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ON THE ASYMPTOTIC NORMALITY FOR NONPARAMETRIC 

        SEQUENTIAL DENSITY ESTIMATION*

      By 

Eiichi ISOGAI* *

                    Abstract 

   Let fn (x) be a recursive kernel estimator of a probability density 
function f at a point x. We show that if N(t) is a sequence of 
positive integervalued random variables and n (t) a sequence of 
positive numbers with N(t) /2r (t)--.0 in probability as t-.co, where 0 is 
a positive discrete random variable, then (N(t) hN(t)) 1/2 (fN(t) (x) —f (x) ) 
is asymptotically normally distributed under certain conditions.

   1. Introduction 

   Let X be a pdimensional random vector on a probability space (Q, .B, P) having 

a probability density function (p. d. f.) f with respect to the Lebesgue measure on RP. 

There is a vast literature on the problem of estimating the p. d. f. f (see Devroye and 
Gyorfi [3], and Prakasa Rao [9] for example). In particular, estimators have been pro

posed in some recursive manners by several authors on behalf of the following two 
advantages : data need not be stored, and the estimators are easily updated when new 

data become available. In this paper we consider the recursive kernel estimator pro

posed by the author [4]. 
   On the other hand, in many practical situations the number of observations N(t) 

which we observe in a timeinterval (0, t] is random. The problem of sequential estima

tion of the p. d. f. by using positive integervalued random variables (i. e., stopping 

rules) were studied by Davies and Wegman [2], Carroll [1], Wegman and Davies [11] 

and the author [5], for example. Carroll [1] and the author [5] investigated the 

asymptotic normality of estimates of the p. d. f. under random sample sizes. In this 

paper we shall show that the asymptotic normality holds for a more general class of 

positive integervalued random variables N(t) than the classes of Carroll [1] and the 
author [5]. We note that the extension to this general class was motivated by the 

discussion in Renyi [10]. Throughout this paper we consider the estimator fN(t)(x) of 

the p. d. f. f(x) based on X1, X2, ••• , XN(t), which is defined by 

N (t) 
      {TTIIJTj                    JN(t)(x)= E a.7!"RRJN(t)K(x,Xj)+PoN(t)K(x),(1.1) 

where X1, X2i • • • are independent observations of X,
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KT,(x, y)=h,iPK((x—y)/hn) for x, yERP,(1.2) 

K is a bounded, integrable, realvalued Borel measurable function on RP and {hn} with 
ho=h1 is a nonincreasing sequence of positive numbers converging to zero, 

                an—a/n for any fixed a(0, 1],(1.3) 

and 

H (1-a;) if n>m?0 
       ~_m+1(1 .4) 

               1if n=m>-0. 

   The aim of this paper is to show that under certain conditions (N(t)hN(t))112(fi.(t)(x) 
— f (x)) is asymptotically normally distributed. In Section 2 we shall make some pre

parations and auxiliary results. In Section 3 we shall give our main theorem.

   2. Auxiliary Results 

   In this section we shall make some preparations and auxiliary results. Set 

                                                      n r1=1 and rn=;(1—a;) for n>2, 
                                                           7=2 

where an is as defined in (1.3). Clearly, 

              Prnn—rnrm for n>_m?l.(2.1) 

It is known in [4] that 

Lln-arn<L2n-a for some constants L1, L2>0 and all n>_1 (2.2) 
and 

jSmntiman-a as n>m—>oo,(2.3) 

where "'s" means the asymptotic equivalence. For a realvalued functing g let C(g) 
be the set of continuity points of g. Throughout this paper we assume the function 
K in Section 1 to satisfy 

            K(u)du=1,  1{11{3{K(u)IduG00 
   RpRP 

uiK(u)du=0 for i=1, ••• , p with u=(ul, ••• , u9) 
                 RP 

and 

Ifu K(u)l—>0 as IIuIIP-*oo, 

where 11 • II p denotes the Euclidean norm on R. On the sequence {h„} in Section 1 we 

shall impose some or all of the following conditions : For a fixed a E (0, 1], 

(H1) nhg T oo as n—>oo, 

(H2) nl2ahp—>0 as n--Ko, 

                      n (H3) nl-2ahnj2(a1'hP->(3as n—+oo for some constant p>O, 
j=1
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(H4)  n3/23a14p/2   :73 (a -1)h7 2P —* 0 as n-±00, 
                         j=1 

(H5) (n12ahol/2nh2                  j¢l-*0 as n-*oo, 
J=1 

(H6) For any s>0 there exists a positive constant b=o(s) such that I n/m-11 <8 
      implies I hn/h7n-11 <s. 

