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Abstract

Let f,(x) be a recursive kernel estimator of a probability density
function f at a point x. We show that if N(¢) is a sequence of
positive integer-valued random variables and = (f) a sequence of
positive numbers with N(t)/x (£)—6 in probability as t—soo, where 6 is
a positive discrete random variable, then (N(2) h% ) V2 (fyeey (x) —F (%))
is asymptotically normally distributed under certain conditions.

1. Introduction

Let X be a p-dimensional random vector on a probability space (£, @8, P) having
a probability density function (p.d.f.) f with respect to the Lebesgue measure on RP.
There is a vast literature on the problem of estimating the p.d.f. f (see Devroye and
Gyorfi [3], and Prakasa Rao [9] for example). In particular, estimators have been pro-
posed in some recursive manners by several authors on behalf of the following two
advantages: data need not be stored, and the estimators are easily updated when new
data become available. In this paper we consider the recursive kernmel estimator pro-
posed by the author [4].

On the other hand, in many practical situations the number of observations N(i)
which we observe in a time-interval (0, ] is random. The problem of sequential estima-
tion of the p.d.f. by using positive integer-valued random variables (i.e., stopping
rules) were studied by Davies and Wegman [2], Carroll [1], Wegman and Davies [11]
and the author [5], for example. Carroll [1] and the author [5] investigated the
asymptotic normality of estimates of the p.d.f. under random sample sizes. In this
paper we shall show that the asymptotic normality holds for a more general class of
positive integer-valued random variables N(f) than the classes of Carroll [1] and the
author [5]. We note that the extension to this general class was motivated by the
discussion in Rényi [10]. Throughout this paper we consider the estimator fy,(x) of
the p.d.f. f(x) based on X,, X,, --*, Xwn), Which is defined by

N
frvw(x)= J:Zi ajﬂjN(t)Kj<x: XjH’ﬁonK(x), (1.D

where X,, X,, --- are independent observations of X,
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Ku(x, y)=hz?K(x—y)/h.)  for x, yeR?, (1.2)

K is a bounded, integrable, real-valued Borel measurable function on R? and {k,} with
h,=h, is a nonincreasing sequence of positive numbers converging to zero,

a,=a/n for any fixed a<(0, 17, (1.3)
and
ﬁ (1—ay if n>m=0
ma=f 1 1.4)
1 if n=m=0.

The aim of this paper is to show that under certain conditions (N(&)h% )" *(fwcer(x)
—f(x)) is asymptotically normally distributed. In Section 2 we shall make some pre-
parations and auxiliary results. In Section 3 we shall give our main theorem.

2. Auxiliary Results

In this section we shall make some preparations and auxiliary results. Set
3
7;=1 and 7y,= Z;(l—aj) for n=2.
=

where a, is as defined in (1.3). Clearly,
Bon=7Yz7m for nz=m=1. @.1n
It is known in [4] that

Line<sy,<L.n"® for some constants L,, L,>0 and all n=1 (2.2)

and
Bmn~mon=° as n=m-—oo, (2.3)

where “~” means the asymptotic equivalence. For a real-valued functing g let C(g)
be the set of continuity points of g. Throughout this paper we assume the function
K in Section 1 to satisfy

[, Kdu=1, | jul3igiduco

SRpuiK(u)duzo for /=1, -, p with u=(u,, -+, up)

and
luf2| K(u)|—0  as [ull,—o0,

where |-, denotes the Euclidean norm on R?. On the sequence {A,} in Section 1 we
shall impose some or all of the following conditions: For a fixed a<(0, 1],

(H1) nh2t oo as n—oo,

(H2) ni-2p2 —( as n—oo,

(H3) nl‘“hﬁij““‘”h;p—»ﬁ as n—oo for some constant S>0,
j=1
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n .
<H4) n3/2'3ah§,p/2 z;]sw«l)h?p_)o as n—oo,
o

(H5)  (n'-2ehD)'2 3je-1h 0  as n—oo,
j=1

(H6) For any ¢>0 there exists a positive constant d=d(¢) such that |n/m—1|<é
implies |h,/h,—1|<e¢.
EXAMPLE.
Let
hn=n"""?  with max{p/(p+4), 1—2a}<r<1.

