ON THE ASYMPTOTIC NORMALITY FOR NONPARAMETRIC SEQUENTIAL DENSITY ESTIMATION

Isogai，Eiichi
Department of Mathematics，Faculty of Science，Niigata University

https：／／doi．org／10．5109／13389

出版情報：Bulletin of informatics and cybernetics． 22 （3／4），pp．215－224，1987－03．Research Association of Statistical Sciences
バージョン：
権利関係：

ON THE ASYMPTOTIC NORMALITY FOR NONPARAMETRIC SEQUENTIAL DENSITY ESTIMATION*

By

Eiichi Isogai**

Abstract

Let $f_{n}(x)$ be a recursive kernel estimator of a probability density function f at a point x. We show that if $N(t)$ is a sequence of positive integer-valued random variables and $\pi(t)$ a sequence of positive numbers with $N(t) / \pi(t) \rightarrow \theta$ in probability as $t \rightarrow \infty$, where θ is a positive discrete random variable, then $\left(N(t) h_{N(t)}^{p}\right)^{1 / 2}\left(f_{N(t)}(x)-f(x)\right)$ is asymptotically normally distributed under certain conditions.

1. Introduction

Let X be a p-dimensional random vector on a probability space (Ω, \mathcal{B}, P) having a probability density function (p.d.f.) f with respect to the Lebesgue measure on R^{p}. There is a vast literature on the problem of estimating the p.d.f. f (see Devroye and Györfi [3], and Prakasa Rao [9] for example). In particular, estimators have been proposed in some recursive manners by several authors on behalf of the following two advantages: data need not be stored, and the estimators are easily updated when new data become available. In this paper we consider the recursive kernel estimator proposed by the author [4].

On the other hand, in many practical situations the number of observations $N(t)$ which we observe in a time-interval $(0, t]$ is random. The problem of sequential estimation of the p.d.f. by using positive integer-valued random variables (i.e., stopping rules) were studied by Davies and Wegman [2], Carroll [1], Wegman and Davies [11] and the author [5], for example. Carroll [1] and the author [5] investigated the asymptotic normality of estimates of the p.d.f. under random sample sizes. In this paper we shall show that the asymptotic normality holds for a more general class of positive integer-valued random variables $N(t)$ than the classes of Carroll [1] and the author [5]. We note that the extension to this general class was motivated by the discussion in Rényi [10]. Throughout this paper we consider the estimator $f_{N(t)}(x)$ of the p.d.f. $f(x)$ based on $X_{1}, X_{2}, \cdots, X_{N(t)}$, which is defined by

$$
\begin{equation*}
f_{N(t)}(x)=\sum_{j=1}^{N(t)} a_{j} \beta_{j N(t)} K_{j}\left(x, X_{j}\right)+\beta_{0 N(t)} K(x), \tag{1.1}
\end{equation*}
$$

where X_{1}, X_{2}, \cdots are independent observations of X,

[^0]\[

$$
\begin{equation*}
K_{n}(x, y)=h_{n}^{-p} K\left((x-y) / h_{n}\right) \quad \text { for } \quad x, y \in R^{p}, \tag{1.2}
\end{equation*}
$$

\]

K is a bounded, integrable, real-valued Borel measurable function on R^{p} and $\left\{h_{n}\right\}$ with $h_{0}=h_{1}$ is a nonincreasing sequence of positive numbers converging to zero,

$$
\begin{equation*}
a_{n}=a / n \quad \text { for any fixed } \quad a \in(0,1], \tag{1.3}
\end{equation*}
$$

and

$$
\beta_{m n}=\left\{\begin{array}{ll}
\prod_{j=m+1}^{n}\left(1-a_{j}\right) & \text { if } \tag{1.4}\\
1>m \geqq 0 \\
1 & \text { if }
\end{array} \quad n=m \geqq 0 . ~ \$\right.
$$

The aim of this paper is to show that under certain conditions $\left(N(t) h_{N(t)}^{p}\right)^{1 / 2}\left(f_{N(t)}(x)\right.$ $-f(x)$) is asymptotically normally distributed. In Section 2 we shall make some preparations and auxiliary results. In Section 3 we shall give our main theorem.

2. Auxiliary Results

In this section we shall make some preparations and auxiliary results. Set

$$
\gamma_{1}=1 \quad \text { and } \quad \gamma_{n}=\sum_{j=2}^{n}\left(1-a_{j}\right) \quad \text { for } \quad n \geqq 2
$$

where a_{n} is as defined in (1.3). Clearly,

$$
\begin{equation*}
\beta_{m n}=\gamma_{n} \gamma_{m}^{-1} \quad \text { for } \quad n \geqq m \geqq 1 \tag{2.1}
\end{equation*}
$$

