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A CATEGORICAL MODEL OF 2-CALCULUS BASED 

 ON DE BRUIJN'S NAME-FREE EXPRESSIONS

       By 

Hiroshi OHTSUKA

                    Abstract 

   This paper contains an interpretation of de Bruijn's name-free 
expression in Cmonoid. We show that certain construction of 
Cmonoid (Kleisli Cmonoid) corresponds with the expression of 
2calculus by de Bruijn's name-free expression. In particular, the 

procedure of substitution in de Bruijn's name-free expression, which 
is more accurate than that in calculus, is systematically character
ized in Cmonoid.

1. Introduction 

   Just as a cartesian closed category (CCC for short) has been a model of typed 
2calculus, so Cmonoid has been a model of 2calculus. Their relations were pointed 
out by several authors ([5], [6]). We presented another relation between typed 

2calculus and CCC based on de Bruijn's name-free expressions [3], [4] (abbreviated to 
DB's NF-exp). Our observation has shown that Kleisli construction (Kleisli category) 

of CCC characterizes DB's NF-exp and it is isomorphic to polynomial category which 

is the ordinary model of typed 2calculus [8]. 

   Terms in DB's NF-exp are the same those of 2calculus except that they are 

constructed upon nonnegative integers instead of variables. It is important that since 

DB's NF-exp has no variable, it makes no sense to rename bound variables as was 
done in 2calculus using aconversion. As a result, the procedure of substitution in 

DB's NF-exp is defined more explicitly than that in standard notation of 2calculus. 

   Now, for the purpose that we want to get the meaning of elaborate substitution 

in 2calculus, we adopt DB's NF-exp as a notation and Cmonoid as a model. Conse

quently, we mainly get the following results : 

   1. Kleisli construction of Cmonoid fits the sense of DB's NF-exp. 

   2. The procedure of substitution in DB's NF-exp is precisely characterized (com

      position of certain elements) in Cmonoid. 

   Section 2 sketches 2calculus and DB's NF-exp, in particular, the procedure of substi

tution in both systems. Section 3 contains a brief introduction of Cmonoid and gives 

a certain construction of it. Section 4 deals with Cmonoid as a model of DB's NF-exp 

(not 2calculus) and presents the second statement which is one of the main results 
described above. Considering the relation between Cmonoid and CCC, we conclude 
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that the procedure of substitution is systematically characterized as the composition of 

certain morphisms in CCC.

2. 2calculus and de Bruijn's Name-free Expression 

   This section presents some notions and notations of 2calculus and de Bruijn's name

free expression (DB's NF-exp for short), in particular, the procedure of substitution in 

those systems and relation between them. 

   The formal system of 2calculus consists of 2-terms and certain rules between them 

[1], [6]. 
   DEFINITION 2.1. Let x, y, z,•-• be infinitely many variables. The set of 2terms, 

notation A, is defined inductively by 

     1. x,y,z,...EA, 

   2. M, NE A (MN), (M, N) m A, 

   3. Mm A and a variable x= (2x. M), (fst(M)), (snd(M)) m A. 

Free and bound variables are defined as usual. FV(M) denotes the set of free variables 

of M. A term of the form (MN) is an application (of M to N). A term (2x. Al) is a 

2abstraction, x is called binder and M is body. A term (M, N) is a paring, a term 

(fst(M)) is a 1st projection and (snd(M)) is a 2nd projection. We adopt usual bracket 
convention and pairing of variables can be used as bound variable. For example, we 

permit the following 2-term. 

(2(x, y). (xy)) (abbreviated to 2(x, y). xy) 

We use ` m ' to indicate syntactical identity. Next, we define the important operation 

of substitution and rules. 

   DEFINITION 2.2. It is the replacement of all the free occurrences of a variable in 

a 2-term with another 2-term. The result of substituting N for the variable x in Al is 

denoted by M[x :=N]. It is defined as follows.

x[x :=N1=-N. 

y[x:=N]my, if x y. 

(PQ)Cx N]m(P[x :=N])(QCx :=N]). 

(P, Q)Cx :=N]=(P[x :=N], Q[x :=N]) . 

fst(P)[x :=N]mfst(P[x :=N]). 

snd(P)[x :=N]msnd(P[x :=N]). 

