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STATISTICAL INFERENCE PROCESSES AND THEIR 

PROPERTIES BASED ON KNOWLEDGE FUNCTIONS 

           IN NISAN SYSTEM

      By 

Koji KURIHARA*

                    Abstract 

   Successive processes of statistical methods are usually applied to 

data analysis in practice. Excepting some studies of prototypes, 

however, mathematical properties of such many inference processes 

are still remained unclear, although their investigations are strongly 

needed in routine. In the present paper, inference processes are 

generally classified to three categories, and several plans proposed by 

previous authors are extended with wide flexibility, and are discussed 
on their properties. For their numerical evaluation, knowledge func

tions developed in NISAN system are applied.

   1. Introduction 

   Theories of serial application of statistical methods have been studied in the fields 
of multistage sampling inspection plans, sequential analyses of statistical inference, 

successive processes of statistical methods, and so on. Since such serial procedures for 

inference are very attractive in view of sample size, sampling cost, significance level, 

power and relative efficiency of the overall process of tests, and the performed precision 
for estimation of parameters, there exist still various schemes to be investigated, ex

cepting rather simple procedures already discussed by many authors, e.g. Kitagawa [8], 

Wald [14], Asano et al. [2, 3], McPherson and Armitage [10], Miller [11], Aroian [1], 
Pocock [13], Gould and Pecore [7] and so on. Regarding such inference procedures, 

there exist three categories, depending on the aim of actual process of statistical re

cognition [2]. The first kind of categories is process via identical tests by adding 

samples, the second is process via different tests with a similar purpose, and the third 

is inference process via different tests with different purposes. The respective categories 
contain two types, say Types 1 and 2 shown in Figures 1 and 2, with one-by-one, 

partial, group or adaptive sampling rule. In the present paper, several serial processes 
of inference are extended theoretically and their numerical evaluations are precisely 

investigated about three categories. For these evaluations, knowledge functions in 

NISAN system are effectively used. That is to say, PRTP command gives the power 
of an overall test process, expected number of samples (ASN) and expected cost (AC), 

which consists in both costs of sampling set up and samples, for the respective sampling 
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Figure 1 N-stage test process plan of Type 1.

Figure 2 N-stage test process plan of Type 2.

rules. PRTE command gives estimation of parameters, mean square error, and value 

of risk function, basing on an test procedure. PRDIST command is to give a nominal 

significance level for a conditional distribution of the final test statistics due to a test 

process. Such PRfamily of commands in NISAN system is possible to examine pro

perties of about 90 papers in the recent 300 papers related to inference processes.

   2. Fundamental Properties of Statistical Inference Processes 

   Let X =(Xi1, X12, ••• , Xini) be a random variable vector with ni samples, and let 

Ti(Xi) be a statistic at i-th stage, i=1, 2, • • • , A'. 

DEFINITION 1. N stage process with an overall significance level a is defined as 

follows, 
Pr[ U(2.1) 

2EI 

where Ci is a critical region of i-th test for a null hypothesis Hoi, i=1, 2, • •• , N, and I 

is a non-empty index set /c[1,  2, • • • , N].
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    Let  ai be a nominal significance level for critical region Ci and let ai _4 a nominal 
acceptance probability for acceptance region Ai, i=1, 2, • • • N. Let Pr(Ci) and Pr(Ai) 

denote Pr(Ti(Xi) E Ci) and Pr(Ti(Xi) Ai), respectively, in short. The following 

Lemma 1 is led by Bonferroni's inequality. 
    LEMMA 1. Let T be an N stage test process with ai = ai N, i=1, 2, • • • , N. Then, 

the overall significance level of T is less or equal to a 

    PROOF. By using additive theorem of probability, the lemma is derived. 

    LEMMA 2. Let T, and T2 be N stage process of Type 1 and Type 2, respectively, 

with the same critical region Ci, i=1, 2, ••• , N. Then, the overall significance level of 

T, is greater than or equal to T2. 
    PROOF. 

a(T,)=Pr(U C Pr(U Ai; T,)=1—PY(AV TO 
      iEILEI(2 .2) 

U1—Pr(U AiiT2)=Pr(UCiI TO= a(T2), iE7iEI 

where I is index set defined in Definition 1. 