   EXAMPLE. 
   Let 

hn=n-rIP with max{p/(p+4), 1-2a} <r<1. 

Then {hn} satisfies (H1)~(H6) with (3=(2a+r-1)-1. Throughout this paper C, C1, C2, • 
denote appropriate positive constants. The following lemma can be found in the author 

[6]. 
   LEMMA 2.1. Let {hn} be a sequence of positive numbers converging to zero. Suppose 

that k is a bounded, integrable, realvalued Borel measurable function on RP satisfying 

Ilull~l k(u)I->0 as IIuIIP- co. 

Let g be an integrable, realvalued Borel measurable function on R. Then for each point 
x E C(g), 

LPhTPk((xu)/hn)g(u)d u-÷ g(x)RPk(u)du as n-o                                                                              *o 

and 

sup hnPI k((xu)/hn)I I g(u)Idu<C, 
nal RP 

where C may depend on x. 

   LEMMA 2.2. Let a constant a E (0, 1] be given. Suppose that a sequence of positive 

numbers {hn} converging to zero satisfies (H2), (H3) and (H4). Let {Zn} be a sequence 

of independent random variables with EZn=0. Assume that 

hgEZ;, -> as n->co for some constant >0 
and 

hVEI Zn13<-C for all n>1. 
Then, 

(nh24)112 aii3;nZ; N(0, B) as n->co (in law), 
=1 

where B = a 2j3e (>0), and an and J3 n are as defined in (1.3) and (1.4), respectively. 
   PROOF. It was shown in Lemma 2.2 of [6] that 

n ±(j2r;h7;)-1,,(3(nhgrD-1 as n->co, 
J=1 

which, together with (2.1), (2.2), (H2), the assumption of and the Toeplitz lemma 

(see Loeve [7], page 238), implies that 

           n hgi Qe as n->co . (2.4) 
=1 

Set
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 Un=anrn'Zn, Sn= EU; and sn,=Var(Sn)=a2 j2r;2EZ;. 
.7=1.7=1 

From (2.4) 

sn^dB(nhnrn)-1 as n—*oo.(2.5) 

By the assumption of E I Zn 13 and (2.2) we get that 

EIUn13<C1nS(Q1>hVP for all n>_1, 

which, together with (2.2), (2.5) and (H4), yields that 

                                         n 

                          sn3±EIU;I3—*0 as n—*oo. 
=1 

Thus by the Liapounov theorem we have 

sn1Sn --* N(0, 1)as n—>oo. (2.6) 

L From (2.5) and (2.6) we obtain 

(nhn)1/2 aJPinZ;=(nhnr;sic)"2sn1Sn ---> N(0, B) as n-->oo. 

This completes the proof. 
   We shall give a definition of the smoothness of a function g. 

DEFINITION. Let g be a realvalued function on RP. We say that the function g 
belongs to the class ,9,1, (abbreviated as g E.5tP) if there exist bounded, continuous 
second partial derivatives a2g(x)/axiax; on RP for all i, j=1, ••• , p. 

   LEMMA 2.3. Assume g ESI2P. Suppose that k is a realvalued Borel measurable func
tion on RP satisfying 

uik(u)du=0 for i=1, ••• , p with u=(u1, •.• , up) 
                  RP 

and 
f          •C IluJI Ik(u)Idu<00. 

Then there exists a positive constant C not depending on h such that 

           sup k(u){g(x—hu)—g(x)}du <Ch2 for all h>0. 
xERP RP 

   The proof of this lemma is omitted because it is easily shown by the Taylor 

theorem. 