(2x. P)[x := N]:=_ P. 

(Ay. P)[x :=N]mAy. (P[x :=N]), if x,y and y FV(M). 

(Ay. P)[x :=N]mAz. ((PLY :=z])[x :=N]), 

      if x m y and y m FV(M), we choose zE FV(P)K FV(N).
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 Axiom 2.1. 2-terms are to satisfy the following rules. 

1. Ax. M=2y. M[x :=y] , if y FV(M).(aconversion) 
2. (Ax. M)N=M[x :=N] .(i3conversion) 

3. Ax. Mx=M, if xFV(M).(72-conversion) 

4. fst(M, N)=1ti1, snd(M, N)=N,(7-conversion) 

(fst(*t), snd(M))=11/1. 
5. standard compatible rules (see Barendregt [1]).

   We denote induced equation M=N by above axioms in Acalculus for A H M=N. 
   The last identity in the definition of substitution may have an ambiguity of selection 

of bound variable z (aconversion on the body) when we manipulate A-terms mechanically. 

To annul it, there is an elegant expression of 2-terms which is called DB's NF-exp 

together with operations on its terms. It obviates the need for aconversion and has 
more mechanical procedure of substitution than 2calculus. 

   The formal system of DB's NF-exp also consists of DB-terms and certain rules 

between them just as Acalculus [1], [3], [4]. 

DEFINITION 2.3. The set of DBterms, notation DB, is defined as follows. 

   1. any nonnegative integers are DB-term. 

   2. M, NEDB=(MN), (M, N)EDB. 

  3. ME DB (A. M), (fst(M)), (snd(M)) E DB. 

   We adopt the same naming and bracket convention as A-terms and use ' m ' to indicate 

syntactical identity. 
   In the standard notation, variables had distinct names, and an occurrence of that 

variable could be identified by the appearance of its name. We could also distinguish 

between free and bound occurrence of a variable in a given 2-term. Moreover, given 

an occurrence of a variable, we could recognize whether it was bound and identify the 

.Z that bound it. An occurrence of x was bound by the closest surrounding 2 that was 

tagged with the name x. 

   DB's NF-exp does away with names for variables and binders for A while retaining 

the ability to determine whether and where a particular variable occurrence is bound. 

Nonnegative integer associated with any occurrence x of a variable, a leaf in the tree 
representation of 2-term, is the number of nodes labelled 2y, with xy, which are met 

in the path from that leaf to the root of this tree (the top level) until a node 2x is 

encountered. If an integer occurrence n is greater than the number of A's from n to 

the top level, then it refers to the free variable. 
   The definition of substitution in DB's NF-exp is substantially more complicated 

than the corresponding definition for standard notation. This is mainly because it 

ensures that no integers of the DB-term to be substituted corresponding with free 

variables get captured bound variables of the body during substitution. For the purpose 

of it, we need an appropriate transformation of the DB-term which is substituted. 

   DEFINITION 2.4. Above transformation is called shift, notation U7,4, and is defined 

as follows. 
j if j>i 

U m(j)= 
j+in otherwise.
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Piz

/(_llN)mU)7(M)U(N). br(0I, N))=(Um(M), U (-V)• 

M)m2. U~11(!11). 

Ui (fst(.li))—fst(Ui"(11l)). 

Uz (snd(M))snd(Uin(M)) .

We denote the result of substituting N for the m in body Al by M[m :=N]. 

DEFINITION 2.5. Substitution is defined as follows.

n if n<m 

n[m:=N] Uo(N) if n=m 

n-1 if n>m 

(PQ)[ni :=N] =(P[m :=N])(Q[m :=N]) . 

(P, Q)[m:=N]=(P[m:=N], Q[m-:=N]). 

(2. P)[m :=N]-2. P[m+1:=N] . 

fst(P)[m :=N]=fst(P[m :=N]). 

snd(P)[m :=N] =snd(P[m :=N]) .

   As axioms in DB's NF-exp are the same those of 2calculus except that aconversion 

is obviated, we only exhibit j9, 72, 7rconversion in DB's NF-exp. 