    Usually, evaluation for the process with ai by Lemma 1 is conservative, so that 

exact evaluation for overall significance level is to be calculated. 
   For N stage test process of Type 1, the overall hypothesis Ho is rejected in case 

that at least one stage is rejected in N stages with nominal significance level ai, i= 

1,2,...,A'. 

   On the other hand, there are 2N patterns in the N stage test process basing on 
significance and nonsignificance patterns, In the process of Type 1, the overall a is 

given by the sum of probabilities for 2='-1 patterns under a null hypothesis, excepting 
the probabilities of N nonsignificances. Thus, the following theorem is derived. 

   THEOREM 1. Let T be an N stage test process in which the overall hypothesis Ho is 

rejected in case that at least k-th stage, k=0, 1, ••• , N, is rejected in N stages with nominal 
significance level ai, i=1, 2, • • • , N, and tests at each stage are independent each other, 

then the overall significance level 5 for T is given by 

a= f II raj H (1—at)],(2.3) 
i=k o id2 tES2-mi 

JEW0 

where Q is a set [1, 2, ••• , N] and w0 is the subset of Q. 

   PROOF. Under the independence of each stages, the probability that the Ho is re

jected at k-th stage in N stages plan is given by 

                         H [ai II (1—as)]. 
jEmk tE12-mk 

Thus, the probability for rejecting at least k-th stage in N stages is given by the sum 

of probabilities up to the N stages. 

   COROLLARY 1. Under the condition of Theorem 1, if each nominal significance level 
is equals to a*, the overall significance level is given by the sum of binomial B(N, a*) 

probabilities up to N-th stage from k-th stage. 
   PROOF. Every i-th stage, i=1, 2, • • • , N, independently has the same probability a* 

for reject, so that the desired overall significance level is given by the upper probability
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of binomial distribution with parameters, N and a*. 

In the actual situations, however, the tests at each stage have some associations, 

so that the decision for the overall a with nominal at is a difficult problem. 

   For the power, ASN and AC, it is usually very laborious and complicated to obtain 

numerically theoretical values for the conditional distribution of test statistics in test 

processes, based on mathematical formulations. For certain practical situations, asymp
totic theories are applied. In the case of small sample size or closed plan, however, 

direct evaluation is to be preferred.

   3. Inference Processes via Identical Tests 

   The inference processes in this section are the processes via identical tests, for 
instance, repeated significance tests (RST) and sequential probability ratio tests (SPRT). 

These inference processes are most popular, in which one statistical test is repeatedly 
applied by adding samples at every stage, when any decision is reserved. It is laborious 

and complicated to obtain numerical values of probability for the mathematical properties 

of multi-stage procedure. In the case of small sample size, however, direct methods 
for evaluation is to be preferred. In this section, two direct methods for closed SPRT 

and RST are evaluated.

   3.1 Direct method for normal mean test 

   Aroian [1] presented a method of numerical evaluation of the power and ASN for 
SPRT one sample mean test (T) of a closed process. That is, let T be a one sample 
normal mean test of a closed type at N samples from a normal population N(,a, a2), a2 : 
known, based on one by one sampling SPRT. The hypothesis is Ho: p=ruo against the 
alternative H1: p= pi and the critical value at i-th stage, i=1, 2, • • • , N-1, is used the 
value for SPRT. Then, the procedure of T is shown in the following way. 

   PROCEDURE 1. At i-th stage, 1 <i <_ N-1, 

                       accept Ho, if fj=1x;>_Xil, 

                       accept H1, if Ej=1x;<Xio, 

                       continue sampling, otherwise, 

the final stage, i.e. i=N 

                      accept H0, if E.';=1 xi (X10+Xi1)/2, 

                    accept H1,otherwise, 
where 

Xi;=a2/(pi—p0) log Ai+i(p1— t0)/2, 

A1=(1—jS)/a, (i=1, 2, •.• , N), (>=0, 1). 

