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     By 
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                    Abstract 

   The present paper deals with an optimal stopping problem which 

permits the cost of obserbation in the case of continuous time Markov 

processes. Under certain conditions of the terminal functions and the 
running cost functions, we show the existence of a finite optimal 

stopping time. Moreover we also discuss a free boundary problem 

concerning the optimal stopping problem.

1. Introduction 

   Discrete time optimal stopping problems have been studied by many authors. Chow 

and Robbins [2] have studied the case where optimal Markov times are actually finite. 

Furukawa [4] has studied the problems with general reward systems and especially 

has given sufficient conditions for the sequence of value iterations to converge to an 

optimal return without assuming the uniqueness of the solution of the optimality equa

tion. In continuous time case Fakeev [8, 9] and Thompson [10] have treated optimal 

stopping problems, using martingale theory, in which the finiteness of optimal stopping 

times has been assumed. In [5], Shiryayev has treated optimal stopping problems of 

continuous time Markov process in the case where the cost of observation is incurred. 

It is stated as follows : E is locally compact space with a countable basis. X=(X,, , 

0,, Px) is a standard Markov process with state space (E, ). f is a continuous 

function on E and C is a bounded nonnegative universally measureable function on E 

which satisfies •C(X,)dt= cc a. s. Then the problem is to find a finite stopping time 

0 

 maximizing 

(1)Ex[f(Xr)1C(Xs)ds] xEE. 

0 

   Shiryayev has given an optimal stopping time for this problem in Chapter III of 

[5] under certain cumbersome conditions (see [5, P. 107, Theorem 3]). 
   In the present paper we shall give an optimal stopping time of Problem (1) without 

assuming Shiryayev's conditions and show that the optimal value of Problem (1) is a 
unique solution of Stefan problem if it exists. 
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 2. Optimal Stopping of a Markov Process in the Presence of the Cost of Observation 

    Let T be the set of all nonnegative real numbers, the time space. Let {P1}10 be 

the family of the transition functions of the process X defined in Section 1. Let ±il 

(resp. 11) be the family of all Markov times (resp. the family of all stopping times, 
that is, all Markov times which are finite with probability one for every starting point). 

We assume that the function C satisfies \ C(Xs)ds=co almost surely. Define an optimal 
                                                      0 value function V by 

(2)V(x)=sup Ex[f(X7)—C(Xs)ds] 
-~lf0 

for x E E. Obviously the value of (2) does not change even if we replace S1 with .511 

in (2). A stopping time r* is said to be optimal if 

V(x)=Ex[f (X,)— . C(Xs)ds] 
0 for all x E E. Let ! ;I be the supremum norm on E. Let bC5 be the family of all 

bounded universally measurable functions on E. Define, for each tET,  an operator 

R1onb(s*by 

Rtk(x)=Ex[k(Xt)—.CtC(Xs)ds] 
0 for x . E. Then the next lemma is immediate. 

   LEMMA 2.1. { Rt } t>o is a semigroup on 
   Define, for each t~T, operators Qt and Qiv by 

Qtk=kVRtk 
and 

QN+ik=QtQi k 

for natural numbers N and kb*. 

   LEMMA 2.2. Let a natural number n be arbitrary but fixed. Then Vn=lim Q 2-n f 
N —oo 

is the smallest excessive inajorant of f for the Markov chain with the time space {nz.2-n : 

m is a nonnegative integer.}, that is, Vn, satisfies (a), (b) and (c) : 
   (a) Vn>f. 

    (b) Vn>_R2-TVn. 

   (c) If kEbQ* satisfies k> f and k>R2-nk, then k>_ Vn. 
   PROOF. We can easily check the above results in the same line as Chapter II of 

Shiryayev [5]. 

   LEMMA 2.3. { V„} n is an increasing sequence. 

    PROOF. R2nVn+1=R2(72+1)R2-(n+1) Vn+ir R2(n+i)Vn+1<Vn+1. Since Vn+1>f, 

Lemma 2.2 implies Vn+i? V. ^ 

   LEMMA 2.4. V=lim Vn is the smallest excessive majorant of f with respect to the 
n-•co 

semigroup {Rt}t>o, that is, V satisfies (a)--(d) : 

  (a) V> f. 

   (b) V>_RtV for all tET.
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    (c) V is  finely lowersemicontinuous and nearly Borel measurable. 
    (d) If kE-b * satisfies k>_ f and k>_Rtk for all t-7_-T, then k V. 

