |re-= kit (3.2)
By substitution in (1.3) we find
f;”(x/:(ZnnYlgéjl<~z)re-“<r-Xﬁ/e(a,¢>d¢. 3.3)

Hence we have

3t i gt} k(ajt)| dt.

” ” 1
V r=su | (r)/x _Ef(r) S S
n zeglfn N ) Jn I__ 2xn )i b=
Since a, is non-increasing and % is non-increasing, this implies

Voo {17 18,0—01 k(g di (3.9

Hence, by Fubini’s theorem and Schwarz’ inequality,

EVné51;_—5{02(¢n(t))}“Zlf’k(ant)fdi. (3.5)

By stationarity and Lemma 2.2 we have
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2(95”@)):——711 Elet* —g()!2+ 52 éz(n—]-{—l\E[e”“l ¥p —FEettT1Fottdy]
4  32n
<__+__ o
“n  n jz_-:xa”‘]'

Combination with (3.5) gives

EV,s " >(§lt’1e<t>1dt)(1+8"_z’za,l,,)”z—>0 as n—cs, hence V,50. (3.6)
P

zn'tant

Since f(x) and its first » derivatives are bounded and continuous and lim K™ (u)=

LU | —~oo
for 0<m<r (this follows from (3.2) by application of the Riemann-Lebesgue Lemma),
we have

EfQ(x)= brl+‘ SA’(T)( x§u> u)du—-aL\‘ ( )fcr)(u\du
J J

Application of Lemma 1 in Yamato [13] then gives

sup| Ef Q(x)—fP(x)| —>0  as n—oe.
2ER

Combination with (3.6) finishes the proof.

In the remainder of this section we discuss strong uniform convergence. We omit
the proof which is similar to the proof of theorem 3.9 in Abdul-Al and Siddiqui [1]
(using Lemma 4.1 in Davydov [6]).

THEOREM 3.2. Suppose {X,} is a sequence of stationary random variables satisfying
the following conditions. Suppose conditions (i) and (ii) of Theorem 3.1 hold and

(1) f is uniformly continuous,

(ii) the sequence {a,} satisfies a,—0 (n—oo) and

o 1

< co
7121 n a;(r+1> ’

(iii) x"K(x)—0 (x—o0), and
(iv) J:Sl(sgp U, )< oo,

Then
. W.P.1
sup| 7 (x)—fr(x)] 0  as n—ooo.
SER
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