   The mathematical formulations of the power, ASN and AC for this process are 
shown as below. 

   THEOREM 2. Let T be an N stage test process which has Procedure 1. Then, power,
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ASN and AC are given by the  following formulae respectively, where K1 and K2 are 

samnNe and setup costs. 

                N 'Li-Yz-1 U1i L(p)—C'\fi(ft)IIdx;j(3.1) 
            2=10~L1;=1 

                NLi-Yi-11Ui-1Yi-2U1 /i           Ei(p)_ E ZCi I1~... fi(p)11dx;, (3.2) 
j=1Ui-Y1_1-~_1Li1-Yi_2L1 j=1 

                         N-1 Ui Yii            E2(,u)=K1 E C2... çufi(p)IIdx;1 +K2E1(),(3.3) 
i=1Li~ri-1~L1;=i 

where 

fi(,u)=exp[—  j—p)2/(262)l , ~U0fo(fi)dx0=1, 
          J=iJ LO 

               C=(A/2ic6)-1, yi= x;, Ui=Xi1, Li=Xio. 
=1 

   PROOF. The probability of accept H1 at i-th stage is given by the conditional 

probability 

                 `i-Y'-iLti                           C2J
-~...L                          jUifi(P)Ildx], 

                                                      i and power is shown the sum of these probabilities up to N stage. The ASN is given 
the product of the probability for accept Ho or H1 and sample size when the process 
terminates, and AC is sum of ASN multiplied by sample cost and average stage by set 
up cost. 

   The numerical evaluation of these values are very complicated so that Aroian 
evaluated only the power and ASN for a=(3=0.09975, N=7, p0=—pi=0.5, shown in 
left side of Table 1. The extended results including standard deviation of ASN are 
shown in right side by PRTP command in knowledge function with good precision. 
Note that this process is a one by one sampling, so that the average cost is simply 

(K1+K2) multiplied by ASN, where K1 and K2 are sample and setup costs, respectively.

Table 1 Properties of closed SPRT for normal mean test.
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For the extension of such kinds of investigation, let a process be considered for a 

mixed distribution G(x i=(1— p ,F; x , ,ta„ a2 +pFo: a,, 6`), which has the same null, 
p=0 and alternative, p=1, hypotheses of Procedure 1. The distribution of mean for 
sample size n is not normal with mean, E(X)=L1— p o+p,a1i and variance, T%(X)= 

[(po—,a1)2p(1—p)-a--621/n. The power, ASN and AC for this process are given in the 
following way. 

    THEOREM 3. Let T he an A-stage one sample normal mean test from mixed distribu

tion G(x)=(1—p)F(x;tto, a2)}-pF0,7' p:, (72), 6": k-nour., based on one by one sampling 

SPRT for H,: p=0 against H1: p=i. Then, the power, ASN and AC are given by 

                   Li-ri-1U1i 

        L(p)=E C'`IIgpi Hdxj , (3.4) 
z=1L1J=1j=1 — 

                         V w(Li Yi-11 CE' /-1 Yi—°_ çu1            E1(p)=EiC+J~IIgj(p)Ildxj, (3.5) 
                  j=1Lij=1 j=1 

                   N -1 ci—Yi-1 U1i E
p)=K1C'(IIgj p)IIdx; +K2Ei(p),(3.6)                       1=1 JL1—. —1 L1j=1 j=1 _ 

respectively, where 

             gi(p)=(1—p)exp[—(xi o)2A26')1+pexp[ —(xj—p1)7(262)i, 

      ci                  go(p)dxo=1, C=(w/276)-1, Y1=Ex1, 
  oj=1 

Ui=Xi1, Li=Xio, Xij=6';'(,ul—~~o)logAi+i(u1—po)/2, 

A0=13/(1—a), A1=(1—$)/a (i=1, 2, ... , ), (j=0, 1). 