It is known in [4] that

$$
\begin{equation*}
L_{1} n^{-a} \leqq \gamma_{n} \leqq L_{2} n^{-a} \quad \text { for some constants } L_{1}, L_{2}>0 \text { and all } n \geqq 1 \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta_{m n} \sim m^{a} n^{-a} \quad \text { as } \quad n \geqq m \rightarrow \infty, \tag{2.3}
\end{equation*}
$$

where " \sim " means the asymptotic equivalence. For a real-valued functing g let $C(g)$ be the set of continuity points of g. Throughout this paper we assume the function K in Section 1 to satisfy

$$
\begin{aligned}
& \int_{R^{p}} K(u) d u=1, \quad \int_{R^{p}}\|u\|_{p}^{2}|K(u)| d u<\infty \\
& \int_{R^{p}} u_{i} K(u) d u=0 \quad \text { for } \quad i=1, \cdots, p \quad \text { with } \quad u=\left(u_{1}, \cdots, u_{p}\right)
\end{aligned}
$$

and

$$
\|u\|_{p}^{p}|K(u)| \rightarrow 0 \quad \text { as } \quad\|u\|_{p} \rightarrow \infty,
$$

where $\|\cdot\|_{p}$ denotes the Euclidean norm on R^{p}. On the sequence $\left\{h_{n}\right\}$ in Section 1 we shall impose some or all of the following conditions: For a fixed $a \in(0,1]$,
(H1) $\quad n h_{n}^{p} \uparrow \infty$ as $n \rightarrow \infty$,
(H2) $\quad n^{1-2 a} h_{n}^{p} \rightarrow 0 \quad$ as $n \rightarrow \infty$,
(H3) $\quad n^{1-2 a} h_{n}^{p} \sum_{j=1}^{n} j^{2(a-1)} h_{j}^{-p} \rightarrow \beta \quad$ as $n \rightarrow \infty \quad$ for some constant $\beta>0$,

$$
\begin{align*}
& n^{3 / 2-3 a} h_{n}^{3 p / 2} \sum_{j=1}^{n} j^{3(a-1)} h_{j}^{-2 p} \rightarrow 0 \quad \text { as } n \rightarrow \infty, \tag{H4}\\
& \left(n^{1-2 a} h_{n}^{p}\right)^{1 / 2} \sum_{j=1}^{n} j^{a-1} h_{j}^{2} \rightarrow 0 \quad \text { as } n \rightarrow \infty, \tag{H5}
\end{align*}
$$

(H6) For any $\varepsilon>0$ there exists a positive constant $\delta=\delta(\varepsilon)$ such that $|n / m-1|<\delta$ implies $\left|h_{n} / h_{m}-1\right|<\varepsilon$.

Example.
Let

$$
h_{n}=n^{-r / p} \quad \text { with } \max \{p /(p+4), 1-2 a\}<r<1 .
$$

Then $\left\{h_{n}\right\}$ satisfies $(\mathrm{H} 1) \sim(\mathrm{H} 6)$ with $\beta=(2 a+r-1)^{-1}$. Throughout this paper C, C_{1}, C_{2}, \cdots denote appropriate positive constants. The following lemma can be found in the author [6].

Lemma 2.1. Let $\left\{h_{n}\right\}$ be a sequence of positive numbers converging to zero. Suppose that k is a bounded, integrable, real-valued Borel measurable function on R^{p} satisfying

$$
\|u\|_{p}^{p}|k(u)| \rightarrow 0 \quad \text { as } \quad\|u\|_{p} \rightarrow \infty .
$$

Let g be an integrable, real-valued Borel measurable function on R^{p}. Then for each point $x \in C(g)$,
and

$$
\int_{R^{p}} h_{n}^{-p} k\left((x-u) / h_{n}\right) g(u) d u \rightarrow g(x) \int_{R^{p}} k(u) d u \quad \text { as } \quad n \rightarrow \infty
$$

$$
\sup _{n \geq 1} \int_{R^{p}} h_{n}^{-p}\left|k\left((x-u) / h_{n}\right)\right||g(u)| d u \leqq C,
$$

where C may depend on x.
Lemma 2.2. Let a constant $a \in(0,1]$ be given. Suppose that a sequence of positive numbers $\left\{h_{n}\right\}$ converging to zero satisfies (H2), (H3) and (H4). Let $\left\{Z_{n}\right\}$ be a sequence of independent random variables with $E Z_{n}=0$. Assume that

$$
h_{n}^{p} E Z_{n}^{2} \rightarrow \xi \quad \text { as } n \rightarrow \infty \quad \text { for some constant } \xi>0
$$

and

$$
h_{n}^{2 p} E\left|Z_{n}\right|^{3} \leqq C \quad \text { for all } \quad n \geqq 1 .
$$

Then,

$$
\left(n h_{n}^{p}\right)^{1 / 2} \sum_{j=1}^{n} a_{j} \beta_{j n} Z_{j} \underset{L}{\longrightarrow} N(0, B) \quad \text { as } n \rightarrow \infty \text { (in law), }
$$

where $B=a^{2} \beta \xi(>0)$, and a_{n} and $\beta_{m n}$ are as defined in (1.3) and (1.4), respectively.
Proof. It was shown in Lemma 2.2 of [6] that

$$
\sum_{j=1}^{n}\left(j^{2} \gamma_{j}^{2} h_{j}^{p}\right)^{-1} \sim \beta\left(n h_{n}^{p} \gamma_{n}^{2}\right)^{-1} \quad \text { as } \quad n \rightarrow \infty,
$$

which, together with (2.1), (2.2), (H2), the assumption of $E Z_{n}^{2}$ and the Toeplitz lemma (see Loève [7], page 238), implies that

$$
\begin{equation*}
n h_{n}^{p} \sum_{j=1}^{n} j^{-2} \beta_{j n}^{2} E Z_{j}^{2} \rightarrow \beta \xi \quad \text { as } \quad n \rightarrow \infty . \tag{2.4}
\end{equation*}
$$