Then {h,} satisfies (H1)~(H6) with 8=(2a+r—1)~'. Throughout this paper C, C;, Cs, -
denote appropriate positive constants. The following lemma can be found in the author
[61.

LEMMA 2.1. Let {h,} be a sequence of positive numbers converging to zero. Suppose
that k is a bounded, integrable, real-valued Borel measurable function on R? satisfying

lullpl 2(w)| =0  as [ufp,—co.

Let g be an integrable, real-valued Borel measurable function on R?. Then for each point
xeC(g),

SM h;"k((x—u)/hn)g(u)du—»g(x)SRp Ewdu  as n—oo
and

sup |, h?| B((x—w)/ha) | | gw)| du=C,

where C may depend on x.

LEMMA 2.2. Let a constant a=(0, 1] be given. Suppose that a sequence of positive
numbers {h,} converging to zero satisfies (H2), (H3) and (H4). Let {Z,} be a sequence
of independent random variables with EZ,=0. Assume that

h2EZ2—§& as n—co  for some constant £>0
and

hPE|Z,|13°SC  for all n=1.
Then,

(nhg)mi;a,ﬁjnZ,TN(o, B) as n—oo (in law),
P

where B=a*B§ (>0), and a, and Bn. are as defined in (1.3) and (1.4), respectively.
PrOOF. It was shown in Lemma 2.2 of [6] that

S ~BREDT as noo,

which, together with (2.1), (2.2), (H2), the assumption of EZ2 and the Toeplitz lemma
(see Loeve [7], page 238), implies that

nh23) jB,EZ5— BE  as n—co. (2.4)
=1
Set
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Un=a.73'Z,, Sp= ﬁ;U,. and s%:Var(Sn):azi JFEZ.
j= j=

From (2.4)
sa~B(nhy3)! as n—oo, (2.5)

By the assumption of E|Z,|® and (2.2) we get that
E|U,|*ZCin*e-Vpz2e for all n=1,

which, together with (2.2), (2.5) and (H4), yields that

s;”JéEIU,-l?'—»O as n—oo,
Thus by the Liapounov theorem we have

SaiS, - N, 1) as n—oo, (2.6)
From (2.5) and (2.6) we obtain

(nhﬁ)“zjzzla,ﬁj,,ZJ:(nhﬁr%si)ws;lsn—L>N(0, B) as n—oco.

This completes the proof.

We shall give a definition of the smoothness of a function g.

DEFINITION. Let g be a real-valued function on R?. We say that the function g
belongs to the class <M, (abbreviated as g=.#,) if there exist bounded, continuous
second partial derivatives 0%°g(x)/0x,0x; on R? for all {, j=1, -, p.

LEMMA 2.3. Assume g€ M, Suppose that k is a real-valued Borel measurable func-
tion on R? satisfying

SRpuik(u)du:O for i=1, -, p with u=(us, -, up)
and
[ 13 RO du<oo.

Then there exists a positive constant C not depending on h such that

sup
ZERP

[, o B0 g e~ )= g} du| =Ch for all k>0,

The proof of this lemma is omitted because it is easily shown by the Taylor
theorem.
The following proposition shows the asymptotic normality of (nhZ)V2(f,(x)—f(x)).
PROPOSITION 2.4. Let {h,} satisfy (H2)~(H5). Assume f EMp. Then for each
point x with f(x)>0,
(MR flx)—f(x)) —> N, ¢*(x))  as n—oo,
where

oz(x)zazﬁf(x)SRpKz(u)du.
PROOF. Let any x with f(x)>0 be fixed. Set
Zn:Kn(x; Xn)_EKn(x; Xn) and EnZEKn(xy Xn)_‘f(x)
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Then, replacing N(#) in (1.1) by n we get
(MhE)*(falx)—f(x))
= (AR BonK()— [ () (AR 330,82, (kD) 5 0,810y (21)

