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        By 
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                    Abstract 

   Inductive inference is a process of gaining a general rule from 
examples. Inductive inference of recursive functions from input
output examples is considered. An iteratively working strategy 
utilizes the last hypothesis produced by it and the present example, 
and a consistent strategy always produces a program consistent with 
all examples received so far. An extension of the uniformly bounded 
number of hypotheses utilized by strategies is shown to lead to no 
extension of the inferring power. We also show that the technique 
of EXn-hierarchy holds for iteratively working and consistent strate

gies with anomalies.

   1. Introduction 

   The present paper deals with the theory of inductive inference which is based on 

the approaches of Gold [5, 6], Blum and Blum [2] and the subject of survey papers (e. g., 

[1, 10]). A process of automatic program synthesis can be formalized to inductive in
ference of recursive functions from examples as an infinite process. Its situation can 

be imagined as follows : An algorithmic device, which is formally a partial recursive 
function and called a strategy or an inductive inference machine, takes as the input the 

graph of a recursive function f which is the list of all examples (x, f (x)) for natural 
number x. As it receives the list, it produces infinitely many computer programs called 

hypotheses. When almost all programs produced by a strategy are equal to a program 

that computes f, we say that the strategy inductively infers (or identifies) f. We mean 

all but finitely many by almost all. A set of recursive functions is said to be identifiable 

by a strategy if the strategy identifies every function in the set. 

   There are many possible requirements, called identification criteria, on the process 

of synthesizing programs and the sequence of programs produced by a strategy. The 

power of an identification criterion, called an identification type, is expressed by the 
class of all sets of recursive functions each of which is identifiable by some strategy 

under the identification criterion. Hierarchies of identification types have been intensively 

investigated in order to compare the power of the corresponding criteria in inductive 

inference and automatic program synthesis (e. g., [3, 4, 7, 9, 13]). 

   In this paper we introduce some new identification criteria and study their powers. 
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Iteratively working strategies, studied in [7,  13], are ones which synthesize a program 
from the last hypothesis they have produced and the present inputoutput example. 

We extend them to ones which utilize finite, uniformly bounded, number of hypotheses 
they have produced and show that their powers are identical to those of the original 

criteria utilizing only the last hypothesis. Case and Smith [3] have studied almost 

everywhere identification, introduced in [2, 11]. Let n be a natural number or *. An 

anomaly is an input on which a program disagrees with the function being identified. 

Identification criteria of this type allow the final hypothesis to have n anomalies (finitely 
many anomalies if n=*). Corresponding identification type is denoted by EXn. The 

relation EX°EX1 ••• EX* is called the anomaly hierarchy or EXnhierarchy [3]. 

Jantke and Beick [7] have studied natural identification criteria, which requires, for ex
ample, that a strategy should produce only programs consistent with examples received 

so far, and they have clarified the relationship between the power of these natural 

criteria. We consider some natural identification criteria allowing the hypotheses to 

have finitely many anomalies and show that the analogous arguments to EXnhierarchy 
hold for these identification types.

   2. Preliminaries 

   We give some basic definitions and notations and present some fundamental results. 
N:={0, 1, 2, • • • } denotes the set of all natural numbers. The classes of all partial 

recursive and (total) recursive functions of n variables over N are denoted by 2n and 
n, respectively. For n=1 we may omit the superscript indexes. Let (C0i)iEN be a 

fixed acceptable numbering of ? [12]. A permutation of N is a complete and repetition

free sequence of natural numbers. F(N) denotes the set of all permutations of N. 
Let <• • •> be a fixed effective encoding of all finite sequences of natural numbers onto N. 
Let X :=(x°, x1, •••) be a sequence of natural numbers, k, mN and m<k+1. Then 
we use the notations X[k] :=<x°i x1, •• , xk> and 

<x0, ••• , xk>,if k+1 <m, 
                X[k—m-{-1, k] :_ 

<xk_„t+1, ••• , xk>, otherwise. 

Let h be a sequence of natural numbers, f e .9R, and XF(N). We consider h, f and f x 
as sequences (h°, h1, • • •), (f(0), f(1), • • •) and (f (x°), f (x1), • • •), respectively when we 
use the notations h[k], f [k], fx[k], h[k—m+1, k], f[k—m+1, k] and fx[k—m+1, k]. 

