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A GRAMMATICAL INFERENCE FOR CONTEXT-FREE 

   LANGUAGES BASED ON SELF-EMBEDDING

        By 

Keisuke TANATSUGU*

                    Abstract 

   Our purpose in this paper is to construct a practical algorithm to 

inductively infer context-free languages. A basic procedure is first 

introduced to take out the sel-fembedding structure from given strings. 

Secondly, based on this procedure an algorithm to infer linear gram

mars from given finite sample sets is presented and its completeness 

is proved. Finally, by using a method to compose linear grammars, 

we propose an algorithm which is also complete for context-free 

languages.

   1. Introduction 

   For a language L over an alphabet  I, a finite subset of I(L)--=H-w,  w E L } U 

{—w; w E X*— L } is said a sample of L. Given a family of languages o.C, an algorithm 

f is called a complete grammatical inference algorithm for -L' if for any L E -C there 
exist some infinite sequence x1, x2, ••• EI(L) and integer no such that n� no implies L=L 

[ f (x1i x2, • • • , x.)]. We may find such an algorithm by enumerating all grammars even 
for the whole of phrase structure languages [3]. However, we concern with an effec

tive algorithm which enumerates only qualified grammars using structural information 

belonging to samples. Biermann [5] introduced such an interesting algorithm for re

gular languages and Tanatsugu [7] proposed for harmonic linear languages which is a 
superclass of regular languages. These method are based on the fact that, each variable 

in grammar to be inferred, may be characterized by a finite subset of the language 

generated from it. 
   In the present paper we construct an practical inference procedure for the family 

of context-free languages. We consider that the main structural feature of context-free 

languages is the self-embedding. So, we first give the procedure to take out redunduncy 

parts in both sides of strings by using the notion of derivative mapping [2], in section 3. 
Based on this procedure, we present an inference algorithm for linear languages. Then 

it is shown that this algorithm is complete for the family of linear languages in sec

tion 4. Futhermore, by adding a composition method of linear grammars, we propose 

an algorithm which is also complete for the family of context-free languages in sec

tion 5.

* Department of mathematics , Kitakyushu University, Kitakyushu 802, Japan.
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   2. Preliminaries 

   We shall give some basic notions and lemmas for the subsequent sections . 
   Let X be an alphabet, then the set of all strings over X is denoted by X*. The 

empty string of zero symbols is denoted by  s. 

   A context-free grammar (CFG for short) is defined by a quadruple G=(I' , P, S) 
where r is a finite set of variable symbols , I called an alphabet is a finite set of 
terminal symbols, P is a finite set of production rules of the form A-4x with AEI' 

and x E (r UE)*, and S E I' is the start symbol. We write x= y if there exist A E I' , 
x1, x2, zE(rvx)* such that x=x1Ax2, y=xlzx2 and the rule A—z is in P . The transi
tive closure of is written =. The language LA generated from A E r is denoted by 
{w; A~w, wEX*}. Especially LS is also represented as L(G) and it is said the con
text-free language (CFL for short) generated by the grammar G. Now we add the 
following restrictions for every CFG G=(r, X, P, S) : 

   1. For each variable 

   (1) There is a derivation S=uAv for some u, vE(I'UX)*. 
   (2) LA=Cb. 

   (3) (A-4A) P. 
   (4) If A� S, then there is at least one production rule of the form A-4aA(3 where 

a, 16 E (rUz)*. 
   2. LA#LB for any A, BEr such that A=B. 

   In spite of the above restrictions, for any CFL LCX* there exists a grammar G 
such that L= L (G). A CFG G is called linear if every production rule is the form of 
A-> u By or A *w with A, B E I' and u, v, w E f*, then L(G) is said a linear language . 

   DEFINITION 1. Let L be a language over I, then we denote a derivative language 

of L by 

uLv={x; uxvL}. 

Then (u, v) is called a cover of L for uLv. Futhermore, L is said to be embedding 
with respect to (u, v) if L is a subset of uLv. 

   The following is immediately obtained from the above definition. 
   LEMMA 1. 1. Let L1, L2, L be languages over I and u, u1, u2, v, v1, v2 E X*, then 

the following relations hold: 

   (1) u2(u1Lv1)v2=ulu2Lv2v1. 
   (2) If L1CL2i then uL1vCuL217. 