From (2.2) and (H2) the first term in the right hand side of (2.7) converges to zero as
n tends to infinity. In view of Lemma 2.3, (2.1), (2.2) and (H5) the last term in the
right hand side of (2.7) converges to zero as n tends to infinity. Thus the proposition
will be proved if we show that

(nhB)2 i} a;BnZ ; —> N, o*(x)) as n—oo, (2.8)
Jj=1
From Lemma 2.1 and (1.2)
h;’EZ;{%f(x)SRpKz(u)du (>0) as n—soo.

By the Holder inequality and Lemma 2.1 we have that h%? E|Z,|°<C, for all n=1.
Since all the conditions of Lemma 2.2 are satisfied, the relation (2.8) holds. This com-
pletes the proof.

The next lemma was provided by Rényi [10].

LEMMA 2.5. Let {Y,} be a sequence of independent random variables defined on a
probability space (2, A, P) such that putting
1
Ba
the random variable S, converges in law to a random variable with the distribution func-
tion F. Then for any event A with P(A)>0 the conditional probability P{S,<x|A}
tends to F(x) for every x=C(F).

Sp=- »i:Yj where B,—c0
o

3. Main Result

In this section we shall show the asymptotic normality of (N@®AR )Yy (x)—
f(x)). Let [b] denote the largest integer not greater than 6. For any fixed x € R? set

UP=Kn(x, Xa)=EKo(x, X, UP=EK,(x, X)—[(x), 3.1)
Sa= BaBnlKix, X)—f ()}, Va=@hD¥=S, for nzl,

and S,=V,=0. It is clear from (2.7) that
AR o) = () =V at- (R Bon(K)—f(x))  for nZl.  (3.2)

Now, we shall give the condition on N(!). For any t=(0, oo) let N(t) be a positive
integer-valued random variable defined on the probability space (£, 8, P) given in
Section 1.

DEFINITION. A sequence of positive integer-valued random variables N(¢) is said to
satisfy Condition A if there exist a positive random variable & defined on (2, 8, P)
having a discrete distribution and a sequence of positive numbers z(f) with w(f)—co as
t—oco such that
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N/ =(t) - 0 as t—oo (in probability).

Here, by the positive random variable # having a discrete distribution we mean that
there exists a sequence of positive numbers [, (k=1, 2, ---) (k¢ may be finite or infinite)
such that

élpkzl where py=P{0=1,} >0. 3.3)

Throughout this section #(t) and # are as given in the above definition.

REMARK. The stopping rules N(¢) treated by Carroll [1] and the author [5] satisfy
Condition A with P{#=1}=1.

LEMMA 3.1. Let {h,} be a nonincreasing sequence of positive numbers converging to
zero and satisfy (H1) and (H5). Let {0,} be a sequence of real numbers satisfying |0,|
<C.h% for all n=1. Suppose that {Z,} is a sequence of independent random varables
satisfying

EZ,=0, hBEZ:=<C, and nh?n”]éa?ﬁ?nEZ?ng for all n=1.
Set
Wo= 20,802t 3 a,8m;.
If N() satisfies Condition A then ‘

(NORE )" W ny—Weozrd) _P’ 0 as t-—oo,

The proof of this lemma is deferred to Appendix. We shall now state our result.
THEOREM. Assume f& M, Let {h,} satisfy (HI)~(H6). Suppose that N(t) satisfies
Condition A. Then for each point x with f(x)>0,

(NOAE )M (fxar(x)—f(x)) = N, a%(x)) as t—oo,
where

ai(x):azﬁf(x)SRpKz(u)du .