   Let p, n EN and f cpp(x) f (x) means that cpp(x) is defined and not equal to 

f(x), or Sop(x) is undefined. We write cpp=nf andcop=*f iff card ({xENIcop(x)#f(x)}) 
<n and card ({ x E sop(x)f(x)}) is finite, respectively, where card (A) denotes the 

cardinality of a set A. A sequence (hk)kEN of natural numbers is said to converge to 
a natural number p, denoted by lim hk =p, iff almost all elements in the sequence are 
identical to p. 

   We define the identification type EX which represents the power of the first iden

tification criterion, introduced by Gold [5, 6] and called Identification in the Limit. EX 
coincides with EX° defined above. 

   DEFINITION 2.1. Ug .4R. is said to be identifiable in the sense of EX (written UE



Inductive inference by iteratively working and consistent strategies with anomalies 173

EX)  iff there exists a strategy SEEP such that S(f [k]) is defined, for all k E N and 

f EU, the sequence (S(f[k]))kEN converges to p, and 
   Thus EX is the class of all sets of recursive functions which are identifiable in the 

sense of EX. Other identification types will be defined similarly. Let Uc_ be 

identifiable in the sense of ID by a strategy and f belong to U. Then we say that 

the strategy identifies f in the sense of ID. Definition 2.2 results from adding the 
requirement to Definition 2.1 that the strategy has to receive the graph of a function in 

arbitrary order. 

DEFINITION 2.2. Uc_ gt. is said to be identifiable in the sense of EXarb (written UE 

EXarb) iff there exists a strategy SE.V such that S(X[k], fx[k]) is defined, for all 

kEN and f E and XEF(N), the sequence (S(X[k], fx[k]))kEN converges to p, and 

co=f. 
   Other identification types with the superscript index arb satisfy the similar re

quirement of the order of graph. Thus we may omit definitions of some identification 
types with the superscript index arb. Many researchers have considered more re

stricted or more general identification types than EX and investigated the hierarchies 

of identification types in detail. By means of Identification by Enumeration [5, 6], 

effectively enumerable sets of recursive functions are identifiable in the sense of EX. 

Thus we also consider here the effective enumerability as a special identification criterion. 
According to [7] we define 

NUM!:={U_C.92.I3hER;U={cohc2,IiEN}~~}, 

and 
             NUM:={U~ gt l ~hE ~ ; U~ {cphcz, I iEN} ~ R}. 

   The corresponding identification types of iteratively working strategies are denoted 

by IT and ITarb Consistent strategy which always produces a program consistent 

with all examples received so far is very natural. The corresponding identification 

types are denoted by CONS and CONSarb In the following theorem we summarize a 

part of fundamental results of natural identification criteria, which is concerned with 
this paper. 

   THEOREM 2.1. (Gold [5], Wiehagen [13], Jantke and Beick [7]) 

   (1) NUM!NUMCONSarbCONSITEX=EXarb 

   (2) NUM !> ITarb <<CONS and ITarb IT , 

where > denotes incomparability. 

   We present the theorem describing EXnhierarchy. 

   DEFINITION 2.3. UC_ g2. is said to be identifiable in the sense of EXn (n ENU {*} ) 

(written U E EX") if there exists a strategy SE.? such that S(f[k]) is defined, for all 
kEN and f E U, the sequence (S(f [k]))kEN converges to p, and cpp='hf. 

   THEOREM 2.2. (Case and Smith [3]) Let Fn :={ f E I cp f(o)=nf } for nNU{*}. 

Then the following properties hold: 

   (1) Fk+IEEXk+'\EXk for all kEN, 

   (2) F*EEX*\UkENEXk, 
   (3) EX°EXI •.• --UkENEXkEX*.
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   3. An Extension of Iteratively Working Strategies 

    We extend the iteratively working strategy to the one which synthesizes a program 
from the last m hypotheses it has produced and the last n examples it has received so 
far. If it has not yet produced m hypotheses or received n examples, it utilizes all 
hypotheses or examples. The following identification types represent the power of 
this postulate. 

DEFINITION 3.1. U_q.R is said to be identifiable in the sense of ITEm, n (m, n E N) 
(written U E ITEm, ,i) iff there exists a strategy S .T3 such that for all f E U 

   (1) a sequence (hk) is defined by ho :=0, h1:=S(h[0], 0, f [0]) and 
hk+l :=S(h[k-m+1, k], k, f [k-n+1, k]) (k?1), 

   (2) p : =1im hk exists and co = f . 

   DEFINITION 3.2. U.C.. is said to be identifiable in the sense of ITE n (m, nEN) 

(written U E ITEmn) iff there exists a strategy SEE''  such that for all f E U and all 
X :=(xo, x1, ...)EF(N) 

   (1) a sequence (hk) is defined by ho :=0, h1:=S(h[0], X[0], fx[0]) and 
hk+1:=S(h[k-m+1, k], X[k-n+1, hi, fx[k-n+1, k]) (k>-1), and 

   (2) p : =1im hk exists and co=f. 