   PROOF. The probability of accept H1 at i-th stage is given by the conditional 

probability of the mixed distribution 

                        Li—Yi-1U1 oti                        ti •                               ••IIgj(p)IIdx; , ° JL1j=1 j=1 
and power, ASN and AC are given similarly by the proof of Theorem 2. 

   The numerical evaluations for this process are shown in Table 2 with ASN's stan

Table 2 Power and ASN for extended mixed alternatives.
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dard deviation by MIXRAN and PRTP commands, where MIXRAN is to give the mixed 

distribution.

   3.2 Direct method for binomial case 

   ColtonMcPherson  [4] proposed a two stage group sampling process from binomial 
distribution B(n, p), and gave the significance level, power and ASN considering the 
loss, where p is the probability of success defined in a single trial. Suppose that an 
extended process T be an N stage group sampling test process of Type 2 for binomial 
distribution B(ni, p), 1=1, 2, ••• , N, and a hypothesis is Ho: p=po against H1: p=p1• 
Then, the process T is shown in the following way. 

   PROCEDURE 2. At i-th stage, 1 i <Ar-1, 

                     accept H0, if E j_1r;> CN, 

                      accept H1, if E)=1r;< Ci , 

                       continue sampling, otherwise, 

the final stage, i.e. i=N 

                      accept Ho, if E)=1r;> CN, 

                    accept H1,otherwise, 

where Ci : critical value of i-th stage, ri : number of successes, i =1, 2, • • • , N. 
   THEOREM 4. Let T be an N stage test process which has Procedure 2. Then, the 

power, ASN and AC are given by 

                       N Ci 

L(p)=1— Ehi-1(ki 1)G(ni, Ci-„ p),(3.7) 
                                                 2=1)=Ci_1+1 

                          ~11        E1(p)=IrC1''(3 .8) i=1LJ1ni[Uhi1(k1)J~                                         lki=C2_1+1 

N-1 CN 

E2(p)=K1 E hi(ki)H-KzE1(p), (3.9) 
                                            1=0 ki=Ci+1     

r where 

(1)p'(1—p)r—i 0<j<n 
                g(n, j, p)= 

                    0 otherwise, 

E;=0g(n, .7, p) 0<.j<n 
                  G(n, c, p)= 

                   0 otherwise, 

~ik l=ci-1+1hi1(ki1)g(ni, ki—k1-1, p) i>1 
hi(ki)= 

1i=1. 

   PROOF. The probability of continuing sampling at i-th stage is sum of conditional 

probabilities 
CN 

E ki=Ci-i+1
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based on cumulative binomial probability. Therefore, the power, ASN and AC are 

given by its functions.

   3.3 Repeated significance test 

   Pocock [13] proposed an N stage group repeated significance test of Type 1 with 

sample size n for two sample normal mean test from normal populations N(pi, 62), 
i=1, 2, 62: known. He obtained equal nominal significance level ai, 1=1, 2, • • • , N, for 

overall significance level a=0.050 in testing the hypothesis Ho: ,u1=,a2 against H1: 

tel0 p2. The extended process adding different sample size nm at in-th stage, 7n= 
1, 2, • • • , N, is shown in the following way. 

    PROCEDURE 3. At m-th stage, 1 <_ in N, 

                     continue sampling, pm>am and ni<N, 

                   accept Ho,if pm>a, and m=N, 

accept H1iif pm<_am, 

where 

      pm=2[1011/Mmdm/N/26}],Mm= iny,dm={i(n;(xi,+x2j)}/Mm, 
                     J=1J=1 

n 

xi;=[E xijkl /nj, o(x)=).x y5(t)dt, O(t)=exp [—t2/2]/(N^2n), 
k=1 

am: nominal significance level of m-th stage, (i=1, 2), (j=1, 2, • • • , N). 
   Then, the power, ASN and AC are given by the following Theorem 5. 