    REMARK.The definitions of the finely topology and nearly Borel measurability 
are referred to Blumenthal and Getoor [1]. 

   PROOF. We have f <Vn<'If ;1  for all natural numbers n, therefore (a) follows from 
Lemma 2.3. Next from Lemmas 2.2 and 2.3, we have that 

(3)V> R k' . k V for all natural numbers k and k'. 

From the proof of Lemma III. 1 in Shiryayev [5], if ¢ is a bounded nearly Borel 
measurable finely lowersemicontinuous function on E such that the process {¢(Xt)} t>o 
is separable, then Pop is bounded, nearly Borel measurable and finely lowersemicon

tinuous on E for each T. On the other hand, for each tEET, =JtC(Xr)dr is bounded 

0 and e.0,= J}sC(Xr)dr converges to almost surely as s 0, therefore Ex [foC(Xr)dr] 
is finely continuous on E according to Corollary 4.16 in Dynkin [3]. Moreover 

                Ex[)te arC (Xr)dr] =UaC (x)—eatPCUaC(x) 
0 is nearly Borel measurable on E for each positive real number a, where Uak= 

e arPr k dr for k E b*. By the monotone convergence theorem , when letting a to 0, 

0 Ex[C0tC(Xr)dr] is bounded, finely continuous and nearly Borel measurable on E for 
each t T. Consequently Rt¢ is bounded, finely lowersemicontinuous and nearly Borel 
measurable on E for each tEET, and so is Qtp. From the definition of V, V is finely 
lowersemicontinuous and nearly Borel measureable. Finally we can prove (b) and (d) 
according to the same line as Lemma III. 1 in Shiryayev [5]. ^ 

   Now we examine properties of the optimal value function V. 
   LEMMA 2.5. V satifies (a) and (b) : 

   (a) V> f. 
   (b) V> Rr V for each 72. 

   PROOF. (a) is tririal from (2). Fix any r E 92 and x e E such that Rr V(x)> —0. 
Then PP(x, •) is a measure on (E, (,,*). Now K= { R Q f : o E ..`32 } is filtering upward, 
namely for any Ra1 f EE K (i=1, 2) we define 

a1 on X0 {RQ1f>RQ,f} 
0-= 
                             a.2 otherwise, 

then we have a  —92 and R a f = R, 1 f V RQ2 f . We can choose a sequence {an}  such 
that Ranf converges increasingly to V almost surely P-(x, •) as n-->co. Hence by using 

Ex[~C(Xs)ds]<o and a slight modification of Lemma 2.1, we obtain 
0 R_ V(x)=1im RrR, ,a f (x) 

R —.00

{                                =11m Rrta noB-f (x)~V(x) 
                                                                                       R —.00
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   PROPOSITION 2.6 It holds that V= V. 

   PROOF. Lemma 2.4 (d) and Lemma 2.5 imply V>_ F. If we have V> R, V for any 

,512, then V>_ Rr V>_ Rr f for any rr n. This relation implies V>_ V. Therefore it 

is sufficient to prove V> R, V for any t E 3t to complete the proof of this proposition. 

   Now we fix any x E E and 7E31.  Let t and a be positive real numbers. From 

Lemma 2.4 (b) we have 

                    Ex~~e-arPPj(Xr)earV(Xr)           ol dri 
(4) 

~ExJoetar Exr[ foC(Xs)ds dd . 
We shall calculate the limitting forms of each side of (4) as t ! 0 and a j, 0. 

            Ex[~re-arPt V(Xr)dr] 
                                0 (5) 

             =Ex[~oe-arP, V(Xr)dr]—Ex[J-~e-arPP V(Xr)dr] 
and then we define1 

¢s(Y)=EY[ro e arPsV(Xr)dr] 
for yEE  and SET.  From the Markov property we can show 

6 ( )¢s(y)=e1 e-arEy[V(Xr)ldi
                                                        s for each yEE  and s E T. On the other hand, by using the strong Markov property 

and the definition of ¢s, we have 

                    (5)—¢t(x)—Ex[J~eacearP,1'(Xr+r)dr] 
                                                    0 =¢t(x)—Ex[e"0,(X,)]. 

