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Abstract

The present paper deals with an optimal stopping problem which
permits the cost of obserbation in the case of continuous time Markov
processes. Under certain conditions of the terminal functions and the
running cost functions, we show the existence of a finite optimal
stopping time. Moreover we also discuss a free boundary problem
concerning the optimal stopping problem.

1. Introduction

Discrete time optimal stopping problems have been studied by many authors. Chow
and Robbins [2] have studied the case where optimal Markov times are actually finite.
Furukawa [4] has studied the problems with general reward systems and especially
has given sufficient conditions for the sequence of value iterations to converge to an
optimal return without assuming the uniqueness of the solution of the optimality equa-
tion. In continuous time case Fakeev [8, 9] and Thompson [10] have treated optimal
stopping problems, using martingale theory, in which the finiteness of optimal stopping
times has been assumed. In [5], Shiryayev has treated optimal stopping problems of
continuous time Markov process in the case where the cost of observation is incurred.
It is stated as follows: FE is locally compact space with a countable basis. X=(X;, &,
T, 0, P¥) is a standard Markov process with state space (F, €). [ is a continuous
function on £ and C is a bounded nonnegative universally measureable function on F

which satisfies S?C(Xt)dz‘:oo a.s. Then the problem is to find a finite stopping time
T maximizing

0

(1) E’”[f(X,)—S C(Xs)ds] xeE.

Shiryayev has given an optimal stopping time for this problem in Chapter III of
[5] under certain cumbersome conditions (see [5, P. 107, Theorem 3]).

In the present paper we shall give an optimal stopping time of Problem (1) without

assuming Shiryayev’s conditions and show that the optimal value of Problem (1) is a
unique solution of Stefan problem if it exists.
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156 Y. YOsHIDA

2. Optimal Stopping of a Markov Process in the Presence of the Cost of Observation

Let T be the set of all nonnegative real numbers, the time space. Let {P},., be
the family of the transition functions of the process X defined in Section 1. Let ¥
(resp. M) be the family of all Markov times (resp. the family of all stopping times,
that is, all Markov times which are finite with probability one for every starting point).

We assume that the function C satisfies \wC(Xs)ds:co almost surely. Define an optimal
0

value function V by
(2) Vix)=sup E{f(X,)— {angd s}
=l J

for xE. Obviously the value of (2) does not change even if we replace # with i
in (2). A stopping time t* is said to be optimal if

Vi =B f(X.)- |, cCxds]

J O
for all xeFE. Let | | be the supremum norm on E. Let bE* be the family of all
bounded universally measurable functions on FE. Define, for each t=7, an operator
R, on bE* by

RL/e(x):Ef[k(Xt)—S:C(Xs)ds]
for xE. Then the next lemma is immediate.
LEMMA 2.1. {R,};so i a semigroup on bE*.
Define, for each i=T, operators Q, and Q;} by

Qih=kV Rk
Qi k=0Q.Qk

and

for natural numbers NV and k< bE*,
LEMMA 2.2. Let a natural number n be arbitrary but fixed. Then VHZ}Vim Q%-n

is the smallest excessive majorant of f for the Markov chain with the time space {m-27":
m is a nomnegative integer.}, that is, V, satisfies (a), (b) and (c):

(@ V.z=f.

(b) V,=R;-aV,.

(¢) If kebCE* satisfies k=f and k=R,-.k, then b>V,.

PrROOF. We can easily check the above results in the same line as Chapter Il of
Shiryayev [5]. O

LEMMA 2.3. {V,},. is an increasing sequence.

PROOF. Ri-nVisi=Ro-as0 Ro-tnip Vot S Ro-aan Vot £ Vian. Since V=71,
Lemma 2.2 implies V,,,=V,. O

LeMMA 24. V=1imV, is the smallest excessive majorant of f with respect to the

semigroup {R,},zo, that is, V satisfies (a)~(d):
(@) V=f.
(b) V=R,V for all t=T.
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(¢) Vs finely lower-semicontinuous and nearly Borel measurable.