   AXIOM 2.2. DB-terms are to satisfy the following axioms and standard compatible 

rules. 

  1. (2. M)N=M[0 := N].(/3conversion) 

 2. A. Uo(M)0=M.(1)conversion) 
  3. fst(M, N)=M, snd(M, N)=N,(7rconversion) 

     (fst(M), snd(M))=M. 

   We use DB H M=N to state that M=N is provable from the axioms in DB's NF-exp. 

   The next few paragraphs give two translations between 2calculus and DB's 

NF-exp which attempt to convince the reader that no essential part of 2calculus is 

lost by switching to DB's NF-exp. Free variables are gathered up and make infinite list 

FV=(xo, x1, x2, •••). 

   We remark that variables in it are numbered starting with 0. 

   DEFINITION 2.6. Translation : A—*DB under the list X of free variables is defined 
as follows. 

Z(x, X)=i, where i is the minimum such that x-xi in X. 

T(MN, X)=Z(M, X)'(N, X). 

((M, N), X)=(Z(M, X), Z(N, X)). 

Z(Ax. Al, X) _ A. Z(M, (x, X)).
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          Z(fst(M),  X)=fst(3_,(11, X)). 

~(snd(141), X)=snd(7.D.(11, X)) . 

   The list (x, X) denotes the result of appending X to (x). At the top level, the list X 
is equal with FV. We remark that the translation on 2abstraction is performed under 

the modified list (x, X) in which certain variable may occur at several positions. Then 

the variable is translated into the order of the leftmost position of it. For example, 

`J(2x . xy, (x, y, ...))_2. T.(x, (x, x, y, ...)(y, (x, x, y, •••)) 

=2. 02 . 

   Clearly, if free variables of 2x. Al are included in X, then also are those of Al in (x, X). 

   The inverse translation needs two lists of variables FV' and BY. No variable in 

FV' appears in BV and none of BV also do in FV'. 

   DEFINITION 2.7. Translation a : DB—>A under the lists Y of free variables and Z 

of bound variables is defined as follows. 

2(i, Y, Z)=xi , where is the ith variable in Y. 

2(MN, Y, Z)=5(M, Y, Z).V (N, Y, Z) . 

2((M, N), Y, Z)=(?(M, Y, Z), 3(N, Y, Z)). 

(2.1111, Y, (x, Z))=2x. ?(M, (x, Y), Z). 

2(fst(M), Y, Z)=fst(V(M, Y, Z)). 

2(snd(M), Y, Z)=snd(V(M, Y, Z)) . 

   At the top level, the list Y is equal with FV' and Z is BV. If FV' coinsides with 
FV, we get the following properties which are called syntactic equivalence theorem. 

Their proofs are straightforward, but tedious computation [8]. 

   THEOREM 2.1. Let M, NEA and P, Q G DB. The following statements hold. 

   1. AI— MET,-aNDB H (M, FV)(N, FV). 

   2. AI— M=N =DBI—`.3J(M, FV)=Z(N, FV). 

  3. A H Mat'(Z(M, FV), FV, BV). 

   4. DBI—P=Q= AH (P, FV, BV)=2(Q, FV, BV). 

   5. DB I— P=( (M, FV, BV), FV). 

Where =a denotes the acongruent relation. 
   These relations mention precisely that DB's NF-exp has been considered as the 

acongruence (the "real" term) of 2calculus.

3. An Introduction to Cmonoid 

   In this section, we provide a brief description of C?nonoid and certain construction 

of it. A Cmonoid looks like cartesian closed category (CCC for short) except that it 

lacks the terminal object. It becomes a model of 2calculus just as CCC does that of 

typed 2calculus. Relations between Cmonoid and CCC, 2calculus and typed 2calculus
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are out of the scope of this paper. We do not give their details. Their further ref

erences are seen in Koymans [5], Lambek and Scott [61. 

   DEFINITION 3.1. A Cmonoid is a monoid s?f (identity is e) with extra structure 

<7z-, %r', E, A, <-, ->>, where rc, rr', s E W,

A : , 

<-,->: ?XXS?T-491, 

satisfying the following identities : 

;c<a, b>=a, 

rr'<a, b>=b, 

<rrc, rr'c>=c, 

s<A(h)ar, rr'>=h , 

A(s<krr, rc'>)=k, 

for all a, b, c, li and k E 91. 