Set

$$
U_{n}=a_{n} \gamma_{n}^{-1} Z_{n}, \quad S_{n}=\sum_{j=1}^{n} U_{j} \quad \text { and } \quad s_{n}^{2}=\operatorname{Var}\left(S_{n}\right)=a^{2} \sum_{j=1}^{n} j^{-2} \gamma_{j}^{-2} E Z_{j}^{2}
$$

From (2.4)

$$
\begin{equation*}
s_{n}^{2} \sim B\left(n h_{n}^{p} \gamma_{n}^{2}\right)^{-1} \quad \text { as } \quad n \rightarrow \infty \tag{2.5}
\end{equation*}
$$

By the assumption of $E\left|Z_{n}\right|^{3}$ and (2.2) we get that

$$
E\left|U_{n}\right|^{3} \leqq C_{1} n^{3(a-1)} h_{n}^{-2 p} \quad \text { for all } \quad n \geqq 1
$$

which, together with (2.2), (2.5) and (H4), yields that

$$
s_{n}^{-3} \sum_{j=1}^{n} E\left|U_{j}\right|^{3} \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty
$$

Thus by the Liapounov theorem we have

$$
\begin{equation*}
s_{n}^{-1} S_{n} \xrightarrow[L]{ } N(0,1) \quad \text { as } \quad n \rightarrow \infty . \tag{2.6}
\end{equation*}
$$

From (2.5) and (2.6) we obtain

$$
\left(n h_{n}^{p}\right)^{1 / 2} \sum_{j=1}^{n} a_{j} \beta_{j n} Z_{j}=\left(n h_{n}^{p} \gamma_{n}^{2} s_{n}^{2}\right)^{1 / 2} S_{n}^{-1} S_{n} \underset{L}{ } N(0, B) \quad \text { as } \quad n \rightarrow \infty
$$

This completes the proof.
We shall give a definition of the smoothness of a function g.
DEFINITION. Let g be a real-valued function on R^{p}. We say that the function g belongs to the class \mathscr{M}_{p} (abbreviated as $g \in \mathcal{M}_{p}$) if there exist bounded, continuous second partial derivatives $\partial^{2} g(x) / \partial x_{i} \partial x_{j}$ on R^{p} for all $i, j=1, \cdots, p$.

Lemma 2.3. Assume $g \in \mathcal{M}_{p}$. Suppose that k is a real-valued Borel measurable function on R^{p} satisfying
and

$$
\int_{R^{p}} u_{i} k(u) d u=0 \quad \text { for } \quad i=1, \cdots, p \quad \text { with } \quad u=\left(u_{1}, \cdots, u_{p}\right)
$$

$$
\int_{R^{p}}\|u\|_{p}^{2}|k(u)| d u<\infty
$$

Then there exists a positive constant C not depending on h such that

$$
\sup _{x \in R^{p}}\left|\int_{R^{p}} k(u)\{g(x-h u)-g(x)\} d u\right| \leqq C h^{2} \quad \text { for all } \quad h>0
$$

The proof of this lemma is omitted because it is easily shown by the Taylor theorem.

The following proposition shows the asymptotic normality of $\left(n h_{n}^{p}\right)^{1 / 2}\left(f_{n}(x)-f(x)\right)$.
Proposition 2.4. Let $\left\{h_{n}\right\}$ satisfy (H2)~(H5). Assume $f \in \mathcal{M}_{p}$. Then for each point x with $f(x)>0$,

$$
\left(n h_{n}^{p}\right)^{1 / 2}\left(f_{n}(x)-f(x)\right) \longrightarrow N\left(0, \sigma^{2}(x)\right) \quad \text { as } \quad n \rightarrow \infty
$$

where

$$
\sigma^{2}(x)=a^{2} \beta f(x) \int_{R^{p}} K^{2}(u) d u
$$

Proof. Let any x with $f(x)>0$ be fixed. Set

$$
Z_{n}=K_{n}\left(x, X_{n}\right)-E K_{n}\left(x, X_{n}\right) \quad \text { and } \quad \delta_{n}=E K_{n}\left(x, X_{n}\right)-f(x)
$$

Then, replacing $N(t)$ in (1.1) by n we get

$$
\begin{align*}
& \left(n h_{n}^{p}\right)^{1 / 2}\left(f_{n}(x)-f(x)\right) \\
& \quad=\left(n h_{n}^{p}\right)^{1 / 2} \beta_{0 n}(K(x)-f(x))+\left(n h_{n}^{p}\right)^{1 / 2} \sum_{j=1}^{n} a_{j} \beta_{j n} Z_{j}+\left(n h_{n}^{p}\right)^{1 / 2} \sum_{j=1}^{n} a_{j} \beta_{j n} \delta_{j} . \tag{2.7}
\end{align*}
$$

From (2.2) and (H2) the first term in the right hand side of (2.7) converges to zero as n tends to infinity. In view of Lemma 2.3, (2.1), (2.2) and (H5) the last term in the right hand side of (2.7) converges to zero as n tends to infinity. Thus the proposition will be proved if we show that

$$
\begin{equation*}
\left(n h_{n}^{p}\right)^{1 / 2} \sum_{j=1}^{n} a_{j} \beta_{j n} Z_{j} \longrightarrow N\left(0, \sigma^{2}(x)\right) \quad \text { as } \quad n \rightarrow \infty . \tag{2.8}
\end{equation*}
$$

From Lemma 2.1 and (1.2)

$$
h_{n}^{p} E Z_{n}^{2} \rightarrow f(x) \int_{R^{p}} K^{2}(u) d u(>0) \quad \text { as } \quad n \rightarrow \infty
$$

By the Hölder inequality and Lemma 2.1 we have that $h_{n}^{2 p} E\left|Z_{n}\right|^{3} \leqq C_{1}$ for all $n \geqq 1$. Since all the conditions of Lemma 2.2 are satisfied, the relation (2.8) holds. This completes the proof.