Therefore the left hand side of (4) is equal to 

(7) • {¢t(x)—¢0(x)}—Ex[e-a,t-1. {¢t(X.)—¢0(X.)}1 

From (6) for each yEE  we obtain 

t-1{¢t(y)—¢o(y)} 
(8) 

            iat—ar1arP r (y)dr.                =t(e1)ePr 1(y)dr—tfte 
    t0 

Then it holds that the left hand side of (8) converges to ae-aTPr Y(y)dr— 7(y) as 

0 t 0, by using Lemma 2.4 (b) and (c). Hence from (8) we have t-1 ii ¢t —¢0 1;<_2. V) for 
any t>0. Therefore by the bounded convergence theorem, (7) converges to
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 (9)aUaV(x)—V(x)—Ex[e-a"•aUaV(X)—ea"V(X-)] 

as t 10, where the operator Ua is defined in the proof of Lemma 2.4. Now (9) is 

equal to 

(10)aEx[~"earti(Xr)dr]—V(x)+Pn1V(x). 
                                     0 Since rEn and 

(11)aExT car V(Xr)dr] <_Ex[1—e-a`] • i; 711 , 
the left hand side of (11) converges to 0 as a 10. Consequently, according to the 

bounded convergence theorem, (10) converges to — V(x)+PrV(x) as a 1 0, which implies 

the left hand side of (4) converges to — V(x)+PrV(x) as t 0 and a 10. 

   Next we shall consider the right hand side of (4) as t 1 0 and a 1 0. The right 

hand side of (4) is equal to 

(12)Ex[J 0earExr[tTC(Xs)ds]dri. 
After some calculations on (12) similar to those on (5), (12) becomes to 

                   t j(°°ear`r+tEx[C(Xs)]ds dr 
                   0Jr 

(13) 

                     —'e_ar~r+tEx[e-a7Exr[C(Xs)]]dsdrr.      JOrJJ 
Hence (13) converges to 

(14)Ex[JearC(Xr)dr] 
as t 0. Since C �0, (14) converges to 

(15)Ex[JrC(Xr)dr] 
                                                  0 as a 10, which implies the right hand side of (4) converges to (15) as t I 0 and a 10. 

Consequently it holds that — V(x)+P,17(x) <Ex[JC(Xr)dr]. Since xE E and v5 L 
                                                              0 are arbitrary, we obtain Rr V < V for any r E 11. This completes the proof of Proposi

tion 2.6. ^ 

   Now we may identify V with V, therefore V has the properties of V. We can 

prove the following Corollary 2.7 in the same line as Proposition 2.6. 
   COROLLARY 2.7. Let a, ,51t such that Q<r almost surely. Then it holds that RO.V 

>_ RTV. 

   The proof of the following lemma is same as that of Lemma II. 6 in Shiryayev [5]. 

   LEMMA 2.8. Limsup V(X0)=limsup f (Xt) almost surely. 
        t—t-. 

   Let s be a nonnegative real number. Define a nearly Borel set B. and its entry 

time a0 by
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BE={xEE: V(x)< .f(x)+E}, 

6E=inf{t: X,EBE} 
for each s>_0. 

   LEMMA 2.9. It holds that 

.f ARQ.AxV 

for any s > 0 and any positive real number N. 

   PROOF. Let s > 0 and N> 0 be fixed. For any 2-E-,511 it holds that 

7+(6EAN).8r=(r+6E08r)A(r+N) 

?6EAN. 

From Corollary 2.7 and a slight modification of Lemma 2.1 we have 

(16)RrRa_/\vV=Rr+(gEnv)oe.V<R,E;,yV 

for any rE n. Define a constant d by 

                        d=sup [f(x)—RQ<nN V(x)] • 
SEE 

we should pay attention to d < 11 f it + II V 11 + 11 C 11 • N < c . Now we can prove this lemma 

by (16) and the same method as Lemma III.8 in Shiryayev [5]. ^ 

   LEMMA 2.10. V=Ra_V for any s>0. 

   PROOF. Let x E and s >0 be fixed. From Lemma 2.9 it holds that 

.f(x)-HI V)<RQE,v.yV(x)-!1 V~I 

Ex[(VH1 V!I)(X,_)—~a`C(XS)ds :6<<N] 
                                                            0 for each N>0. Now we have aE < co almost surely according to Lemma 2.8. By 

means of the monotone convergence theorem, when N increases to infinite, (17) converges 
to RQy(x)—'1 17'1. Therefore f <RQ_ V. For any rE-92, by using Corollary 2.7, we 
obtain 

Rrf <RrRO V<Rr+a_o©rV<RQV 

for any r „512. From this result and Lemma 2.5 we have V=RQEV for s>0. ^ 
   COROLLARY 2.11. For any s>0 the time 6E is an soptimal stopping time. 