   THEOREM 5. Let T be an N stage group repeated significance test, which has Proce

dure 3. Then, the power, ASN and AC are given by 

         L(,u)=1—± 1[fi(s)+fi(—s)]ds,(3.10) 
                                   1=1„u(ai/2) 

N °O('u(aN/2) E1(p)=2{E Mi~[fi(s)+fi(—s)]ds+A7N 1fN(s)ds} , (3.11) 
j=1u(a1/2)u(aN/2) 

                               N-1u(ail2) 

E2(p)=2K1 E fi(s)ds+K2E1(p) ,(3 .12) 
                                 1=10 

respectively, where 

       {0(s-51)(i=1)               Ji(s)—cu(a1/2) 
                        o cb(s—t—oi)fi-1(t)dt (i=2, 3, ... , N), 

                           .u(a0) 

               Jf0(s)ds=1, Oi=1/nip/a , u=pi-1t2. 

0 

   PROOF. The probability density function at i-th stage is given by the convolution 

cu(ai/2) ~jS 
                                    7'(s—t-51)J{                                         1 1(t)dt•
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Therefore the power, ASN and AC are given in use of this function, recursively. 
   COROLLARY 2. Suppose that T has Procedure 3, then the overall significance level 

does not depend on sample size  ni, i=1, 2, • • • , N. 

   PROOF. Under null hypothesis, rt1= i2i L(p) does not include bi, i.e., sample size 
ni. 

   Pocock obtained equal nominal significance levels ai table for some stages. That 

is, the nominal significance levels are 0.029 and 0.016 for 2 and 5 stages when overall 

significance level is 0.050, respectively. He recommended that these values are asympto

tically adapted for normal mean test for unknown variance, i.e. t test. For small 
sample size, however, t test depends on sample size n. PRDIST command is to give 

easily such nominal probabilities. Table 3 shows a value of the final aN in case of 
every ai=0.029 or 0.016 as Pocock suggested. Table 4 shows values of the final aN in 

case of every ai=0.010 for overall a=0.050. This shows that it is not so wrong to 

use the values of normal mean test for t test. If sample size n intends to infinity, 

final aN equals to ai. 

   GouldPecore [7] has investigated about N stage group repeated significance test of 
Type 2, with sample size n for two sample normal mean test. For extended process 

adding different sample size nm at 7n-th stage, the following theorem is derived. 

   THEOREM 6. Let T be an N stage group repeated significance test of Type 2. Then, 

the power, ASN and AC are given by 

           L(p)=1— l'~'' [gi(s)+gi(—s)]ds,(3.13) 
                                j=1u(ai/2) 

                                                                        u(aiAl2)           .E1(p)=2{±v         1( )=2±AT(s(—s1+gi1                                         )J                                dsff(sds                 ~1=1Lu[gi)+gi.)~(ai/2)Ju(ai,A/2) 
                         u(aN12)

/               +MN\[gN(s)+gN(—s)] ds},(3.14) 
u(a yA/2)J 

                                     N-1u(ai/2) 

         E2(1~)=2K1 E gi(s)ds+K2E1(1),(3.15) 
                                 z=1u(aiA/2) 

where amA : nominal acceptance probability at m-th stage, 

0(s-31)(i=1) 
                gi(s)u(a2/2) 

                           0(s—t—oi)gi-1(t)dt (i=2, 3, , N) 

                          u(a0) 

go(s)ds=1, 5,=\/i2i p/6, —p1—u2 

0 

   PROOF. The probability density function at i-th stage is given 

fu(ai/2)q 
                           oCi(s—t—O1(t)dt 

Therefore the power, ASN and AC are given similarly by Theorem 5.
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Table 3 The final a N in case of every sig. level is 
ai=2.9% or 1.6% (i=1, 2, ••• , N-1) for t test.

Table 4 The final alv in case of every sig. level 
        is ai=1.0% (i=1, 2, ••• , N-1) for t test.

Table 5 The final a v in case of every nominal 
       significance level is used ai=3.l% or 

       2.4% (i=1,2,—,N-1)        for t test for 
aiA=50%.

   GouldPecore obtained equal nominal significance levels ai=0.031 and 0.024 for 2 

and 3 stages, respectively. Table 5 shows the final values aw corrected for overall 

a=0.050 for the probability of acceptance aiA=0.500.