   (3) u(L1UL2)v=uL1vjuL2v. 
   (4) u(L1nL2)v=uLlvnuL2v. 
   2. Let G=(r, I, P, S) be a CFG. If AuBv then LBCuLAV where A, BEr and 

u, vE I*. 
   We now introduce an order relation on X* x X* based on the lexicographical order 

on I* as follows : 

                                  (u1, v1)<(u2, v2) 

if and only if
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 (I  uivll < I u2v21)V (1 u1v11=1 u2v21 Aulv1<u2v2)V (u1v1=u2v2Av1<v2) • 

   For example, for f=--{a, b} 

(s, s)<(a, s)<(s, a)<(b, s)<(s, b)<(aa, s)<(a, a)<(E, aa)<(ab, s)<(a, b)< ••• 

   We represent the successor of (u, v) as (u, v)'. 
   DEFINITION 2. Let X, YC X* and a, fief*. 

                                  (1) ex(a, /3)= {X'*0 ; X'CaX' f, X'cX}. 
  (2) Mx(a, jS)=Uex(a, IS). 

  (3) ex={Mx(a, jS); (a, /3)*(E, E)}. 
   (4) 1VIx;y(a, jS)=XfMy(a, 13). We simply write Mx(a, /3) in the case that Y is 

evident. 
   The following facts are easily derived from the above definition: 

   LEMMA 2. For any X E X * and a, fi E f* : 

   (1) Mx(a, 13)CX. Particularly, Mx(s, s)=X. 
  (2) Mx(a, j3)CaMx(a, 3) p. 

   (3) ex-=y5 if X is finite. 
   EXAMPLE 1. Let X= {ambm ; m>_0} U {anb2n ; n>_0}, then 

ex(a, b)= Hann' ; m>0}, {ambm ; m>_1}, •••}, 

ex(a, bb)= { {anb2n ; n>0}, {anb271 ; n>1 }, }, 

Mx(a, b)=Mx(a2, b2)= •••={ambm;m_0}, 

                  Mx(a, bb)=Mx(a2, b4)= ••• _ {anb2n ; n>_0}, 

ex= { {ambm ; m>0}, {anb2n ; n>0} }. 

   LEMMA 3. Let G=(I', P, S) be a CFG and ASP. If SuAv and AaA/3, then 

LACM5L(G)v(a, /3) 

where (u, v), (a, O E X* x X*. 
   PROOF. By Lemma 1, LACuL(G)v, LACaLA/3. Hence 

LAEe5L(G)v(a, /3)• 
Since 

MuL(G)v(a, j3)=UeOL(G)v(a, /3), 
we obtain 

LACMOL(G)v(a, 13). ^ 

   LEMMA 4. Let G=---(F,  I, P, S) be a CFG and L = L (G). If 

** 

SuAv, A= u'Bv', A~aA/3 and B=a'Bj3', 
then 

LBCu'MuL-(a, /3)v'n111uu•Lv%„(a', /') 

where (u, v), (u', v'), (a, /3), (a', /3') E X * x X *. 
   PROOF. By Lemma 3 

LACMum(a, /3), LBCMuu-Lv v(a', 13').
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And LBCu'LAV' since A=u'Bv'. Therefore, 

u'MuLu(a, P)vinM,-4,5 v(a', Q')Du'LAv'nLB=LB. 

k 

   We now denote Xk(a, /3) by 1)a0X13i where XCI*, a, /3EX*, accordingly, X.(a, /) 
i=0 

indicates n aiX j i. 
i=o 

   LEMMA 5. If XCaX13, then Mx(a, /)=XX(a, (3) where XCX*, a, j3EX*. 
   PROOF. Let x E M1(a, j3), then there exists X' such that X'CX, X'CaX'(3 and 

x E X'. Therefore, for any integer i 

xEX'CaiX'~iCaiX(3ii. e., xEX.(a, /3). 

   Inversely let x E XX(a, /3), then 

xEX, aX/, a2X(32, ••• 
that is, 

x, ax/3, a2xj32, ••• EX. 

Now let X'={aix(3i; i>0}, then X'CX and X'CaX'43, hence it follows that xEX'C 
Mx(a, 13). ^

   3. Inference Algorithm 

   3.1. Generation of Variables 

   Let L be a CFL and any grammar generating L be unknown. Giving a sample I 

of L, we shall consider the method to infer a grammar G=(r, E, P, S) of L. We 

start with the specification of variables I" corresponding to F in G. Since S=uAv and 
(A--*aA j3) E P imyly 

LACMuLJ(a, j3)CuLv, 

it is natural that we select a (u, v) satisfying the above precondition for AEI' and 
regard MuLv(a, /3) as the corresponding variable to A. However, since MuL~,(a, /3) is 
generally infinite set, we take the following finite set instead of it as a variable in r: 

Muz+v;uLvla, (3)=uI+vnMuL~,(a, /3) 

So, first, we shall show an algorithm to construct the finite set Xf1Wk(a, /3) (XCWCX*) 
by Procedure DER in Fig. 1. 