   The following proposition shows the asymptotic normality of (nhn)1i2(fn(x)—f(x)) . 
PROPOSITION 2.4. Let {hn} satisfy (H2),,,(H5). Assume f e.84. Then for each 

point x with f(x)>O, 

(nhn)1'2(f n(x)—f (x)) ---> N(0, a2(x)) as n--oo, 
where 

a2(x)= )51(x)
. RP K2(u)d u 

   PROOF. Let any x with f (x)>0 be fixed. Set 

Zn=Kn(x, X„)—EKn(x, Xn) and on=EKn(x, X.)— f (x) .
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Then, replacing N(t) in (1.1) by n we get 

 (nhfi)112(f  7,(x)—  f  (x)) 
                 n

S           =(nhfi)~121Son(K(x)—J{(x))+(nhfi)1/2±a .i137nZ;+-(nhIV12 a3,/~2„di. (2.7) 
,=1.1=1 

From (2.2) and (H2) the first term in the right hand side of (2.7) converges to zero as 

n tends to infinity. In view of Lemma 2.3, (2.1), (2.2) and (H5) the last term in the 

right hand side of (2.7) converges to zero as n tends to infinity. Thus the proposition 

will be proved if we show that 

                                     n 

               (nhfi)1J2±a,e,nZ, N(0, a2(x)) as n-->oo. (2.8) 
j=1 

From Lemma 2.1 and (1.2) 

               hfiEZn—>f(x)
XA                                K2(u)du (>0) as n--oo. 

By the Holder inequality and Lemma 2.1 we have that h;,A E I Zn 1 3<_C1 for all n�1. 

Since all the conditions of Lemma 2.2 are satisfied, the relation (2.8) holds. This com

pletes the proof. 
   The next lemma was provided by Renyi [10]. 

   LEMMA 2.5. Let {Yn} be a sequence of independent random variables defined on a 

probability space (Q, A, P) such that putting 

1  n S
n= EY; where Bn—*o0                                      B

n ,=1 

the random variable Sn converges in law to a random variable with the distribution func

tion F. Then for any event AE ,A with P(A)>0 the conditional probability P{Sn<x'A} 
tends to F(x) for every xEC(F).

   3. Main Result 

   In this section we shall show the asymptotic normality of (N(t)h3)v«,)112(fN«0(x)— 

f (x)). Let [b] denote the largest integer not greater than b. For any fixed x E RA set 

Unl'=Kn(x, Xn)—EKn(x, Xn), Un'=EKn(x, X.)—f(x), (3.1) 

Sn= Ea;(3;n{K;(x, Xj)—f(x)}, Vn=(nhfi)112Sn for n>1, 

and So=Vo=0. It is clear from (2.7) that 

(nh43)1"(fn(x)—.f(x))=Vn±(nhfi)11213on(1C(x)—f(x)) for n>1. (3.2) 

Now, we shall give the condition on N(t). For any tE(0, co) let N(t) be a positive 
integervalued random variable defined on the probability space (Q, B, P) given in 
Section 1. 

DEFINITION. A sequence of positive integervalued random variables N(t) is said to 
satisfy Condition A if there exist a positive random variable 0 defined on (Q, ~, P) 
having a discrete distribution and a sequence of positive numbers 7r(t) with 7r(t)-->oo as 
t- co such that
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N(t)/ir(t) 0as t-->oo (in probability) . 

P Here, by the positive random variable 0 having a discrete distribution we mean that 

there exists a sequence of positive numbers l k (k=1, 2, • • •) (k may be finite or infinite) 

such that 

E Pk=1 where pk=P{0=lk} >0.(3.3) 
k=1 

Throughout this section 7r(t) and 0 are as given in the above definition. 
   REMARK. The stopping rules N(t) treated by Carroll [1] and the author [5] satisfy 

Condition A with P{0=-11  =1. 
   LEMMA 3.1. Let {hn} be a nonincreasing sequence of positive numbers converging to 

zero and satisfy (H1) and (H5). Let {(Sn} be a sequence of real numbers satisfying I&I 

<C1h;, for all n>1. Suppose that {Zn} is a sequence of independent random varables 
satisfying 

EZn=0, hnEZ72,_<C2 and nhn ia;,8;nEZ;<C2 for all n>1. 

Set 

                                          n Wn=±±a;j>nd>• 
1=17=11 

If N(t) satisfies Condition A then 

(N(t)h v(t))1'2(WN(t)—Wco CO]) -7                                               0 as t--*co                                                              P 

The proof of this lemma is deferred to Appendix. We shall now state our result. 
   THEOREM. Assume f E~tp. Let {hn} satisfy (H1)^,(H6). Suppose that N(t) satisfies 

Condition A. Then for each point x with f(x)>O, 

(N(t)hN(t))112(fx(t)(x)-f(x))  N(0, a2(x)) as t-*oo, 

where 

U2(x)=a2(3f(x) 
RPK2(u)du 

   PROOF. For simplicity put N=N(t). Let any x with f(x)>0  be fixed. First we 
shall show that 

Vron(t)] N(0, c2(x)) as t--400.(3.4) 

Since by (2.2) and (H2) 

(nhg)1"2,80.-->0 as n->oo,(3.5) 

it follows from Proposition 2.4 and (3.2) that 

Tin --> N(0, 0.2(X)) as n-Ko . 