(d) If k=bG* satisfies k=f and k=R.k for all t=T, then k=V.

REMARK. The definitions of the finely topology and nearly Borel measurability
are referred to Blumenthal and Getoor [1].

Proor. We have f<V,<'f] for all natural numbers n, therefore (a) follows from
Lemma 2.3. Next from Lemmas 2.2 and 2.3, we have that

(3) V=R, ..-+V for all natural numbers £ and F’.

From the proof of Lemma III. 1 in Shiryayev [5], if ¢ is a bounded nearly Borel
measurable finely lower-semicontinuous function on FE such that the process {@(X,)}is0
is separable, then P,¢ is bounded, nearly Borel measurable and finely lower-semicon-

tinuous on E for each t=7T. On the other hand, for each t=T, S:giC(X,)dr is bounded
~ris t
and 5008:5H C(X,)dr converges to & almost surely as s |0, therefore EIHOC(XT)dr}

is finely continuous on E according to Corollary 4.16 in Dynkin [3]. Moreover
EIU;e‘“’C(Xr)dr}:U“C(x)fe‘“P[U“C(x)

is nearly Borel measurable on E for each positive real number «, where U%k=

:oe‘”"P,k dr for k=bE*. By the monotone convergence theorem, when letting a to 0,
("t
ErHDC(Xr)er is bounded, finely continuous and nearly Borel measurable on E for

each t=7T. Consequently R,¢ is bounded, finely lower-semicontinuous and nearly Borel
measurable on E for each t<7, and so is Q,¢. From the definition of V, V is finely
lower-semicontinuous and nearly Borel measureable. Finally we can prove (b) and (d)
according to the same line as Lemma III. 1 in Shiryayev [5]. [

Now we examine properties of the optimal value function V.

LEMMA 2.5. V satifies (a) and (b):

(@) Vz=/.

(b) Vz=R.V for each t= M.

PROOF. (a) is tririal from (2). Fix any r= and x=F such that R.V(x)>—co.
Then P(x, ) is a measure on (E, G*). Now K={R,f: g=H} is filtering upward,
namely for any R, ,f<K (i=1, 2) we define

{ g, On /YoE{Rglf>Rrrgf}
g—=
o, otherwise,

then we have ¢<= .4 and R;,f=R; fVR,,f. We can choose a sequence {¢,}CH such
that R, f converges increasingly to V almost surely P.(x, -) as n—co. Hence by using

EIH;C(XS)(ZS}<OO and a slight modification of Lemma 2.1, we obtain
R V(x)=limR.R, f(x)

nooo

=Hm Ry, 0o SO V(). O
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PROPOSITION 2.6 It holds that V=T,

ProOF. Lemma 2.4 (d) and Lemma 2.5 imply V=V, If we have V=R.V for any
t€ M, then V2R, V=R.f for any r=H. This relation implies V=V. Therefore it
is sufficient to prove V=R.V for any =% to complete the proof of this proposition.

Now we fix any xF and t=.%#. Let t and a be positive real numbers. From
Lemma 2.4 (b) we have

EXUT e TP, F(Xr>_eAarV(Xr> dr}
Jo t
(4)

T

gEXg ﬁ;—EXrB:C(Xst}dr]

0

We shall calculate the limitting forms of each side of (4) as ¢t/ 0 and « | 0.