   Notice that the operation YnakWI3k in Procedure DER may be surely excuted 
because Y is finite even though akW(3k is infinite, under the actual assumption that we 
can always know whether x E W or not for every x E X*. 

   PROPOSITION 1. Procedure DER terminates in finite steps and its final output is 
Y=XnWk(a, /3). 

   PROOF. First we shall prove that X'=XnWk(a, /) in arbitrary step k. 
This holds in the case of k=0 since XCW=W0(a, /). Suppose that this holds in stage 
k-1(k1) and consider the case of stage k. As Y in stage k is X' in stage k-1,
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 Input  : Finite set XCX*, (a, 13) E I* X E*. 
Output: Y=XnWk(a, j3). 
Procedure DER(X, (a, p)): 
begin 

k:=0; X':=X; Y:=y5; 
 while X' # Y do 

   begin 
Y:=X'; 
    k:=k+1; 
X':=YndkWpk 

end; 
 return Y 

end 
          Fig. 1. Procedure DER. 

      X'=
/YnakW(3k         =(XnWk -1(a, p))nakwii-k 

=XnWk(a, R)

Therefore X'=XnWk(a, /) for any stage k. 
   Thus if X'=Y in stage k, then Procedure DER stops and Y=XnWk(a, /). If 

X'cY in stage k, then X' get to Y in the next stage. Since Y strictly decreases as 
stage k increases, X'=Y is resulted in finite steps. ^ 

   Now we shall show that the output of Procedure DER coincides to NIX;w(a, /3) for 
an appropriate input XcW. Such a X is obtained by extending some finite set XoCW 
for a given (ao, /3o) E X* X f* as follows : 

   Procedure EXT. 
Step 1. X4—X0. 
Step 2. (a, P)<(e, e). 
Step 3. (a, P)<—(a, /9)', k<-1. 
Step 4. If XnWk_1(a, /3)CMW(a, (3), then go to step 7. 
Step 5. If XnWk _ 1(a, /) XnWk (a, /9), then add 1 to k and go to step 4. 
Step 6. There is an integer p such that x, ax /3, • • • aP j3 P E W and aP+1x j3 P+1 c W for 

       each member x of XnWk_1(a, /3)—MW(a, 13). Let po be the minimal integer 
       of them and xo designate one of the strings corresponding to the intger po. 

       Add {axojS, ••• , aPok+1xo9Po-k+1} to X, and go to step 2. 
Step 7. If (a, j3)<(ao, Po) then go to step 3. 
Step 8. Stop. 

   We have the below propositions related to Procedure EXT. 
   PROPOSITION 2. Integer po is always well defined in step 6 and po> k. 

   PROOF. First we show that there exists certainly integer po in step 6. If there is 
no integer p such that x, axj3, ••• , aPx/PEW and aP+1x/P+10W, then, since xEW, 

{a"xJ3n;n>0} is a subset of W, i.e., of Mw(a, /). This contradicts xcEMW(a, /). 
   Secondly we show that po> k. If x E XnWk _ 1(a, /3), then po>_ k-1 because
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 x,  ax13, ••• , aklxQk-'EW. In thecase of po=k-1, xo is in XnWk_1(a,,8) but not 
W k (a, A), in other h' words, 

XnWk_l(a, p)�XnWk(a, /3). 

This derives a contradiction. Thus po>k-1. ^ 
PROPOSITION 3. Procedure EXT stops in finite steps. 

   PROOF. Notice that for any (a, A) there is k such that XnWk_l(a, ,3)=XnWk(a, IS). 
Let us set k, X to k1, X1, respectively, at the time that step 6 has been excuted for 

(a, 13), and set k, X to k2, X2, respectively, at some later time that step 6 has been 
again excuted for (a, j3). Then we shall show that ki < k2. 

XinWk-1(a, 13) Mw(a, jS) (k�k1), 

XinWk-l(a, /3)#XinWk(a, J3) (k<ki) 
and 

XinWk-1(a, /3)=XinWk(a, /3) (k=k1). 