L Hence by Lemma 2.5 we get that for any fixed k 

P{Vn<yIO=lk}->F(y)as n-->oo for each yeR,(3.6) 

where F denotes the distribution function of N(0, a2(x)). Let any s>0 be fixed. From
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(3.3) there exists a positive integer  ko such that 

E Pk<e•(3.7) 
k=k0+1 

Fix any y c R. By (3.3) and (3.7) 

ko 

P{ViceR(t)]<y}—F(y)I < EI P{V.f.(k.t)<yl6=1k}—F(y)I+`                                                  E for any t(0, 00), (3.8) 

where n(k, t)=[lk'r(t)]. Hence, in view of (3.6) and (3.8) we obtain (3.4). From (3.2) 
it is clear that 

            (NhN)"2(fN(x)—f (x))=VN+(Nhpv)112QoN(K(x)—f (x)) . (3.9) 

Since Condition A implies that N--> co as t-*oo, by use of (3.5) 

P (NhN)112J3ONP0 as t—>oo.(3.10) 

Thus, in view of (3.9) and (3.10), in order to prove the theorem it suffices to show that 

VN --> N(0, a2(x)) as t--oo. (3.11) 

L From (3.1) 

VN=VCea(t)]±(NhN)1j2(SN—ScB,r(t)n)+V[ofr(t)]{(NhN/([e7r(t)]hPeirct)]))"2-1}. 

Hence, taking account of (3.4), in order to show (3.11) it suffices to prove that 

(NhN)1j2(SN—S:en(t)]) --> 0 as t-*oo(3.12) 

and 
              V[erzct)3{(NhNI([e7c(t)]hfenct)]))1/2_1}—>0 as t--*oo,(3.13) 

First we shall show (3.13). Condition A implies that 

N/[ 970)] P 1 as t—>oo, 

which, together with (H6), yields that 

                  NhN/([O7r(t)]hPeir(t)J) —>1 as t-*oo.(3.14) 

                                              P Thus, by virtue of (3.4) and (3.14) we obtain (3.13). Finally, we shall show (3.12). 

From (3.1) we get 
                                   2 n 

Sn= a7f 1nU;i)(3.15) 
i=1 j=1 

By Lemma 2.3 
Un2) I <_C1hn, for all n>_1.(3.16) 

From Lemma 2.1 

hgE{(U;P)2}<_hnEKn(x, Xn)<_C2 for all n>1.(3.17) 

(H3) implies that 

n nl-2ahp i j2(a1)h,jP<C3 for all n>1, 

which, together with (2.1), (2.2) and (3.17), yields that
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nhf{(U;l')2}<C,for all n�1 . (3.18) 
7=1 

Thus, combining Lemma 3.1 and (3.15) to (3.18) we obtain (3.12). This completes the 

proof.

                              Appendix 

   PROOF OF LEMMA 3.1. Let any positive numbers s and $ be fixed. From (3.3) 

there exists a positive integer ko such that 

E Pk <e/4.(A.1) 
                                                 k=k0+1 

Fix a positive constant C1, which will be chosen later. Choose p(0<p<1/2) such that 

C1s2{1—((1—p)/(1Ip))Q}2<E/(8ko)(A.2) 
and 

Cis-2p <e/(8ko) •(A.3) 

For each tE(0, co) let n(t) be a nonnegative integer with n(t)>C0 as t-000. Set 

M1=[(1— p)n(t)] and M2=[(1+ p)n(t)] .(A.4) 

By virtue of (2.3) it is easy to show that for all t> some to 

1<_M„ 1 <M2—M1<2pM2, M2/M1<3(A.5) 
and 

(1—PM1M2)2<2{1—((1—p)/(1+p))a}2.(A.6) 