The next lemma was provided by Rényi [10].
Lemma 2.5. Let $\left\{Y_{n}\right\}$ be a sequence of independent random variables defined on a probability space (Ω, A, P) such that putting

$$
S_{n}=\frac{1}{B_{n}} \sum_{j=1}^{n} Y_{j} \quad \text { where } \quad B_{n} \rightarrow \infty
$$

the random variable S_{n} converges in law to a random variable with the distribution function F. Then for any event $A \in \mathcal{A}$ with $P(A)>0$ the conditional probability $P\left\{S_{n}<x \mid A\right\}$ tends to $F(x)$ for every $x \in C(F)$.

3. Main Result

In this section we shall show the asymptotic normality of $\left(N(t) h_{N(t)}^{p}\right)^{1 / 2}\left(f_{N(t)}(x)-\right.$ $f(x)$). Let $[b]$ denote the largest integer not greater than b. For any fixed $x \in R^{p}$ set

$$
\begin{array}{ll}
U_{n}^{(1)}=K_{n}\left(x, X_{n}\right)-E K_{n}\left(x, X_{n}\right), & U_{n}^{(2)}=E K_{n}\left(x, X_{n}\right)-f(x), \tag{3.1}\\
S_{n}=\sum_{j=1}^{n} a_{j} \beta_{j n}\left\{K_{j}\left(x, X_{j}\right)-f(x)\right\}, & V_{n}=\left(n h_{n}^{p}\right)^{1 / 2} S_{n} \quad \text { for } n \geqq 1,
\end{array}
$$

and $S_{0}=V_{0}=0$. It is clear from (2.7) that

$$
\begin{equation*}
\left(n h_{n}^{p}\right)^{1 / 2}\left(f_{n}(x)-f(x)\right)=V_{n}+\left(n h_{n}^{p}\right)^{1 / 2} \beta_{0 n}(K(x)-f(x)) \quad \text { for } \quad n \geqq 1 . \tag{3.2}
\end{equation*}
$$

Now, we shall give the condition on $N(t)$. For any $t \in(0, \infty)$ let $N(t)$ be a positive integer-valued random variable defined on the probability space (Ω, \mathscr{B}, P) given in Section 1.

Definition. A sequence of positive integer-valued random variables $N(t)$ is said to satisfy Condition A if there exist a positive random variable θ defined on (Ω, \mathcal{B}, P) having a discrete distribution and a sequence of positive numbers $\pi(t)$ with $\pi(t) \rightarrow \infty$ as $t \rightarrow \infty$ such that

$$
N(t) / \pi(t) \underset{P}{ } \theta \quad \text { as } \quad t \rightarrow \infty \text { (in probability). }
$$

Here, by the positive random variable θ having a discrete distribution we mean that there exists a sequence of positive numbers $l_{k}(k=1,2, \cdots)$ (k may be finite or infinite) such that

$$
\begin{equation*}
\sum_{k=1}^{\infty} p_{k}=1 \quad \text { where } \quad p_{k}=P\left\{\theta=l_{k}\right\}>0 \tag{3.3}
\end{equation*}
$$

Throughout this section $\pi(t)$ and θ are as given in the above definition.
Remark. The stopping rules $N(t)$ treated by Carroll [1] and the author [5] satisfy Condition A with $P\{\theta=1\}=1$.

Lemma 3.1. Let $\left\{h_{n}\right\}$ be a nonincreasing sequence of positive numbers converging to zero and satisfy (H1) and (H5). Let $\left\{\boldsymbol{\delta}_{n}\right\}$ be a sequence of real numbers satisfying $\left|\boldsymbol{\delta}_{n}\right|$ $\leqq C_{1} h_{n}^{2}$ for all $n \geqq 1$. Suppose that $\left\{Z_{n}\right\}$ is a sequence of independent random varables satisfying

$$
E Z_{n}=0, \quad h_{n}^{p} E Z_{n}^{2} \leqq C_{2} \quad \text { and } \quad n h_{n}^{p} \sum_{j=1}^{n} a_{j}^{2} \beta_{j n}^{2} E Z_{j}^{2} \leqq C_{2} \quad \text { for all } n \geqq 1
$$

Set

$$
W_{n}=\sum_{j=1}^{n} a_{j} \beta_{j n} Z_{j}+\sum_{j=1}^{n} a_{j} \beta_{j n} \delta_{j} .
$$

If $N(t)$ satisfies Condition A then

$$
\left(N(t) h_{N(t)}^{p}\right)^{1 / 2}\left(W_{N(t)}-W_{[\theta \pi(t)]}\right) \underset{P}{\longrightarrow} 0 \text { as } t \rightarrow \infty .
$$