Since X1CX2, 
X2nWk-1(a, j3) Mw(a, /3) (k~k1) • 

Since X1CX2 and Wk_1(a, /)DWk(a, A), 

X2nWk-1(a, f)�X2nWk(a, /3) (k�ki). 

When k=k1i since 

                  aP0k+lxo63POk+1EX2iaPOxo3P0EW, aP0+lxo%jp,o+10W, 

X2nWk-l(a, /3)DaPOk+1xoNNPO/k+1~f-X2nWk(a,/3). 

That is,$~ 
X2nWk-l(a, /3)�X2nWk(a, A) (k�-k1)• 

Thus we obtain k1 < k2. 
   Let us set the maximal number of po's for every (a, /3) no larger than (ao, AO, as 

p*, then p*> po>_ k by Proposition 3. Therefore, it turns out that the step 6 is never 
excuted for any (a, i3) after some stage. That is, for any (a, /3), an integer k is found 
such that XnWk-1(a, j3)CMw(a, A). Thus Procedure EXT stops. ^ 

   THEOREM 1. Let (troy /30) E E* x X*. In Procedure DER, for any (a, j3) <(ao, /o), 
there exists a finite subset X of W such that: 

   (1) If Mw(a, 13)=0, then the output DER (X, (a, /3)) is cb. 
   (2) If Mw(a, P)�0, then the output DER (X, (a, /3)) is nonempty set Mx;w(a, 13). 

   PROOF. We may consider a finite subset X0 of W such that Mw(a, jS)nX0#0 for 
any (a, (3) _< (ao, /3) satisfying Mw(a, P)� 0. For example, such a Xo is easily obtained 
by taking out, one by one, a element from every nonempty Mw(a, /3). Let X be the 
set obtained extending Xo by Procedure EXT. Then for any (a, jS)<(ao, Po) there is 
an integer ko such that 

XnWk_l(a, jS)#XnWk(a, /) if k<ko, 

XnWk-1(a, jS)CMw(a, A) if k=ko. 
Now if
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Input: (u, v), (a,  jS)  E  E*  x  X*, YCX *, no, r, r0EN, linear grammar G=(P, X, P, AO. 
Output : New variable A if possible and all production rules related to A. 
Voriables 

p(i) : Finite set corresponding to i-th variable At. 
P(u, v)CI': Set of vriables generated under (u, v) . 
SUBC X* x X* x N : Construct the rule Ax->u'Arv' if ((u', v') x) E SUB. 
SUB1CN: Construct the rule Az--;17 if x E SUB1. 
SUB2CN : Construct the rule Ar-->Az if x E SUB2. 
re: Number of variable generated at first under (u, v) . 
check: 0 if no variable is generated; 1 if one variable is generated; 2 if two 

          variables or more is generated under (u, v) . 

procedure LG(Y, (u, v), (a, jS), no, r, r0, 6): 
begin 
 check :=0 ; 

 if Y#0  then 
   begin 

    if r G ro then check : =1 
    else if Y p(i) for all i (ro_<i <_r) then check :=2 ; 

    if check # 0 then 
      begin 

       SUB :_0 ; SUB1:=0 ; SUB2 ; 
       if r� 1 then 

          for 1=1 until r0-1 do 
          if Ynu' i(i)v' #0 for some (u', v') such that 

               (u, v)=(u"u', v'v") and AiEP(u", v") then 
             SUB : =SUBU { (u', v'), i) } ; 

       if check=2 then 
         for i=ro until r do 

         if Ycp(i) then SUB1:=SUB1U {i} 
         else if YDp(i) then SUB2 :=SUB2U {i } ; 

r:=r+1; 

p(r) :=Y ; P(u, v) :=P(u, v)U {Ar} ; P:=PU {Ar} ; 
P=PU{Ar~aAr(3} 

U {Ax>u'Arv' ; ((u', v'), x) E SUB} 
U{Ax->Ar; xESUBl}U{Ar->Ax; xESUB2} 

            U{Ar>1U;jwlcno,wEp(r)} 
      end 

    else if there is no derivation such that then P :=PU{Ai>aAijS} 
   end; 

 return G 
end

Fig. 2. Procedure LG.
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XnWko-1(a, (3)CMw(a, 13), 
then 

XnWko-1(a, (3)CXnMw(a, A). 
On the other hand 

XnWko-1(a, (3)DXnMw(a, j3) 
because 

W k0-1(a, 43)DW-(a, 19)=Mw(a, A). 
Thus 

XnWko-1(a, /)=XnMw(a, /3)=1VIx;w(a, /3). 