By the assumption of an and (A.5) 
     ti M2 

         (M2h.f2)l/2 max E a;13?b7 C2(M2/M1)aM2/2-ahM22 
        M1stisM27=17=1 

M2 

<C3MZ/2a422E ja-lh; for t>to. (A.7) 
;=1 

From (H5) there exists a positive integer no such that 

                 n1/2-ahni/2ja1h2<E/(8C3) for all n>no.(A.8) 
7=1 

As M2>_ no for all t>_ some t1(>—to), (A.7) and (A.8) yield that 

         (               (M2h .2)1/2 max E a7i37z8; <€/8 for all t>t1.(A.9) 
i11~Z~M2 7=1 

Set n(k, t)=[lk7r(t)] for k=1, 2, ••• . For simplicity put N=N(t). It is clear that 

P{(NhN)112I WN—W[e-ct» I >E} <I1(t)+.12(t), (A.10) 
where 

I1(t)= EP{(NhN)1/2IWN—Wn(k ,t) N— n(k , t) <pn(k, t), 0=1k} 
k=1 

and 
I2(t)=P{ I N— [Or(t)] p[O r(t)] } . 

Condition A implies that
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 12(t)<$12 for all t>_ some t2 .(A.11) 

From (A.1) 

ko 

I1(t)< E P{(NhN)1121WN—Wn(k,t)I —�E, I N—n(k, t)I <pn(k, t), 0=1k}±14. (A.12) 
k=1 

Fix k with 1 < k<_ k o and put n (t) = n (k, t). Let Mi (i =1, 2) be as defined in (A.4) for 

this n(t). Fix t__>_t3(k)max{t1(k), t2}. Then, taking M1<n(t)<M2 into consideration 

we get that 

At) =P{(Nh v)1/21WN—Wnc01 ?~, IN — n(t) I <pn(t), 9=1k} 

               <P{(ih')1121 Wi—Wn(t) I ?c for some i with M1<i<_M2} 

<P{( max (ihP)1/2)( max I Wi—WM1I)>E/2}.(A.13)                      M1<i5M2M1<z<_312 

By use of (2.1) and the monotonicity of in we have that for i with M1 <i <M2 

 7~rM1}i~J~i(~SM1                                                                                                     S    IYVi—WM11CEt1i(~ji—~jjMi)Zj+uajf2iZj+E ajNjiUj+E aj/3M1V, 
      j=1j=M1+12=1j=1 

M1 

<(rMl—ri) E ajrJ 1Zj +ri airy 1Z; +2 max E ajQji5; • (A.14) 
j=1 I j=M1+1 j=1 

Hence from (A.9), (A.13), (A.14) and the monotonicity of nh24, hg and rn 

  J(t) <P1l(M2hMl)i/2(rMl rM2) ajr11Zj ±(M21-412)1/2 max ri a7rj'G7 >614) 
j=1M1<2sM2 j=M1+i 

<J1(t)+J2(t) ,(A.15) 

where 

              /{(M2h l)hI2rMl_Ji(t)=PrM2)uar'Zj>j=1 
and

(7pl              J2(t)=P{(M2hM2)1/2max riajrj1Zj~ E/8}. 
             l111<iM2 j=M1+1J 

First we shall estimate J1(t). By the Chebychev inequality, (A.5), (A.6) and the as

sumption of EZn we get 
                                                                  M1 

J1(t)<C4E-2(1 18M1M2)2(M2/Ml)MlhM1 E aif JMIEZJ 
,_1 

_C5E2{1—((1—p)/(1+p))¢}2•(A.16) 

Next we shall estimate J2(t). From the Hajek-Renyi inequality (see Petrov [8], page 

51), (A.5) and the monotonicity of hn, we have 

      M2M2 

             J2(t)CC662M2hM2 E a;EZ;<_C7E2M2h1M 2j-2h P 
J=M1+1 7=M1+1 

            <C7E2M2Mi2(M2— MI)<_C8E-2p. (A.17) 

Set C1=max {C5i CO.  Then by (A.2), (A.3), (A.16) and (A.17) we have 

Ji(t)<e/(8k0) and J2(t)<e/(8k4) for all t>t3(k), 

which, together with (A.15), implies that for k(1 < k < ko)



224E. ISOGAI

 P{(Nhfv)1121  WN—Wn(k,t)  1  >s,  I  N—n(k, t)1 < pn(k, t), 9=1k} <e/(4k0) 

                                             for all t>_ t3(k) . (A.18) 
From (A.12) and (A.18) 

I1(t) <e/2 for large t, 

which, together with (A.10) and (A.11), yields that 

P{(Nh3V)1i21WN—W[ot(t)]1>6}<e for large t. 

Thus the proof of Lemma 3.1 was completed.
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