EXU:e“"Pt V(X,)dr}

(5)

=[P X ydr |~ Ex[ e n T ar |
and then we define

gﬁs(y):EyH:e‘”Ps V(ngr]

for yeFE and s=7T. From the Markov property we can show
(6) gu(y)=e®| e BV V(X )dr

for each yeF and s&T. On the other hand, by using the strong Markov property
and the definition of ¢,, we have

o

G=gu0—E*| | e P T(X.. )dr

=¢,(x)—E*[e*¢,(X)].
Therefore the left hand side of (4) is equal to
(7) 171 @ (1) —Po(2)} —E=[e™*t 7 {S (X)) —Bo( X} ]

From (6) for each y=F we obtain

FHO(3)— oy
(8) {9(3)—¢o()}

=t e =D P, Tdr—t-[ P, Tdr.
Then it holds that the left hand side of (8) converges to aSme‘“’Pr Viv)dr—V(y) as
[

any t>0. Therefore by the bounded convergence theorem, (7) converges to

t10, by using Lemma 2.4 (b) and (c). Hence from (8) we have ¢°!| i— G| <21 V|| for
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(9) alUsV(x)—V(x)—E=[e * aU* V(X)) —e = T(X)]

as t | 0, where the operator U® is defined in the proof of Lemma 2.4. Now (9) is
equal to

~

(10) aEI“:e"MWX,)dr]— T(x)--PaT(x).
Since 7= and
D |ap=[ e Txar]| s E1—em 1 T,

the left hand side of (11) converges to 0 as al0. Consequently, according to the
bounded convergence theorem, (10) converges to — V(x)+P.V(x) as a | 0, which implies
the left hand side of (4) converges to — V(x)+P.V(x) as t | 0 and a | 0.

Next we shall consider the right hand side of (4) as {10 and a!l0. The right
hand side of (4) is equal to

(12) Ez[g’e—arEX{%g:C(Xs)ds}dr}.

0

After some calculations on (12) similar to those on (5), (12) becomes to

t"{gje"”S:HEI[C(XS)]GISdr
13)
—g:oe‘“rg:HEl[e‘“EXr [C(X)]1ds dr).

Hence (13) converges to

~

(14) Efnze-a'C(X,)dr]
as t | 0. Since C=0, (14) converges to
(15) EIUZC(X,W]

as a | 0, which implies the right hand side of (4) converges to (15) as ¢} 0 and « 0.
Consequently it holds that —V(xH—P,V(x)gE‘”H:C(Xr)dr]. Since x=E and e

are arbitrary, we obtain R.V<V for any r&.#. This completes the proof of Proposi-
tion 2.6. O

Now we may identify V with V, therefore V has the properties of V. We can
prove the following Corollary 2.7 in the same line as Proposition 2.6.

COROLLARY 2.7. Let o, =M such that ¢ <t almost surely. Then it holds that R,V
=R.V.

The proof of the following lemma is same as that of Lemma IL. 6 in Shiryayev [5].

LEMMA 2.8. Lirglitlp V(Xt):lir{lﬂswupf(Xt) almost surely.

Let ¢ be a nonnegative real number. Define a nearly Borel set B. and its entry
time ¢, by
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B.={xsE: V(x)<[f(x)+e},
o.=inf{t: X, B.}
for each ¢=0.
LEMMA 2.9. It holds that
ngae/\NV

for any ¢>0 and any positive real number N.
PrOOF. Let ¢>0 and N>0 be fixed. For any r=.% it holds that

TG AN) O.=(t+7. 0 IN(r+N)
Zag.AN.
From Corollary 2.7 and a slight modification of Lemma 2.1 we have
(16) R-R; \yV=Resonmen VER, axV
for any r= . Define a constant d by

d=sup[f(x)— R, rxyV(x)].

r=E
we should pay attention to d<||f|+]V]+|C|-N<e. Now we can prove this lemma
by (16) and the same method as Lemma III.8 in Shiryayev [5]. O
LEMMA 2.10. V=R,V for any ¢>0.
PrOOF. Let x=FE and ¢>0 be fixed. From Lemma 2.9 it holds that

SO =IVIZR, sy VO~ V]
=B (V=1VDX,)—{"C(Xods: 0.2N)|

for each N>0. Now we have o.<co almost surely according to Lemma 2.8. By
means of the monotone convergence theorem, when NV increases to infinite, (17) converges
to R, V(x)—'1V|. Therefore f<R, V. For any r&i, by using Corollary 2.7, we
obtain

R.fZR.R; VER..; .0,VER,V

for any r< 1. From this result and Lemma 2.5 we have V=R, V for ¢>0. O
COROLLARY 2.11. For any ¢>0 the time o. is an e-optimal stopping time.
The proof is immediate from Lemma 2.10.
THEOREM 2.12. The time o, is an optimal stopping time.
PrOOF. Denine 7 by rzlin} g.. Then r=d and 7<g,. Now we show V=R.f.