   4. Inference Processes via Different Tests with a Similar Purpose 

   In view of practical and reasonable situations, there are some inference processes 

which are composed of two or three different nonparametric and parametric tests with 

a similar purpose. Elder-Muse [6] discussed a two stage process, including both tests 

by attributes with unit-limit and variables with averagelimit. That is, let T be a two 
stage test process with sample size n from normal population N(u, a2). Let ao denote 

the average limit, and let ,uo—ca denote the unit limit and k represent the maximum 

number of unit limit violations, where c is an arbitrary positive constant. 
   THEOREM 7. Elder-Muse [6] Let T be a two stage test process of Type 1, composed 

both tests by attributes with unit limit and variables with average limit. Then, the power 

is given by 

         L(~e)=1—(n)[0(c—t)]"i[O(t—c)]i{10[(f-~o—a(t))/^b(t)]} , (4.1) 
                        z=oi 

where 

a(t)=, i+ag(v)(n—i)/n—ag(—v)i/n ,
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 b(t)=(a2/2)(1—g(v)(v+g(v))(n—i)/n—g(—v)(—v+g(—v))i/n)  , 

g(v)=¢(v)/ (v), v=c—t, t=(po—i)/6. 

   PROOF. The probability of acceptance is given by the product of conditional pro
bability derived using truncated normal probability density functions and the probability 
of i-th limit violations. 

   For another process of Type 1 for location, median, Wilcoxon and t tests in order 
are applied. That is, three stage group sampling process of Type 1, composed median, 
Wilcoxon and t tests adding sample ni, i=1, 2, 3, are to be considered. In these cases, 
PRTP command is applicable to study statistical properties of the processes. For in
stance, the overall significance level is shown 0.0910, that is, 0.0226 for median test, 
0.0394 for Wilcoxon test, 0.0290 for t test, to an exponential distribution with mean 
zero and variance unity, where n1=n2=n3=10 and a1=a2=a3=0.050.

   5. Inference Processes via Different Tests with Different Purposes 

   The inference processes in this section are mainly used for composite hypothesis 

and series of hypotheses, in which some different statistical tests are applied by not 

adding samples, for example, location and dispersion tests for the type of distribution 
and multiple test. The former process is used for testing a hypothesis Ho: F(x)=Fo(x) 

against H1: F(x)=F1(x). The power of this process becomes complicated, and alterna

tive distribution may be skewed or unclear types of distribution. The illustrative hy

pothesis is Ho: a=po, 62=61 against H1: 1apo, 62�61. The latter process is used for 
testing the series of hypotheses Hol, H02, • • • , HON against hypotheses H01, H12, • • • , HON. 
The simple process may be two stage process with chisquare test for dispersion and 

u-test for mean. The first stage is whether the variance is unity, i.e., a2=1 or not, 

if accepted, and secondly to test whether mean is zero or not under the condition 62=1. 

   THEOREM 8. Let T be two stage process of Type 1 with chisquare test for disper

sion and u-test for mean. Then, the mathematical formulation for power is shown by 

                             xn,Tipu(a2)-tiniC            L(p)=C~x(7-3)'exp [—(x+u2)/21 dudx , (5.1) 
                              o where 

                      C=2 n/2k/TT[(n1)/21}-3. 

   PROOF. The joint distribution of X72_1 and u distributions is shown by 

2-"i2 k/ r T [(n1)/21} ix(n-3)i2 exp [—(x+u3)/21) 

   Therefore, the power function is given by (5.1). 

   The illustrative nonparametric two stage process of Type 1 is AnsariBradley test 

for dispersion and Wilcoxon test for location in order, which are independent tests each 

other. This process is examined to calculate nominal ai, i=1, 2, for fixed overall a by 

PRDIST command. Given a1=0.050 and overall a=0.100, the percent point for a2 is 

given by about 1.94 for both sides test. This value is corresponding to 0.0524 for both 
side probabilities under normal distribution, where theoretical value calculated from 
Theorem 1 is 0.0526. Note that the properties of this test process are different from
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those of Lepage test, whose statistic is shown by the sum of square of these of these 

two statistics. 