The proof of this lemma is deferred to Appendix. We shall now state our result.
Theorem. Assume $f \in \mathscr{M}_{p}$. Let $\left\{h_{n}\right\}$ satisfy (H1)~(H6). Suppose that $N(t)$ satisfies Condition A. Then for each point x with $f(x)>0$,

$$
\left(N(t) h_{N(t)}^{p}\right)^{1 / 2}\left(f_{N(t)}(x)-f(x)\right) \underset{L}{ } N\left(0, \sigma^{2}(x)\right) \quad \text { as } \quad t \rightarrow \infty,
$$

where

$$
\sigma^{2}(x)=a^{2} \beta f(x) \int_{R^{p}} K^{2}(u) d u
$$

Proof. For simplicity put $N=N(t)$. Let any x with $f(x)>0$ be fixed. First we shall show that

$$
\begin{equation*}
V_{[\theta \pi(t)]} \underset{L}{ } N\left(0, \sigma^{2}(x)\right) \quad \text { as } \quad t \rightarrow \infty . \tag{3.4}
\end{equation*}
$$

Since by (2.2) and (H2)

$$
\begin{equation*}
\left(n h_{n}^{p}\right)^{1 / 2} \beta_{0 n} \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty, \tag{3.5}
\end{equation*}
$$

it follows from Proposition 2.4 and (3.2) that

$$
V_{n} \xrightarrow[L]{\longrightarrow} N\left(0, \sigma^{2}(x)\right) \quad \text { as } \quad n \rightarrow \infty .
$$

Hence by Lemma 2.5 we get that for any fixed k

$$
\begin{equation*}
P\left\{V_{n}<y \mid \theta=l_{k}\right\} \rightarrow F(y) \quad \text { as } n \rightarrow \infty \text { for each } y \in R, \tag{3.6}
\end{equation*}
$$

where F denotes the distribution function of $N\left(0, \sigma^{2}(x)\right)$. Let any $\varepsilon>0$ be fixed. From
(3.3) there exists a positive integer k_{0} such that

$$
\begin{equation*}
\sum_{k=k_{0}+1}^{\infty} p_{k}<\varepsilon . \tag{3.7}
\end{equation*}
$$

Fix any $y \in R, \quad$ By (3.3) and (3.7)

$$
\begin{equation*}
\left|P\left\{V_{[\theta \pi(t)]}<y\right\}-F(y)\right|<\sum_{k=1}^{k_{0}}\left|P\left\{V_{n(k, t)}<y \mid \theta=l_{k}\right\}-F(y)\right|+\varepsilon \quad \text { for any } t \in(0, \infty) \tag{3.8}
\end{equation*}
$$

where $n(k, t)=\left[l_{k} \pi(t)\right]$. Hence, in view of (3.6) and (3.8) we obtain (3.4). From (3.2) it is clear that

$$
\begin{equation*}
\left(N h_{N}^{p}\right)^{1 / 2}\left(f_{N}(x)-f(x)\right)=V_{N}+\left(N h_{N}^{p}\right)^{1 / 2} \beta_{0 N}(K(x)-f(x)) \tag{3.9}
\end{equation*}
$$

Since Condition A implies that $N \underset{P}{\longrightarrow} \infty$ as $t \rightarrow \infty$, by use of (3.5)

$$
\begin{equation*}
\left(N h_{N}^{p}\right)^{1 / 2} \beta_{0 N} \xrightarrow[P]{ } 0 \quad \text { as } \quad t \rightarrow \infty \tag{3.10}
\end{equation*}
$$

Thus, in view of (3.9) and (3.10), in order to prove the theorem it suffices to show that

$$
\begin{equation*}
V_{N} \xrightarrow[L]{\longrightarrow} N\left(0, \sigma^{2}(x)\right) \quad \text { as } \quad t \rightarrow \infty . \tag{3.11}
\end{equation*}
$$

From (3.1)

$$
V_{N}=V_{[\theta \pi(t)]}+\left(N h_{N}^{p}\right)^{1 / 2}\left(S_{N}-S_{[\theta \pi(t)]}\right)+V_{[\theta \pi(t)]}\left\{\left(N h_{N}^{p} /\left([\theta \pi(t)] h_{[\theta \pi(t)]}^{p}\right)\right)^{1 / 2}-1\right\}
$$

Hence, taking account of (3.4), in order to show (3.11) it suffices to prove that

$$
\begin{equation*}
\left(N h_{N}^{p}\right)^{1 / 2}\left(S_{N}-S_{[\theta \pi(t)]}\right) \underset{P}{ } 0 \quad \text { as } \quad t \rightarrow \infty \tag{3.12}
\end{equation*}
$$

and

$$
\begin{equation*}
V_{[\theta \pi(t)]}\left\{\left(N h_{N}^{p} /\left([\theta \pi(t)] h_{[\theta \pi(t)]}^{p}\right)\right)^{1 / 2}-1\right\}{\underset{P}{\longrightarrow}}^{\longrightarrow} \quad \text { as } \quad t \rightarrow \infty . \tag{3.13}
\end{equation*}
$$

First we shall show (3.13). Condition A implies that

$$
N /[\theta \pi(t)] \underset{P}{\longrightarrow} 1 \quad \text { as } \quad t \rightarrow \infty
$$

which, together with (H6), yields that

$$
\begin{equation*}
N h_{N}^{p} /\left([\theta \pi(t)] h_{[\theta \pi(t)]}^{p}\right) \underset{P}{\longrightarrow} \quad \text { as } \quad t \rightarrow \infty \tag{3.14}
\end{equation*}
$$