PROOF. For simplicity put N=N(). Let any x with f(x)>0 be fixed. First we
shall show that

Viexcori - N, a%(x)) as t—oo. 3.4)
Since by (2.2) and (H2)
(nh2)*Bon—0  as n—oo, (3.5)
it follows from Proposition 2.4 and (3.2) that
Va - N, o?(x)) as n—oo,
Hence by Lemma 2.5 we get that for any fixed %
PV, .<y|0=l}— F(y) as n—oco for each yeR, (3.6)

where F denotes the distribution function of N(0, ¢%(x)). Let any ¢>0 be fixed. From
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(3.3) there exists a positive integer k&, such that

S pe<e. 3.7

k=ko+1

Fix any y=R. By (3.3) and (3.7)
ko
lP{Vwmn<y}~—F(y>l<kzz‘,lIP{Vn<k,z><yl0=lk}~F(y>!+e for any t<(0, o), (3.8)

where n(k, t)=[{,x(t)]. Hence, in view of (3.6) and (3.8) we obtain (3.4). From (3.2)
it is clear that

(NI (fu(x)—f(x)=V y+(NRF)* Bon(K(x)— f(x)). 3.9

Since Condition A implies that N — > as t—oo, by use of (3.5)
(NRE)V2Bon —-;>0 as t—oco, (3.10)

Thus, in view of (3.9) and (3.10), in order to prove the theorem it suffices to show that
Vw —> N(O, 6*(x)) as t—oo. (3.11)
From (3.1)
V=V (NRE)*(Sy—Storw>1)+Viocars{ (VAR /([07(8) 1A%z 1)) 2 —1}.
Hence, taking account of (3.4), in order to show (3.11) it suffices to prove that
(NRIYH Sy —S:0z>7) —> 0 as t—oo (3.12)

and
Veoraw{(NhE/(L07(0)]hfhecy))*—1} —>0  as t—oo. (3.13)

First we shall show (3.13). Condition A implies that
N/[6xn(@)] - 1 as t—oo,
which, together with (H6), yields that

Nhy/(COm(®)IhHzcern) - 1 as {—oo. (3.14)

Thus, by virtue of (3.4) and (3.14) we obtain (3.13). Finally, we shall show (3.12).
From (3.1) we get

=3 $a,8,UP. (3.15)
i=1j=1
By Lemma 2.3
U@ | <Cih} for all n=1. (3.16)
From Lemma 2.1
hEE{UPY}<hBEK2(x, X)=C, for all n=1. 3.17)

(H3) implies that

n”z“hﬁjgjz‘“‘”hjp§(fa for all n=1,

which, together with (2.1), (2.2) and (3.17), yields that
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nhﬁia?ﬁ%nE{(U}”)z}éQ for all n=l. (3.18)
2

Thus, combining Lemma 3.1 and (3.15) to (3.18) we obtain (3.12). This completes the
proof.

Appendix

PROOF OF LEMMA 3.1. Let any positive numbers ¢ and £ be fixed. From (3.3)
there exists a positive integer %, such that

S pa<é/d. (A1)

k=kg+1
Fix a positive constant C,, which will be chosen later. Choose p(0<0<1/2) such that
Cie*{1—(1—p)/(14p)*}*<&/(8ky) (A.2)
Cie?p<&/(8ky). (A.3)

and

For each t=(0, o) let n(t) be a nonnegative integer with n(t)—oco as t—oco. Set

M=[1—p)n®)] and M,=[1+p)n(t)]. (A4
By virtue of (2.3) it is easy to show that for all t= some ¢,
1=M,, 1EM;— M, <2p0M,, M,/M,<3 (A.5)
and
(A=Buu,)?<2{1—(1—p)/(1+p)*}2. (A.6)

By the assumption of §, and (A.5)