   For extended another process, an inference process which consists of test for the 

type of distribution and the local most powerful test for the prespecified distribution 

is to be considered. The test for normal distribution and t test , the test for logistic 
distribution and Wilcoxon test and the test for exponential distribution and Savage test , 
in order, are illustrative test processes .

   6. Extension of Relative Efficiency to Inference Process and Discussion 

   Comparing two techniques for the inference, efficiency and deficiency are usually 
used. These values are calculated by the ratio of samples or variances of two techni

ques which achieve the prefixed design. In case of two tests, the relative efficiency is 
obtained by the ratio of sample sizes of two tests with just equal power for the same 
design. The asymptotic relative efficiency also obtained by the limiting ratio of sample 
sizes required to the limiting power. That is, the relative efficiency and asymptotic 
relative efficiency between two tests are defined in the following way . Consider samples 
from distribution F(x 10) and let Ti and T2 be two tests with given level of significance 
levels a for the hypothesis Ho: 0=0°  against the alternative H1: 0=0, .  Let 13N(0) and 
r3* (0) denote the power functions of Ti and T2 based on N observations. 

   DEFINITION 2. Relative efficiency (Lehmann [91) Let J3x1(0) be a specified power 

given 0 and N1 with a</3<1. Then, if there exists N2 such that (3* 2(0)=(3 N 1(0), 

p(Ti, T2)=N1/N2(6.1) 

is defined to be the relative efficiency of the test T2 with respect to the test Ti. 
   DEFINITION 3. Asymptotic relative efficiency (Pitman [121) Let 13N(0) be a specified 

power given 0 and N with a<j3<1. Consider a sequence of alternatives ON such that 
1 N(ON)—*Ro (as N—>oo), and a sequence M=h(N) such that PM(0N)— 13o (as N—>oo), where 
/3o is a constant value which belongs to (0, 1). Then if 

e(T1i T2)= lim N/M(6 .2) 
N--~ 

exists and is independent of a and 13, e(T1, T2) is defined to be the asymptotic relative 
efficiency of the test T2 with respect to the test T1. 

   For the relative efficiency, the following theorem is derived. 
   THEOREM 9. Let p(Ti, TO be the relative efficiency of test T; with respect to the 

test Ti, i, j=1, 2, 3, i j. For a specified power given 0, 

p(Ti, T;)=1/p(Ti, Ti),(6.3) 

p(Ti, Tk)=p(Ti, T,)p(T„ Tk),(6.4) 

where i, j, k=1, 2, 3, i t=j, j�h, i�k. 
   PROOF. Proof is omitted. 

   The extended relative efficiency is defined to the test process 7'2 with respect to 
the test Ti.
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Table 6 The relative efficiency of two stage t test with respect to t test.

   DEFINITION 4. Let  (3x(0) be a specified power given 0 and N with a<13<1. Then 

if there exists ASN (T2) such that I9ASN(r2)(0)=$w(0), 

p(T1i T2)=N/ASN (T2)(6.5) 

is defined to be the relative efficiency of the test process 7'2 with respect to the test T1. 
   The numerical evaluation is applied for relative efficiency of two stage t test process 

T2, which has same additional sample numbers, with respect to ordinary t test T1. 
Table 6 shows the values of relative efficiency on normal distribution with mean zero 
and variance unity for the first population, and the second population is shifted with 
the same variance and distribution type, where sample sizes are n1=n2=15 for the 
test process T2 with respect to the test T1.

   7. Conclusion 

   Although there are difficulties and complications to make clear properties numerically 

by the theoretical formulae under variety of conditions except only the simple case 

like in statistical text book, there exist much more possibilities in view of statistical 

computing to evaluate statistical properties under various situations. Actually, the 

knowledge commands in NISAN system provides useful knowledge, which makes clear 

the properties numerically under variety of conditions in statistical data analysis.
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