   First three identities correspond with axiom of product in CCC, and so last two 

ones do axiom of exponential in CCC. Cmonoids are the objects of a category whose 

morphisms are Chomomorphisms, which preserve extra structure of Cmonoid. 

   The next few paragraph briefly explains certain construction of Cmonoid which is 

motivated by the corresponding one in a category theory, known as Kleisli's construction 

of certain comonad. Their definitions and concepts are out of scope of the this paper. 

We do not go into details. Further explanation is referred in MacLane [7]. We only 

divert Kleisli's method to the construction of Cmonoid. 

   DEFINITION 3.2. Given Cmonoid 91, Kleisli Cmonoid 2f, whose elements are the 
same those of 91 is defined as follows. 

   Composition of a, bE9I, is a"b=a<rr, b>. 

   Identity of 91s is rr'. 

Extra structure of 91s, <rrs, rrs, Es, As, <-,->s> is defined as follows. 

rrs=nrr', 7s=rr'7r', 

                            <a, b>,=<a, b> , 

ES=E1r', 

As(c)=A(ca), 

where a, b, c E W , and a = <rr rr, <rc'rr, rr'>>. 
   Above definition indeed gives rise to the structure of Cmonoid. We only prove 

the last two identities in definition 3.1. Let h 9.1s, then first identity is 

a,'<As(h)°Zs, 7rs>s=e7r'<7, <A(ha)<7c, rrrr'>, 7r'7r'>> 

=s<A(ha)<rr , 7r7r'>,
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= h a <( , 7rlr' >, cr' %r' > 

=1l<7r7 , <%,'7r, %r'>><<r, Jr r'>, 7r'7r'> 

=h<7r, <7r7r', rc'7r'>> 

=h . 

Similarly, let k E 9Ts, then second one is 

As(ss°<k°.Ts, 7rs>s)=1s(e r'<7r, <k<zr, rr7'>, r'r'>>a) 

=i1(e<k<7a, 7,7r'a>, r,'7r'a>) 

=A(e<k<n-rr, 7r'7r>, %r'>) 

=A(e<k:r, 7c'>) 

=k.^ 

There is a Chomomorphism h: 91-->9i, which sends the element a with a7r'(= a c Ws). 

   Cmonoid and CCC began to be treated as a categorical model of Acalculus and 

typed Acalculus by Koymans [5], Lambek and Scott [6]. But their method dealt with 

only closed Aterms. Curien extended their method to be able to treat free variables 

themselves and adopted socalled polynomial Cmonoid as a categorical model of 

Acalculus [2]. 

   Polynomial Cmonoid, which is usual construction of universal algebra, was intro
duced by Lambek and Scott [6]. An indeterminate in polynomial Cmonoid corresponds 

with a variable in Acalculus. On the other hand, it will be turned out that Kleisli's 
construction of Cmonoid corresponds with a nonnegative integer in DB's NF-exp. 

   Next, we translate DB-terms into elements of Cmonoid (not polynomial Cmonoid) 

not via A-calculus but directly. We remark that it does not use the concept of variable 

and indeterminate. 

   DEFINITION 3.3. The translation 9J2 : DB-->92T is defined as follows. 

9,R(i)=7r7r" . 

9J2(MN)=6.<9J2(M), 9J2(N)> . 

9R((M, N))=< J (M), )(N)>. 

                       9,J2(A. M)=A(J)1(M)<7r', 7r>). 

9JJ( f st(M)) _ r(9R(M)) . 

9J1(snd(M))=7r'(9J2(M)) . 

   This translation is diverted from the corresponding one between typed Acalculus 
and CCC. In it, a nonnegative integer is translated to the composition of some 

projections 7r, 7r', which is obtained by successively applying the Kleisli's construction. 
That is, 7r7r' is ith application of h to 7r, h(•••(h(7r))•••)=hi(:r). 