Thus, by virtue of (3.4) and (3.14) we obtain (3.13). Finally, we shall show (3.12). From (3.1) we get

$$
\begin{equation*}
S_{n}=\sum_{i=1}^{2} \sum_{j=1}^{n} a_{j} \beta_{j n} U_{j}^{(i)} \tag{3.15}
\end{equation*}
$$

By Lemma 2.3

$$
\begin{equation*}
\left|U_{n}^{(2)}\right| \leqq C_{1} h_{n}^{2} \quad \text { for all } \quad n \geqq 1 \tag{3.16}
\end{equation*}
$$

From Lemma 2.1

$$
\begin{equation*}
h_{n}^{p} E\left\{\left(U_{n}^{(1)}\right)^{2}\right\} \leqq h_{n}^{p} E K_{n}^{2}\left(x, X_{n}\right) \leqq C_{2} \quad \text { for all } \quad n \geqq 1 \tag{3.17}
\end{equation*}
$$

(H3) implies that

$$
n^{1-2 a} h_{n}^{p} \sum_{j=1}^{n} j^{2(a-1)} h_{j}^{-p} \leqq C_{3} \quad \text { for all } \quad n \geqq 1
$$

which, together with (2.1), (2.2) and (3.17), yields that

$$
\begin{equation*}
n h_{n}^{p} \sum_{j=1}^{n} a_{j}^{2} \beta_{j n}^{2} E\left\{\left(U_{j}^{(1)}\right)^{2}\right\} \leqq C_{4} \quad \text { for all } \quad n \geqq 1 \tag{3.18}
\end{equation*}
$$

Thus, combining Lemma 3.1 and (3.15) to (3.18) we obtain (3.12). This completes the proof.

Appendix

Proof of Lemma 3.1. Let any positive numbers ε and ξ be fixed. From (3.3) there exists a positive integer k_{0} such that

$$
\begin{equation*}
\sum_{k=k_{0}+1}^{\infty} p_{k}<\xi / 4 \tag{A.1}
\end{equation*}
$$

Fix a positive constant C_{1}, which will be chosen later. Choose $\rho(0<\rho<1 / 2)$ such that
and

$$
\begin{equation*}
C_{1} \varepsilon^{-2}\left\{1-((1-\rho) /(1+\rho))^{a}\right\}^{2}<\xi /\left(8 k_{0}\right) \tag{A.2}
\end{equation*}
$$

$$
\begin{equation*}
C_{1} \varepsilon^{-2} \rho<\xi /\left(8 k_{0}\right) \tag{A.3}
\end{equation*}
$$

For each $t \in(0, \infty)$ let $n(t)$ be a nonnegative integer with $n(t) \rightarrow \infty$ as $t \rightarrow \infty$. Set

$$
\begin{equation*}
M_{1}=[(1-\rho) n(t)] \quad \text { and } \quad M_{2}=[(1+\rho) n(t)] \tag{A.4}
\end{equation*}
$$

By virtue of (2.3) it is easy to show that for all $t \geqq$ some t_{0}
and

$$
\begin{equation*}
1 \leqq M_{1}, 1 \leqq M_{2}-M_{1}<2 \rho M_{2}, M_{2} / M_{1}<3 \tag{A.5}
\end{equation*}
$$

$$
\begin{equation*}
\left(1-\beta_{M_{1} M_{2}}\right)^{2}<2\left\{1-((1-\rho) /(1+\rho))^{a}\right\}^{2} \tag{A.6}
\end{equation*}
$$

By the assumption of δ_{n} and (A.5)

$$
\begin{align*}
\left(M_{2} h_{M_{2}}^{p}\right)^{1 / 2} \max _{M_{1} \leqq i \leqq M_{2}}\left|\sum_{j=1}^{i} a_{j} \beta_{j i} \delta_{j}\right| & \leqq C_{2}\left(M_{2} / M_{1}\right)^{a} M_{2}^{1 / 2-a} h_{M_{2}}^{p / 2} \sum_{j=1}^{M_{2}} j^{a-1} h_{j}^{2} \\
& \leqq C_{3} M_{2}^{1 / 2-a} h_{M_{2}}^{p / 2} \sum_{j=1}^{M_{2}} j^{a-1} h_{j}^{2} \quad \text { for } \quad t \geqq t_{0} \tag{A.7}
\end{align*}
$$

From (H5) there exists a positive integer n_{0} such that

$$
\begin{equation*}
n^{1 / 2-a} h_{n}^{p / 2} \sum_{j=1}^{n} j^{a-1} h_{j}^{2}<\varepsilon /\left(8 C_{3}\right) \quad \text { for all } \quad n \geqq n_{0} \tag{A.8}
\end{equation*}
$$

As $M_{2} \geqq n_{0}$ for all $t \geqq$ some $t_{1}\left(\geqq t_{0}\right)$, (A.7) and (A.8) yield that

$$
\begin{equation*}
\left(M_{2} h_{M_{2}}^{p}\right)^{1 / 2} \max _{M_{1} \leqq i \leqq M_{2}}\left|\sum_{j=1}^{i} a_{j} \beta_{j i} \delta_{j}\right|<\varepsilon / 8 \quad \text { for all } t \geqq t_{1} \tag{A.9}
\end{equation*}
$$