   The identification types IT and ITarb coincide with ITE1, 1 and ITEi ib, respectively. 
Clearly ITEarbITEb, and ITE¢, c c ITEb, d if 1 < a_<b and 1 < c < d. It is shown that 
an arbitrary, uniformly bounded, enlargement of the number of hypotheses a strategy 
may utilize leads to no extension of the corresponding identification types. 

   THEOREM 3.1. Let m, n>-1. Then 

   (1) ITE1,7,=ITEmn, 
  (2) ITEi; n =ITEmn . 

   PROOF. (1) Clearly it suffices to show that ITEm, 7L c ITEi, m,. We show that for 
any strategy S E cP3 there exists a strategy T E c,3 such that ITEm, n(S) c ITEi, .(T ), where 
ITEm, n.(F) denotes the set of all recursive functions that a strategy FE R)3 identifies in 
the sense of ITEm,,. Since (cpi)iEN is an acceptable numbering, there exist an injec
tion mapping c2 and d E cP such that cpc (i, x) =cPi and d (<c(i, x)>) = x for all i and 
x EN. Let S E 23 be given. We define T E cP3 as follows : 

                      c(S(x, 0, z), <0, S(x, 0, z)>) if y=0, 
            T(x, y, z):= 

                      c(S(d(x), y, z), e(d(x), y, z)), otherwise, 

where e E g)3 is defined by, for all j�1  and x1, • • • , x; E N, 

                           <xi, ..• , x;, S(<x1, ... , xi>, y, z)>, if j<m. 
e(<x1, • • • , x;>, y, z):= 

<x j+2 m, • • • , x;, S(<x j+1 m, • • • , x;>, y, z)>, otherwise . 

Let f E ITEm, n(S), ho :=0, h1:=S(h[0], 0, fin and hk+1:=S(h[k-m+1, k], k, f [k-n 

+1, k]) (k>1). By Definition 3.1, there exist L>m and HEN such that hk=H for all 
k>L and cpH=f. Suppose io :=0, i1:=T(h[0], 0, f (0)), ik+1:=T(i[k, hi, k, f [k-n+1, hi)
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       k,  f  [k—n+1, k]) (k?1). From the definition of T, ik=c(hk, h[k+1—m, k]) 

(k>_1). Therefore lim i k exists and equals c(H, <Htm>), where H'n denotes the sequence 
(H, H, • • • , H) of length m. Since Wc(H, <Htm}) =cpH=f , we have f ITEI• n(T) and then 
ITE,n, n(S) C ITEI , n(T ). 

   (2) Analogous proof holds for (2). ^ 
   The key idea of the above theorem, suggested by Jantke [8], is as follows. Cod

ing of the information on the last in hypotheses to the present hypothesis and the 
decoding are effective. The c is the coding function and the d is the decoding func
tion. If converges a sequence of original hypotheses produced by a strategy S, so does 
the sequence of the encoded hypotheses produced by the strategy T. Thus the strategy 
T can simulate the strategy S. However this technique, as it is, does not hold for the 
coding of n examples. 

   Let ID be an identification type corresponding to an identification criterion. 
NUM!niD and NUMnID are considered as special identification types which mean 
the power of Identification by Enumeration under the criterion. By Theorem 2.1, NUM 

nITE.„n=NUM and NUM!nITE„,•n=NUM! for all m, n>_1. Clearly NUM!nIDL 
NUMnID. Most of identification types ID have the property that if a set of recursive 
functions is identifiable in the sense of ID, then so is any subset of the set. We show 
that this inclusion is strict if an identification type has this property and contains a 
set of trivial functions. 

   THEOREM 3.2. 

   (1) Let ID be an identification type which has the above property and contains the 
set of all constant functions. Then 

NUM ! n ID NUMnID . 

   (2) Let m, n�1. Then 

                  NUM ! n ITE„'; n NU Mn ITE;~ n • 

   PROOF. (1) Let C be the set of all constant functions. Then C is countably in
finite and C E NUM !. Since 2° is uncountable and NUM! is countably infinite, there 
exists V0 E 2c\NUM !. By the property of ID, we have V o E ID. Thus V0 E NUMnID\ 
NUM !nID. 