(M,h%,)'* max
MisisMalj

33 0,560 SCLMa/ My MyE-e g2 zja h

SCMy*ehgrS jeihs  for tmh,.  (AD)
j=1
From (H5) there exists a positive integer n, such that
n”z"‘hﬁ/z:V_‘ij“‘lh§<e/(8C3) for all n=n,. (A.8)
p-

As M,=n, for all t= some ¢,(=t,), (A.7) and (A.8) yield that

(Mh%,)"* max Zajﬂﬂ for all t=t,. (A.9)
MisisMglj
Set n(k, )=[l,7(t)] for k=1, 2, ---. For simplicity put N=N({). It is clear that
P{NRRYIW y—Wigzarn| Ze} =L+ 1,(1), (A.10)
where
Lit)y= ElP{(Nhfé)”giWN—Wm,n]26, IN—n(k, )| <pn(k, t), 0=1,}
and

1,O)=P{IN=[0z(t)] |z p[02(®)]}.

Condition A implies that
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L) <&/2 for all t= some t,. (A.11)
From (A.1)

I,(H< ’glP{(Nh%)”ZJWN—Wm,nl25, IN=n(k, ] <pn(k, 1), 0=l,}+§/4. (A.12)

Fix %k with 1=k k, and put n(t)=n(k, t). Let M; (=1, 2) be as defined in (A.4) for
this n(f). Fix t=t,(k)=max{t,(k), t,}. Then, taking M,<n(t)=<M, into consideration
we get that
JO=P{NRE W y—Way| Ze, IN—nt)| <pn(@), §=[,}
SP{GhD)2\W;—W (| =¢ for some { with M;<i<M,}
<P{(_ max @EhD)"*)( max |W,—Wy,|)=e/2}. (A.13)
Mi<isMg M<isMy

By use of (2.1) and the monotonicity of 7, we have that for ; with M,</=M,

My i My
[Wi—Way,| é‘ 2 aBji—Bimn)Z; | - iBiZ; > a;f;i0; 21a;Bm,0;
j=1 j=Mi1+1 =1 Jj=1
< Sz linl s S 4,858, . (A14)
:(er_ri)ljéajrj || _m, @i 25| T2 max |3 a;B;id;|. (A

Hence from (A.9), (A.13), (A.14) and the monotonicity of nh2, h} and 7,

‘2 a;7;'Z;

J=M1+1

}

SO+ T8), (A.15)

EaJrJ‘Z M:h5)V? max 7y,

M<isMy

f(t)gp{(Mmﬁl)l/z(ml_mg)

where
My
JO=P{Mhg ) ra—rae)| B a7 2, >e/8}
and .
— 1/2 7t
FO=P{Mehg)* max 1| 3 772, >e/8).

First we shall estimate J,(f). By the Chebychev inequality, (A.5), (A.6) and the as-
sumption of EZ2 we get

My
IO =Cae (1 B a,) (Mo / MM R E aiBiu EZ}

=Cse{1—((1—p)/(1+p)*}*. (A.16)

Next we shall estimate J,(t). From the Hajek-Rényi inequality (see Petrov [8], page
51), (A.5) and the monotonicity of A, we have

JH=Cs s‘gMzh,,,eri a(EZ3<C,e- Mzh},’{zj_zl 1]_2h ?
SCe PMMTA(My— M) <Cee2p. (A.17)
Set C;=max{C;, Cs}. Then by (A.2), (A.3), (A.16) and (A.17) we have
Ji®)<&/8ky) and [,()<&/(8ky,)  for all 1=#(k),

which, together with (A.15), implies that for E(1<k=<k,)
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PUNRR) P IWy—Wai, ol Ze, IN—nlk, )] <pn(k, 1), 0=1,} <&/(4k,)
for all (=t(k). (A.18)

From (A.12) and (A.18)

I,(t)<¢&/2 for large ¢,

which, together with (A.10) and (A.11), yields that

P{NREY I Wa—Wigzasl2e} <€ for large ¢.

Thus the proof of Lemma 3.1 was completed.
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