Set $n(k, t)=\left[l_{k} \pi(t)\right]$ for $k=1,2, \cdots$. For simplicity put $N=N(t)$. It is clear that

$$
\begin{equation*}
P\left\{\left(N h_{N}^{p}\right)^{1 / 2}\left|W_{N}-W_{[\theta \pi(t)]}\right| \geqq \varepsilon\right\} \leqq I_{1}(t)+I_{2}(t) \tag{A.10}
\end{equation*}
$$

where

$$
I_{1}(t)=\sum_{k=1}^{\infty} P\left\{\left(N h_{N}^{p}\right)^{1 / 2}\left|W_{N}-W_{n(k, t)}\right| \geqq \varepsilon,|N-n(k, t)|<\rho n(k, t), \theta=l_{k}\right\}
$$

and

$$
I_{2}(t)=P\{|N-[\theta \pi(t)]| \geqq \rho[\theta \pi(t)]\}
$$

Condition A implies that

$$
\begin{equation*}
I_{2}(t)<\xi / 2 \quad \text { for all } t \geqq \text { some } t_{2} . \tag{A.11}
\end{equation*}
$$

From (A.1)

$$
\begin{equation*}
I_{1}(t)<\sum_{k=1}^{k 0} P\left\{\left(N h_{N}^{p}\right)^{1 / 2}\left|W_{N}-W_{n(k, t)}\right| \geqq \varepsilon,|N-n(k, t)|<\rho n(k, t), \theta=l_{k}\right\}+\xi / 4 \tag{A.12}
\end{equation*}
$$

Fix k with $1 \leqq k \leqq k_{0}$ and put $n(t)=n(k, t)$. Let $M_{i}(i=1,2)$ be as defined in (A.4) for this $n(t)$. Fix $t \geqq t_{3}(k) \equiv \max \left\{t_{1}(k), t_{2}\right\}$. Then, taking $M_{1}<n(t) \leqq M_{2}$ into consideration we get that

$$
\begin{align*}
J(t) & \equiv P\left\{\left(N h_{N}^{p}\right)^{1 / 2}\left|W_{N}-W_{n(t)}\right| \geqq \varepsilon,|N-n(t)|<\rho n(t), \theta=l_{k}\right\} \\
& \leqq P\left\{\left(i h_{i}^{p}\right)^{1 / 2}\left|W_{i}-W_{n(t)}\right| \geqq \varepsilon \text { for some } i \text { with } M_{1}<i \leqq M_{2}\right\} \\
& \leqq P\left\{\left(\max _{M_{1}<i \leqq M_{2}}\left(i h_{i}^{p}\right)^{1 / 2}\right)\left(\max _{M_{1}<i \leqq M_{2}}\left|W_{i}-W_{M_{1}}\right|\right) \geqq \varepsilon / 2\right\} . \tag{A.13}
\end{align*}
$$

By use of (2.1) and the monotonicity of γ_{n} we have that for i with $M_{1}<i \leqq M_{2}$

$$
\begin{align*}
\left|W_{i}-W_{M_{1}}\right| & \leqq\left|\sum_{j=1}^{M_{1}} a_{j}\left(\beta_{j i}-\beta_{j M_{1}}\right) Z_{j}\right|+\left|\sum_{j=M_{1}+1}^{i} a_{j} \beta_{j i} Z_{j}\right|+\left|\sum_{j=1}^{i} a_{j} \beta_{j i} \delta_{j}\right|+\left|\sum_{j=1}^{M_{1}} a_{j} \beta_{j M_{1}} \delta_{j}\right| \\
& \leqq\left(\gamma_{M_{1}}-\gamma_{i}\right)\left|\sum_{j=1}^{M_{1}} a_{j} \gamma_{j}^{-1} Z_{j}\right|+\gamma_{i}\left|\sum_{j=M_{1}+1}^{i} a_{j} \gamma_{j}^{-1} Z_{j}\right|+2 \max _{M_{1} \leqq i \leqq M_{2}}\left|\sum_{j=1}^{i} a_{j} \beta_{j i} \delta_{j}\right| . \tag{A.14}
\end{align*}
$$

Hence from (A.9), (A.13), (A.14) and the monotonicity of $n h_{n}^{p}, h_{n}^{p}$ and γ_{n}

$$
\begin{align*}
J(t) & \leqq P\left\{\left(M_{2} h_{M_{1}}^{p}\right)^{1 / 2}\left(\gamma_{M_{1}}-\gamma_{M_{2}}\right)\left|\sum_{j=1}^{M_{1}} a_{j} \gamma_{j}^{-1} Z_{j}\right|+\left(M_{2} h_{M_{2}}^{p}\right)^{1 / 2} \max _{M_{1}<i \leqq M_{2}} \gamma_{i}\left|\sum_{j=M_{1}+1}^{i} a_{j} \gamma_{j}^{-1} Z_{j}\right|>\varepsilon / 4\right\} \\
& \leqq J_{1}(t)+J_{2}(t) \tag{A.15}
\end{align*}
$$

where
and

$$
J_{1}(t)=P\left\{\left(M_{2} h_{M_{1}}^{p}\right)^{1 / 2}\left(\gamma_{M_{1}}-\gamma_{M_{2}}\right)\left|\sum_{j=1}^{M_{1}} a_{j} \gamma_{j}^{-1} Z_{j}\right|>\varepsilon / 8\right\}
$$

$$
J_{2}(t)=P\left\{\left(M_{2} h_{M_{2}}^{p}\right)^{1 / 2} \max _{M_{1}<i \leq M_{2}} \gamma_{i}\left|\sum_{j=M_{1}+1}^{i} a_{j} \gamma_{j}^{-1} Z_{j}\right|>\varepsilon / 8\right\}
$$