Since Wk(a, /3)CWko-1(a, A) we have similarly 

XnWko(a, /3)=1VIx;w(a, j3). 
   In Procedure DER, 

Y=XnWk_1(a, /3) and X'=XnWk(a, /3).

Input: Finite set I+C E*, (uo, v0), (ao, (30) E E* x X*, no E N. 
Output: Linear grammar G=(I', X, P, A1) . 

procedure LG_INF(I+, (u0i vo), (a0, 130), no); 
begin 

I':={A1} ; I'(s, s) :={A1} ; P:={A1--÷w;l wl cno, wEh; 

   (u, v) :=(s, s) ; r :=1 ; ro :=1; p(1): :=-1+; 

 while (u, v)<(u0i v0) do 
  if I+cZ L(G) then 

    begin 
X :=ul+v; 

     if X�0 then 
        begin /* construction of production rules under (u, v) */ 

         (a, Q) :=(s, s)' ; 
         while (a, /3)_<(a0i j30) do 

           begin 
           Y :=DER(X, (a, A)) ; 

G :=LG(Y, (u, v), (a, /3), n0i r, r0, 6); 

           (a, /3) :=(a, /3)' 
           end 

         end; 

          (u, v) :=(u, v)' ; 
r0 :=r+1 

        end 
      else (u, v):=(u0i v0)'; /* this algorithm stops when I+CL(G) */ 

     return G 
   end

Fig. 3. Procedure LG_INF.
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Hence  Y  /  X' if k G ko ; Y =X' =1VIX;W(a, j3) and Procedure DER stops if k = ko. There
fore if Mw(a, /3)_4, then Y=1VIX;W(a, 13)=0; if Mw(a, jS)�0, then Y=NIX;W(a, j3)DX0 
nMW(a, /) cb. ^ 

   EXAMPLE 2. Let W= Iamb' ;m>_0}U{anbhn;n>_0} and X={s, ab, abb}CW, then 
the output of Procedure DER is as follows: 

(1) If (a, jS)=(a, b), then 

Y= {s, al)} =XnMW(a, b) . 

(2) If (a, /9)=(a, bb), then 

Y={s, abb}=XnMW(a, bb). 

(3) Otherwise, Y=0. 

   3.2. Construction of Production Rules 
   The output of Procedure DER may be Y=Mx;w(a, /3) for some input XCW. So 

our next interests is how to indicate new variables and construct new production rules 
from these outputs. If MuLf,(a, 13) is nonempty and we can not find any old variable 
corresponding to it, then we produce a new variable and construct all production rules 
related to its variable. Such an Algorithm is given by Procedure LG in Fig. 2.

      Table 1. Inference process in Procedure LG_INF for I+= {aaa, ababa}. 

(u, v) j (a, /9) 1'  r' i PL(0) 
(s, s) (s, s) I+ Al 

(s, s) (a, s) I I j 

(s, a) 
(b, s) 

(E, b) 

 (a, s) (a, s) 

(s, a) 
A1-~aAE, A2—>bA, 

(s, b) 

(s, a) (a, s) 0-----------------------------I----------- 
(s, a) 0                I ~ 
(b, s) 0 
(s, b) {aa, abab} A3 A1--A3a,0 

.. 

 (a, a) (a, s) 
(s, a) 0 

         (b, s) {a, bab} A4 A14aA,a, A4-~bA4i A4—~a 
(s, b) {a, bab} j A4- A4b i L
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   3.3. Inference of Linear Grammars 
   In this subsection, we propose the algorithm to construct a linear grammar from a 

positive sample  I+ of L where (uo, vo) is the upper limit on covers for generations of 
variables, (a0, Po) is the upper limit on covers for constructions of selfembedding rules 
and no is the upper limit on lengths of right-side strings in the case of generating 

production rules of which the right-side consists of only terminals. Such an algorithm 
is given by Procedure LG_INF in Fig. 3. 

   EXAMPLE 3. Let L={abmabma ;m, n>_0}, I+={aaa, ababa}, (u0, vo)=(a, a), (ao, 1So) 
=(s , b) and no=1, then we can infer a linear grammar G=(I', X, P, A1) such that 
L=L(G) by using Procedure LG_INF as shown in Table 1.

    4. Completeness for Linear Languages 

   In this section we show that for any linear language L, a grammar generating L 
can be inferred by using Procedure LG_INF. 