Let x=F be fixed. From Lemma 2.10, Corollary 2.11 and the definition of ., it holds
that

Vio=lim R, V(x)

<lim [R,,f(x)+¢]

(18) =tim E<| £, )" cxds].
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Since X is quasi-left-continuous, by using convergence theorems, it holds that

(18)§E"[f(Xr)—S:C(Xs)ds: r<oo}
+Ef[1ig3§oup f(XL);ng(Xs)ds: T:oc]

However P(r<oc)=1 from the boundedness of V and the assumption of C. Con-
sequently V(x)=R.f(x). Since x&FE is arbitrary, it holds that

19) V=R.V=R.f.

(19) implies that E'H;C(Xx)ds} is bounded on E. Therefore (19) is reduced to

Ef[V(X)]=E*[f(X.)] for each x&FE, which implies r=0, almost surely. So v=0,
almost surely and (19) implies

(20) V=R,.f.

Finally from boundedness of V, f and ¢, we obtain ¢,<cc almost surely. This
completes the proof of Theorem 2.12. O

ReMARK 1. In this paper we may assume that f is upper-semicontinuous and finely
continuous instead of continuity of f.

REMARK 2. If we find an optimal value V, then an optimal stopping time g, is
given by Theorem 2.12. Therefore we are interested in properties of V. From Lemma
2.10, if C is nearly Borel measurable and finely continuous, then V satisfies the follow-
ing conditions

AV—C=0 on B,
(21) {
V=f off B,

where i is the characteristic operator in the finely topology. You may refer to Dynkin
[3] about the definition of A.

In the rest of this paper we shall consider the uniqueness of the solutions of (21).
Let A be the weak infinitesimal generator and D, be its domain.

ProPOSITION 2.13. Let f, ¢ and V be taken as before. Moreover we assume that C
satisfies C(x):ltig?PcC(x) for each x=E. If Ve D, satisfies conditions (1)~(iii):

(1) AV—C=0

(ii) V=7

(i) AV—C=0 on {V>f},
then V=V.

Proor. From Dynkin’s formula and (iii) we have
(22) R V=V

for any positive constant N. Where = is the first entry time of {x&E: F(O)=Ff(x)}.
Let x=FE be fixed. Then (22) implies that
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Feo— | Pi=E+[ (7~ Ti—{ cxods: rEN]

— — N
+E1[( V—]i VH)(X‘V)—SO C(Xyds: 'Z'>ZV]
By virtue of convergence theorems, we have

Vo —| 7] gEr[( T Vi~ cxods: r<co]

+E$S:C(Xs)ds: f:oo]

This implies P*(r<e)=1 and V(x)<R.V(x). Since x is arbitrary, z=.% and V<R.V.
On the other hand, from z=. and the right-continuity of X and continuities of
V and f, we obtain R.V=R.f. Consequently V<R.V=R.f<V. Conversely V=V
is easily obtained from (i) and (ii). [
REMARK. The proof of next case follows in the same line as that of Proposition
2.13. Let C=0. Let f be a continuous function on E such that lt&rg P,f(x)=0 for each

xeE. If VeD, satisfies conditions (i")~{(iv’):
(i")y AV'Z0
(ii") V'z=
(iii"y AV'=0 on {V'>f}
@iv") Itim P, V'(x)=0 for each x=EF,

then V'=V*, where V*(x)=sup E*[f(X,)] for x<E.
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