First we shall estimate $J_{1}(t)$. By the Chebychev inequality, (A.5), (A.6) and the assumption of $E Z_{n}^{2}$ we get

$$
\begin{align*}
J_{1}(t) & \leqq C_{4} \varepsilon^{-2}\left(1-\beta_{M_{1} M_{2}}\right)^{2}\left(M_{2} / M_{1}\right) M_{1} h_{M_{1}}^{p} \sum_{j=1}^{M_{1}} a_{j}^{2} \beta_{j M_{1}}^{2} E Z_{j}^{2} \\
& \leqq C_{5} \varepsilon^{-2}\left\{1-((1-\rho) /(1+\rho))^{a}\right\}^{2} . \tag{A.16}
\end{align*}
$$

Next we shall estimate $J_{2}(t)$. From the Hájek-Rényi inequality (see Petrov [8], page 51), (A.5) and the monotonicity of h_{n} we have

$$
\begin{align*}
J_{2}(t) & \leqq C_{6} \varepsilon^{-2} M_{2} h_{M_{2}}^{p} \sum_{j=M_{1}+1}^{M_{2}} a_{j}^{2} E Z_{j}^{2} \leqq C_{7} \varepsilon^{-2} M_{2} h_{M_{2}}^{p} \sum_{j=M_{1}+1}^{M_{2}} j^{-2} h_{j}^{-p} \\
& \leqq C_{7} \varepsilon^{-2} M_{2} M_{1}^{-2}\left(M_{2}-M_{1}\right) \leqq C_{8} \varepsilon^{-2} \rho \tag{A.17}
\end{align*}
$$

Set $C_{1}=\max \left\{C_{5}, C_{8}\right\}$. Then by (A.2), (A.3), (A.16) and (A.17) we have

$$
J_{1}(t)<\xi /\left(8 k_{0}\right) \quad \text { and } \quad J_{2}(t)<\xi /\left(8 k_{0}\right) \quad \text { for all } t \geqq t_{3}(k)
$$

which, together with (A.15), implies that for $k\left(1 \leqq k \leqq k_{0}\right)$

$$
P\left\{\left(N h_{N}^{p}\right)^{1 / 2}\left|W_{N}-W_{n(k, t)}\right| \geqq \varepsilon,|N-n(k, t)|<\rho n(k, t), \theta=l_{k}\right\}<\xi /\left(4 k_{0}\right)
$$

$$
\begin{equation*}
\text { for all } t \geqq t_{3}(k) \text {. } \tag{A.18}
\end{equation*}
$$

From (A.12) and (A.18)

$$
I_{1}(t)<\xi / 2 \quad \text { for large } t
$$

which, together with (A.10) and (A.11), yields that

$$
P\left\{\left(N h_{N}^{p}\right)^{1 / 2}\left|W_{N}-W_{[\theta \pi(t)]}\right| \geqq \varepsilon\right\}<\xi \quad \text { for large } t .
$$

Thus the proof of Lemma 3.1 was completed.

References

[1] Carroll, R.J.: On Seqential Density Estimation, Z. Wahrsch. Verw. Gebiete, 36 (1976), 137-151.
[2] Davies, H. I., and Wegman, E.J.: Sequential Nonparametric Density Estimation, IEEE Trans. Inform. Theory, IT-21, (1975), 619-628.
[3] Devroye, L., and Györfi, L.: Nonparametric Density Estimation: The L_{1} View, John Wiley \& Sons, New York, (1985).
[4] Isogai, E.: Strong Consistency and Optimality of a Sequential Density Estimator, Bull. Math. Statist., 19, (1980), 55-69.
[5] Isogal, E.: Stopping Rules for Sequential Density Estimation, Bull. Math. Statist., 19, (1981), 53-67.
[6] Isogal, E.: A Class of Nonparametric Recursive Estimators of a Multiple Regression Function, Bull. Inform. Cybernetics, 20, (1983), 33-44.
[7] Loève, M.: Probability Theory, 3rd Edition, D. Van Nostrand, Princeton, (1963).
[8] Petrov, V.V.: Sums of Independent Random Variables, Springer-Verlag, (1975).
[9] Prakasa Rao, B.L.S. : Nonparametric Functional Estimation, Academic Press, (1983).
[10] Renyi, A.: On the Central Limit Theorem for the Sum of a Random Number of Independent Random Variables, Acta Math. Acad. Sci. Hungar., 11, (1960), 97-102.
[11] Wegman, E. J., and Davies, H.I. : Remarks on Some Recursive Estimators of a Probability Density. Ann. Statist., 7 (1979), 316-327.

Communicated by N. Furukawa
Received July 30, 1986
Revised October 9, 1986

[^0]: * This research was supported in part by Grant-in-Aid for Encouragement of Young Scientist A-59740098 of the Ministry of Education.
 ** Department of Mathematics, Faculty of Science, Niigata University, Niigata 950-21, Japan.