   LEMMA 6. Let L be an arbitrary language over I and G=(F, X, P, [L]) be a linear 

grammar satisfying the following conditions. then L(G)CL: 
(1) I' is a set added the element [L] to some finite subset of {[X] ; there is (u, v)E 
E* X E* such that XC uLv and X�951. 

                            (2) X2CuXiv if ([)(1]*u[X2]v)EP; wEX if ([X]->w)EP. 
   PROOF. There is the following derivation for x L(G) : 

[Xoi= u1[X1]v1u1u2[X2]v2v1 ••• 

                                 ~u1 ... umXmvm ... viu1 ••• umwvm ••• vi=x 
where 

Xo=L, ([X1]—~ui+1[Xi+l]vi+l)~P (i=0, ••• , m-1). 

Since ([Xm]—>w) E P, w E Xm, that is, x E u1 • • • umXmvm • • • v1. Futhermore Xi+1C 
ui+1Xivi+1 by ([Xi]—oui+1[Xi+iivi+1)EP, accordingly 

ui+1Xi+1vi+iC ui+1\ui+1Xivi+1)v1+1CXi (i=0, • • • , m-1) 
Hence 

Xu1 ••• umXmvm ... viCui ••• ••• vIC ... CuiXiviCL . ^ 

   LEMMA 7. In Procedure LG_INF, if ML(a, ,3)EeuL~, and uI+v=0 ((u, v)<(uo, v), 
(a, iS)<(ao, Jo)),then there is an integer m such that p(m)=-11/1u j+v(a, 13). 

   PROOF. Consider the case of Y=Mui+o(a, ,8). If there is i (1<i<r) such that Y= 
a(i), this lemma holds. Otherwise, we have ii(r+1)=Y=Mur+v(a, jS). ^ 

   COROLLARY. Let G=(I', X, P, S) be a CFG and I+CL(G). In Procedure LG_INF 
under some (uo, vo), (ao, J3o) X* x I*, for any variable AEI' there is integer m such that 

p(m)CuI+vr1LA and AmET(u, v). 
   PROOF.Given large enough (uo,vo),(a0, So) there exist derivations such that 

** 

S=uAv and A=aAjS ((u, v)<(uo, vo), jo), (a, p)�(6 , 6)). By Lemma 1, LAC 
MuLO(a, 13). By Lemma 7, there is an integer m such that p(m)=0-+vnMuLv(a , jS)• 
Hence ;u(m)Dul+vnLA. ^ 

   The above Corollary shows that each variable A in CFG G corresponds to a variable
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   (written as A) in the grammar  G inferred from I+CL(G) using Procedure LG_INF. 
   Futhermore, the following Lemma asserts that the language generated from A includes 
  the language generated from A if G is linear : 

      LEMMA 8. Let G=(I', X, P, S) be a linear grammer and L=L(G). Then for some 
I+C L, (u0, v0), (ao, /3o) E'* X X* and integer no, Procedure LG_INF infer the linear 

  grammer 6=(1", E, P, A1) such that for any AE r there is AE P satisfying LAC LA. 
      PROOF. Let 

* 
(u0, vo)=max{(u, v); S=x-='/uyv and each variable in P occurs at most once 

                  in the derivation process to x where x, y E (PUX)*}, 

(ao, 180)=max{(a, /3); (A-*aAj3)EP, AI'}, 

no=max{ I wI ; (Aow)EP, wEX*, AEr}, 

I+={x; x<uoao/ovo, xEL}. 

   Then for any AEI', there exists a derivation such that 

* S=uAv ((u, v)_<(uo, v0)) . 

  Now we consider the three forms of production rules from the variable 

A: A-*aA/3 , A—>u'Bv' (A# B) and A—>w (w E X*) . 

  (1) the case of form A-*aA/3 
LACMCLO(a, /3) by Lemma 1 and ,u(m)=Nlur+v(a, /3) by Lemma 7. Since ,u(1)=I+, 

p(1)nNlur+v(a, P)�0. We now write Am E I' as A, then 

(A1-+uAv) , (A*aA(3) E P . 

   (2) the case of form A ou'Bv' 
      Consider the case of Y=Muu-r+v—z7(a', j3'), where 

(B*a'BN') E P, (uu', v'v) C (uo, vo) and (a', 13') <(ao, Po). 
  Then 

u'~C(m)v'=u'(ul+vnMCLO(a, (3))v' 

                                 =uu'I+7iinu'MuLv(a , 

  Futhermore, Yn u' a(m)v' # 0 by Lemma 4. Thus 

(B*a'A13') E P 

   where we write, as E, Are!' in functional procedure LG. 