   The proof is immediate from Lemma 2.10. 
   THEOREM 2.12. The time 6o is an optimal stopping time. 

   PROOF. Denine r by r=lim 6E. Then DE Ai and r<6o. Now we show V=Rrf. . 
e 0 

Let x c E be fixed. From Lemma 2.10, Corollary 2.11 and the definition of oE, it holds 

that 

V(x)=1im RQ_ V(x) 
                               e—•o ` 

<lim [R,E f (x)+e] 
e—^0 

(18)=limEx[f(XQE)—~~EC(XS)ds]. 
         e00
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Since X is quasileftcontinuous, by using convergence theorems, it holds that 

           (18)Ex[f(Xr)j0C(Xs)ds :z<~] 
--E'[limssup f (X,)—.0C(XS)ds :t=col . 

However Px(r<oc)=1 from the boundedness of V and the assumption of C. Con

sequently V(x)=Rr f (x). Since x EE is arbitrary, it holds that 

(19)V=R,V=Rrf 

(19) implies that E'[JoC(Xs)ds] is bounded on E. Therefore (19) is reduced to 
Ex[V(Xr)]=Ex[f(Xr)] for each x-E, which implies r?a0 almost surely. So 7=0. 

almost surely and (19) implies 

(20)V=Raof 

   Finally from boundedness of V, f and c, we obtain Qo<cc almost surely. This 

completes the proof of Theorem 2.12. ^ 
   REMARK 1. In this paper we may assume that f is uppersemicontinuous and finely 

continuous instead of continuity of f. 

   REMARK 2. If we find an optimal value V, then an optimal stopping time ao is 

given by Theorem 2.12. Therefore we are interested in properties of V. From Lemma 
2.10, if C is nearly Borel measurable and finely continuous, then V satisfies the follow

ing conditions 

-1 V—C=0 on Bo 
(21) 

V=foff B0, 

where --1 is the characteristic operator in the finely topology. You may refer to Dynkin 

[3] about the definition of -4 . 
   In the rest of this paper we shall consider the uniqueness of the solutions of (21). 

Let A be the weak infinitesimal generator and DA be its domain. 

PROPOSITION 2.13. Let f, c and V be taken as before. Moreover we assume that C 

satisfies C(x)=limPtC(x) for each If VDA satisfies conditions 
t10 

   (i) AV-C<_0 

  (ii) V> f 
   (iii) AV—C=0 on { V> f}, 

then V= V. 

   PROOF. From Dynkin's formula and (iii) we have 

(22) v V= V 

for any positive constant N. Where z is the first entry time of { x E E : V(x)= f (x)} . 

Let x ET E be fixed. Then (22) implies that
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l(x)11711=Ex[(17—IIVII)(X) 0C(XS)ds: T<N] 
+Ex[(V—II VIU(XNN)—C(XS)ds : r>N] . 

By virtue of convergence theorems, we have 

           V(x)— IIVII Ex[(V11VII)(Xr)—.00C(Xs)ds: r<H 
                     +Ex.0C(Xs)ds: T=oo]. 

                                              0 This implies Px(7<co)=1 and V(x)R.V(x). Since x is arbitrary, TEJ and V<RDV. 

   On the other hand, from TEa2 and the rightcontinuity of X and continuities of 
V and f, we obtain RrV=Rrf. Consequently V<RTV=Rrf <_ V. Conversely V—V 

is easily obtained from (i) and (ii). ^ 

   REMARK. The proof of next case follows in the same line as that of Proposition 
2.13. Let C—=0. Let f be a continuous function on E such that lim Pt f (x)=0 for each 

t— 

x E E. If V' E DA satisfies conditions (i')-(iv') 

  ( i' ) AV'0 

(ii') V'>f 

  (iii') AV'=0 on { V'> f } 

(iv') lim Pt V'(x)=0 for each x E E, 
t— 

then V'=V*, where V*(x)=supEx[f(XX)] for xEE. 
r=sst
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