   Next section, we will show that the translation 9J1 candicates to another categorical 

model of Acalculus in the sense of Curien's extention.
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 4. The Meaning of Substitution in Cmonoid 

    In previous sections, we presented DB's NF-exp which has more accurate procedure 

 of substitution than 2calculus and obtained new translation which sends DB-terms with 

 elements of Cmonoid. For the purpose that we proposes to interpret the accurate 

procedure of substitution, we adopt DB's NF-exp as a notation and Cmonoid as a model . 
For the rest of this paper, sU denotes a Cmonoid . 

    First, we construct the element in Cmonoid which corresponds with the operation 

of shift in DB's NF-exp. 

    DEFINITION 4.1. Given nonnegative integer i, in, the element j i m S2T is defined as 

follows. 

m=<27, ri1,me>, (i>0). 

                                                    rm                             ro,m=lr, where ro,o=e. 

   r has the following simple property, 

                                                mu n=ri, m+n • 

   Shift is interpreted to the right composition of r by the translation 931 as follows . 
   THEOREM 4.1. Let M be any DB-term and i , m be nonnegative integers. Then, the 

following equation holds. 

                        WI_IIn(M))= (M)r i m • 

   Proof is done by induction on the structure of DB-term . We show only two 
cases, nonnegative integer and 2abstraction. 

If j<i, then, 

9R(Uln(j))=77'j 

JI (I )ri, m=7r7r'i<7, 

—T7717iri -1, m7Lr 

rj Tri-j,m~ 

                                         =7L7Z, Ti-j-1, m"r>Ti" 

=7t2'j. 

If j > i, then, 

fJl(Ui`(j))=7CTrj+m 

931 (j)ri, m=7r7r"<7r, ri-1 , m7r'> 

=777r11ri -1, mT' 

                                                                   ri                                                _~~r j-iro ,m« 

=7Z7Y'u i2r m7rri 

=7L7Z'~+m
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For 2abstraction, 

9J1(U77"(2. M))=J)1(2. (U +1(M))) 

=A(1)1(UT-F1(M))< %r>) 

                               =A(9?J1(M)T i+1, 77,<21', >) 

=A(9)1(111)<7', ~~><Ti,m~~, T'>) 

=Al (M)<77' , 7r))7',, m 

   The meaning of substitution needs more complicated element in S2t which is informally 

described as performing left rotation. 

   DEFINITION 4.2. Given nonnegative integer i, j (i>_ j), the element ~~;~5?I is defined 

as follows. 

i,;=<7r, i1,;-17r >, (i>0)1, 

\ , <••., <7C7r , <r, 7L », ...»> , where 50,0=e. 

   If we consider oi , o as the left rotation of length i+1, 50,0 means the left rotation 
of length 1, which does nothing. Therefore, it is quite all right to decide do, o to e. 
Now we come to the main result of this paper. 

   THEOREM 4.2. Let M, N be DB-terms and in be nonnegative integer. Then the 

following equation holds. 

U1(M[m :=N])=J1(M)bm, om(N)Yo, m, e> 

   We prove only two cases, nonnegative integer and 2abstraction. 

If n<771, then, 

T1(n)5m,0<J(N)To ,m, e>=7r7r <7r7r', <•••, <7'7r'm, <7r, 7r7r'm+1>>•••>><TI(N)T0,,,„ e> 

=7r<7r2r'n+1, <..., <rem , Or, T7L,m+l>> >><:r.Ji(AT)I o, m, e> 

                            =;72.c,n+1<(N)7'o , m, a> 

=renl 

=9)1(n[7n :=N]) . 
If n=m, then, 

9J1(m)3m,o< (N)l o, m, e>=7r2r'm"<7r7r', <..., <r7r'm, <7r, 2r7r'm+1»•••>><TI(N)7"0,m, e> 

                         =7r<7r, 7r"1+1><U(N)ro, m, a> 

=7r<JJ1(N)To, m, a> 

                        =(N)r0 . m 

                  =9J1(Uo(N)) 

,n(m[m :=N])
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If n > m, then, 

)/(72)5ttt,o<Ti(N)T0,nt, e>=72'n<77', <.••, <7,77/7n, <7, 77'm+'>> >><TZ(N)Yo,m, e> 

=77L'n-m<77, 71m+1><T2(1V')1 0, nt, e> 

=77"t< W(N)I0, m, e> 
n-1 

=9)1(11 =1(n[m :=N]) . 