  (3) the case of form A--w 
      Since we may assume that ILO  <_ no and w E a(m), (A-*w) E P. By the above 

  analysis, we can understand that each production rule in G has its corresonding rule 
  in G. Let w be one of the minimal length words in LAALB for BP distinct with A, 

   such as w E LA—LB, then there exist (u1, v1), (u2, v2) <(uo, vo) such that 
** S
~u1Av1= ulwv1, S=u2Bv2Mu2wv2. 

  Thus 

wEMulr+vl(a, /3)—Mu2r+v2(a , )
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where  (A-aA8), (B—>a'B$')EP. Namely A#B. 
   Innversely, LA# LB if A�E, here A� B by the predescrived restriction on grammar. 

Therefore LACLA by application of the induction. ^ 
   THEOREM 2. For any linear language there are some sample I+cL, (u0, v0), (ao, 1S0) 

E E* X E* and integer no such that we can infer linear grammar G of L by using Pro

Input: x, y E (FuE)*, G=(I; E, P, A1) . 
Output: Set of all strings composed from x and y ;H. 
Variables : 

m: Serial number of string analyzing currently. 
n : Maximal number of string in the middle of composition. 
z(m) : Composition string in the current. 

procedure COMPO (x, y) : 
begin 

 m :=1; n :=1 ; z(1) :=s ; x(1) :=x ; y(1) := y ; H:=0; 
 while m < n do 

   begin 
    delete the maximal length common prefix of x(m) and y(m) ; 

    if x(m)=Ax' for some AEI" and x'E(I'UE)*, and there exist wEE* and 

y'E(rUE)* such that A=w andy(m)=wy' then 
      begin 

* 
      let and y(m)=w1y1= ••• whyh; 

       for j=n+1 until n+h do 
         begin 

x(j) :=x' ; y(j) := .yi ; z(j) :=z(m)A 
         end; 

n :=n+h 
      end 

     else 
     if y(m)=By'  for some Bt and x' E (PUE)* then 
       if there exist w E E* and x' E (CUE)* such that A=w and x (m) =wx' then 

         begin 
* * 

            let B=w1i ••• , B=wh and x(m)=w1xi= ••• =whxh ; 
          for j= n+ 1 until n+ h do 

            begin 
x(j) :=x; ; y(j) :=y' ; z(j) :=z(m)B 

            end 
           end 

        else if x (m) = y(m)=s  then H : = HU { z(m) } ; 
m :=m+1 

      end 
    return H 

  end
Fig. 4. Procedure COMPO.



A grammatical inference for context-free languages based on selfembedding 161

cedure  LG_INF. 
   PROOF.Taking that A=S in Lemma 8, LCL(G). On the other hand, if we 

interpret AT obtained when ,u(r)=Mut+v(a, 43) in Procedure LG_INF, as [MCLO,(a, p)], 
then the inferred grammar G satisfies the condition of Lemma 6 and thus L(G)CL.

Input: Finite set I+CX*, (uo, v0), (ao, po)EX*xx*, n0EN. 
Output: CFG 0=(1',   X, P, AO. 
Variables: 

check : 0 if it is impossible to compose the given strings for every variables ; 
          1 otherwise. 

c(i) : 0 if production rule from Ai is not composed at all ; 1 otherwise. 

procedupe CFG_INF (I+, (u0, v0), (a0, jSo), no) ; 
begin 
 check :=1 ; 

          G :=LG_INF (I+, (u0, v0), (a0, po), no) ; 
 for all i (1 <i <r) do c(i) :=1 ; 

 while I+ ct L(6) do 
   if check # 0 then 

    begin 
      check :=0 ; 

      for 1=1 until r do 
       if c(i)=1 then 

         begin 
           check :=1; c(i) :=0 ; 

           let n(i) be the number of production rules from A and x1, ••• , xn(i) be 
              right-side strings of these rules ; 

          for p=i until n(i) do 
            for q=p until n(i) do 

             if COMPO(xp, xq)#c then 
                begin 

                   let COMPO(xp, xq)={yl, •••, yr} ; 
                 for 1=1 until t do 

                   begin 

                    if I_i1L(G)*0 then P:=P—{Ai--y;} 
                    else c(i) :=1 

                     end 
                 end 

            end 
       end 

     else return 95 ; 
   return G 1* G is compatible to given sample (I+, I_) *1 

  end
Fig. 5. Procedure CFG_INF.
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Hence  L=L(G). ^

   5. Grammatical Inference for CFL's 

   We first give Procedure COMPO in Fig. 4 to compose production rules of linear 

grammars obtained by Procedure LG_INF. Then given a positive sample I.,.CL and a 
negative sample I_CX*—L for a CFL L, we consider a method to adopt only com

posed rule compatible with these samples. In final, we propose Procedure CFG_INF to 
identify a CFG G such that L=L(G) in Fig. 5. 