   (2) Clearly ITEI,' n, has the property of (1) and contains C. ^

   4. Inductive Inference of Almost Everywhere Correct Programs by Some 

      Naturally Working Strategies 

   Now we consider the almost everywhere identification by some naturally working 

strategies satisfying the postulates for the identification types IT, IT¢rb, CONS and 

CONS67b, defined in Section 2. By convention we assume n<* for all nENU{*}. 

DEFINITION 4.1. U c is said to be identifiable in the sense of IT n (n ENU {*} ) 

(written U E IT n) if there exists a strategy S E P3 such that for all f E U 

   (1) a sequence (hk) is defined by h1:=S(0, 0, f(0)) and hk+l :=S(hk, k, f(k)) (k>_1), and 

   (2) p:=limhk exists and cop=nf.
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    DEFINITION 4.2.  U__4t. is said to be identifiable in the sense of CONS" (nENU{*}) 

 (written U E CONS") if there exists a strategy S E g. such that 

    (1) U is identifiable in the sense of EX" by S, and 

    (2) for all f E U, S always produces a program having at most n anomalies (finitely 
 many anomalies if n=*) with respect to the examples received so far, that is 

card({jENI j<k, cos(flkJ)(j)� f(j)})<n for all kEN. 

    The following identification type CONSITarb." is the combination [7] of CONSarb," 

and IT"rb' n 

    DEFINITION 4.3. U c is said to be identifiable in the sense of CONS-IT arb," 

(n E NU {44)  (written U E CONS-IT arb• ") if there exists a strategy S E .T3 such that for 
all fEU and all X:=(x0, x1, •••)EF(N) 

   (1) a sequence (hk) is defined by h1:=S(0, x0i f(x0)) and 
       hk+1:=S(hk, xk, f(xk)) (k?1), 

   (2) p :=1im hk exists and cp p="f, and 

   (3) card ({jENIj<k, cphk(x;)#f(x;)})<n for all 

IT °, IT arb, °, CONS°, CONSarb, ° and CONS-IT arb, ° coincide with IT, IT arb, CONS, 

CONSarb and CONS-IT arb, respectively. We will see in the proof of Theorem 4.1 and 
Corollary 4.2 that the technique used in EX"hierarchy [3] is still valid for identifica

tion types defined above. 

   THEOREM 4.1. Let ID" be identification types and F" := { f E R I cpf(0)="f } for nE 

Nu {*}. If the following three conditions are satisfied: 

   (a) IDkCIDk+1LcID* for all kEN, 

   (b) IDk__EXk for all kEN, 

   (c) F"EID" for all nENU{*}, 

then the following properties hold: 

   (1) IDk+1gEXk for all kEN, 

   (2) F*EID*\UkENIDk, 
   (3) ID°ID1 ... UkENIDkID*. 

   PROOF. (1) By (1) of Theorem 2.2 and (c), we have Fk+'EIDk+1\EXk for all 

kEN. 

   (2) Assume that F* E UkENIDk. Then there exists k EN such that F* E IDk. From 
Fk+l c F* and (b) it follows that Fk+1 E IDk c EX k. This contradicts (1) of Theorem 2.2. 
Therefore we have F*cUkENIDk, and then F*EID*\UkENIDk from (c). 

   (3) From (1) of Theorem 2.2 and (b) it follows that Fk+10IDk for all kEN. 
Therefore (a), (c) and (2) show 

/D°//Y. ••• UkENIDkID*. ^ 

   By Theorem 4.1 we can show that the sequences of identification types IT", 

IT arb, ", CONS", CONSarb, " and CONS-IT ark' " are strictly increasing in n. 

   COROLLARY 4.2. Let ID" denote IT", IT arb' ", CONS", CONSarb'" or CONS-IT arb'" 

and F" be the set defined in Theorem 4.1. Then for each case the following properties 

hold:
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   (1)  FnEIDn for all nEN. {*}, 
   (2) IDk+1 EXk for all kEN, 

   (3) F*EID*\UkENIDk, 

   (4) ID°ID1 ••• UkENIDkID*. 

   PROOF. First of all, we give a proof for the case IDn=ITn. (1) Let S be a 
strategy which produces program f (0) as its only hypothesis when the graph of a re

cursive function f is fed to it. Formally S(x, y, z)E?3 is defined to be equal to z if 

y=0, x otherwise. Clearly, for all nENU{*}, Fn is identifiable in the sense of ITTh 
by S. 

   (2)-(4) By (1) and Definition 4.1, ITn satisfies the conditions (a), (b) and (c) of 
Theorem 4.1. 

   By arguments similar to the above case, the properties for the other cases can be 

proved easily. 0
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