For 2abstraction, 

9,1l((2. 11,1)[m :=N])=9)/(A. AI[m+l :=N]) 

                =A(32(M[

SmI1:=ypN])<7r', 7r>)                   =A((i~l)U nt+l,0<='^`(N)10, nt+1, e><2', i~>) 

=A( (M)<Z7r', <7, 7rm">>.•.>><J(N)7o , m7', <7', 7>>) 

=11(9, (M)<7r', 7r><<7: <•••, <7.7,m-1, <9J1(N)ro, m, 7r7rI m>> .»77, 77'>) 

11( I(M)<7r', 7r>)<77r', <•••<?7r'm, <7r ;r'm+1>> >><TJ (N)?'o, m, e> 

=9J2(A. M)5. ,00:11(N)10,,„  e> .^ 

   Additionally, j3conversion is preserved by the translation V. 

   COROLLARY 4.1. Let M, N be DBterms. Then, 

9)2((A. M)N)=3J2(M [0 :=N]) . 

Proof : We put m=0 in above theorem, then, 

9.31((2. M)N)=e<A(9J2(M)<7', 7L>), 91I(N)> 

=J)1(M)<9R(N), e> 

--=M(M)60,0M(N)70,  e> 

=9,J2(M[0:=N]).^ 

   Moreover the translation 932 preserves the equality in DB's NF-exp. 

   THEOREM 4.3. Let M, N be DBterms, then, 

DBHM=N= W1(M)=9J1(N). 

   We prove only the case 7conversion. Let M be DB-term. 

91(A. Uo(M)0)=A(9(Uo(M)0)(n', 7r>) 

=A(s< (M)10 , 1, 7r7r'0><7r', 2r>) 

=A(s<s (M)7r', 7r><7r', 7r>) 

=A(s<9.(M)7r, 7r'>) 

=93/(M).^
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   This theorem mentions that the translation TI does not only characterize the 

procedures of shift and substitution in DB's NF-exp, but also makes Cmonoid a model 
of DB's NF-exp. Consequently, since DB's NF-exp has more explicit procedure of 

substitution than 2calculus, we obtain more elaborate model of 2calculus than ordinary 

ones.

5. Concluding Remarks 

   This paper is an extended version of [8]. In [8], we got a Kleisli category of CCC 

as a model of typed 2calculus and used DB's NF-exp to construct it. 
   For the purpose that we will interpret DB's NF-exp into a suitable model, we have 

used Cmonoid (type free version of CCC) and have applied the method in [8]. As a 

result, we can consider the procedure of substitution as the composition of several 

elements in Cmonoid which are systematically constructed. Moreover, we do not use 
indeterminates which correspond with variables in 2calculus but elements characterized 

by nonnegative integer in DB's NF-exp. 

   We appropriated the relation between typed 2calculus and CCC for that between 

2calculus and Cmonoid. In the typed version, there is closed relation between ordinary 

model (polynomial CCC) and our model (Kleisli category of CCC), which is characterized 

by the functional completeness of CCC. On the other hand, the relation between 

polynomial Cmonoid and Kleisli Cmonoid fades away. The functional completeness of 
Cmonoid does not make those Cmonoids isomorphic. This is mainly because Cmonoid 

does not have the element which behaves as the terminal object in CCC. Therefore, 

our model may not be isomorphic to the ordinary categorical model of 2calculus. 
   The studies of categorical investigation of 2calculus are actively accomplished by 

Curien [2] et al. They would treat CCC or Cmonoid as syntactic systems, e. g., 

categorical combinatory logic, while we do as description of semantics of 2calculus. 

They extend classical combinatory logic to categorical one and try to reconstruct several 

properties, e. g., syntactic equivalence theorem, confluency under some systems of 
several axioms. 

    Because our investigation mainly consider Cmonoid as semantics of 2calculus, it 

would not be immediately concatenated with their studies. But since we have obtained 

the categorical meaning of substitution, which is based on DB's NF-exp and therefore 

quite syntactically characterized, we would like to show some properties of 2calculus 
in Cmonoid using our result, for instance, sequential substitution or confluency.
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