   THEOREM 3. For any CFL, there are some sample (1+, L), (u0, v0), (a0, Po) X* X E* 
and integer no such that we can infer a CFG G=(I', X, P, A1) satisfying L=L(G) in 
Procedure CFG_INF. 

   PROOF. Let L=L(G) and G=(I', X, P, S). Let A—ou0A1ul ••• u ,_,Amu. be a pro
duction rule of G, then by the similar method to Theorem 2, there are (A-÷uowlu1 ••
u1_1Aiu1 ••• wmum) in P(i=1, 2, ••• , m) for some I+CL, (u0, v0), (ao, ,30)EX*XE* and no 
E N, where w; is a minimal length string in LA (j=1, • • • , m). By the composition 
method of rules in Procedure COMPO, we have (A—>uoA1u1 ••• um_jAmum)EP. We can 
check whether these composed rules are compatible for L, by giving a large enough 
negative sample L. ^ 

   EXAMPLE 4. Let L={abmambanb"a; m, n>_0} be unknown. We apply Procedure 
CFG_INF for 1+={aba, ababa, abababa}CL, I_={abaabbaba} L, (u0, vo)=(a, ba). 

(a0, 190)=(b, a) and no=0. First, by the function procedure LG_INF, a linear grammar 
G =({ A1i A2, A31, fa, b}, P, A1) is obtained as shown in Table 2, where P = { A1—> 
abA2a/aA3ba, A2.*aA2b/s, A3—>bA3a/E}. 

   Composing these production rules in ordering from A1i 

(1) COMPO (abA2a, abA2a)= {abA2A2a} : 
   If we add (A1—*abA2A2a) to P, then it derives a contradiction because abaabbaba

 Table 2. Inference process in Procedure CFG_INF for I+= {aba, ababa, abababa}. 

(u, v) (a, jS) Y P PL(0) 

(6, 6) (6, 6) 1+ Alq 

• (ab, a) • 

         (a, b) {s, al)} A2 A1-*abA2a, A2—>aA2b, A2—>e 

I~  •abababa 
• L(0) 

(a, ba) • 
•abababa 

        (b, a) {s, ba} A3 A1—aA3ba, A3—obA3a, A3—>s 0L(G)
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 E  I_ is generated only by applying this rule. 

(2) COMPO(abA2a, aA3ba)={aA3bA2a} : 
   If we add (A- aA3bA2a) to P, then Procedure CFG_INF terminates because I+C 

L(G) and I_nL(0)=0. Indeed, L=L(G).

Ref erences 

[ 1 ] SOROMONOFF, R. A Formal Theory of Inductive Inference, Information and Control, (1964), 
     1-22, 224-254. 

[ 2 ] HUZINO, S. : On Some Properties of Derivativemappings, Structural Diagrams and Struc
     tural Equations: Part 1, Memo. Fac. Sci. Kyushu Univ. Ser. A20, (1966), 179-265. 

[ 3 ] GOLD, M. : Language Identification in the Limit, Information and Control, 10 (1967), 
    447-474. 

[ 4 ] FELDMAN, J A., GIPS, J., HORNING, J. J. and READER, S.: Grammatical Complexity and 
     Inference, Technical Report No. CS125, Computer Science Department, Stanford University 

    (1969). 
[ 5 ] BIERMANN, A. W.: An Interactive Finite-state Language Learner, Proc. 1-st USA-JAPAN 

    Comp. Conf. (1972), 13-20. 

[ 6 ] TANATSUGU, K. and ARIKAWA, S. On Characteristic Sets and Degrees of Finite Automata,. 
    International Journal of Computer and Information Sciences, 6, 1 (1977), 83-93. 

[ 7 ] TANATSUGU, K. A Grammatical Inference for Harmonic Linear Languages, International 
    Journal of Computer and Information Sciences, 13, 5 (1984), 413-423.

Communicated by S. Kano 

Received October 14 ,1986 

Revised October 30, 1986


