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Abstract

Let {x,]} be a stationary uniform sequence of random variables
having a probability density function f(x). Based on the first n
observations an estimate of f(x) is given by

Fa(2) = (nan) Fl K (an='(x— X;))

where K(y) is a known probability density function. Asymptotic
properties of f,(x) have been studied.

1. Introduction

Suppose that the sequence {X,} is stationary, then X,’s have the same probability
density function f(x) and distribution function F(x). Based on the first n observations
an estimate of f(x) is given by

TRl Gy @

fn(x)z
where K(y) is known p.d.f. satisfying the following conditions

(i) Sup K(y)<co
-l Y<Loo
(i) }mm!yi{@) =0 (L.2)

and {a,} is a sequence of positive real numbers such that

lim a,=0. (1.3)

T—00

Estimate f,(x) of f(x) based on a sample of independent observations have been
considered by many authors, notably we mention Parzen [147, Leadbetter [10], Na-
darya [12, 13], Murthy [11], Yamato [20], and Davies [6]. Roussas [17, 18] and Ro-
senblatt [16] have studied the asymptotic properties of f,(x) when the observations are
assumed to be sampled from a stationary Markov process. The purpose of this paper
is to study the asymptotic properties of the estimate f,(x) under the uniform mixing
condition. Results obtained here generalize those of Parzen [14] and Nadarya [13] for
the i.i.d. case, and also those of Roussas [17, 18] for stationary Markov sequences.

* Department of Statistics Colorado State University
** Department of Mathematical Sciences, University of Petroleum and Minerals, Dhahran, Saudi
Arabia
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80 K.I. AspuLaL and M. M. Sippiqu1

In Section 3, asymptotic unbiasedness, consistency, and uniform consistency (weak
as well as strong) will be studied for f,(x). Asymptotic normality of the estimate
fa(x) will be established in section 4.

2. Preliminaries

Let {X,} be a stationary sequence of random variables defined on a probability
space (2, B, P). For a=<b define o(a, b) as the ¢-field generated by the random var-
iables X,, -, X, and define o(a, oo) as the o-field generated by XoXgu1, =

We shall say that the sequence {X,} is uniform mixing if, for each m(m=1) and
for each n(n=1), Aca(l, m) and Beao(m+n, oo) together imply that

| P(AB)—P(A)P(B)| =a(n)P(A) 2.1
where a(n), n=1, 2, --- is a nonnegative function of integers such that

lim a(n)=0. (2.2)

oo

The following Lemma will play a central role in this paper.

LEMMA 2.1. Let {X,} be a uniform mixing stationary sequence and let the random
variables 7, and 7, be measurable with respect to (1, m) and o(m—+n, co) respectively.
(a) If p>1 and ¢>1, are two real numbers such that 1/p+1/q=1, and if E|n.|?<co

and E|7,|9<co, then

|ELp o] —E[ ] Ely]| S2{am)E|n, | P}VP{E] .| 4}V (2.3)
(B If 15:1=Ci<oo  as., i=1, 2, then

VE[n1m:1—ELn:1E[9.]| £2a(n)C,C.. (2.4)

Proor. Can be found in Billingsley, pp. 170-171.

REMARK 1. If the random variables , and %, are complex, then separating the
real and imaginary parts, we again arrive at part b of Lemma 2.1 with 2 replaced
by 4.

3. Asymptotic Unbiasedness, Consistency, and Uniform Consistency

The following Lemmas play a central role in studying the asymptotic properties
of f.(x).

LEMMA 3.1. Suppose h(y) is a Borel measurable function satisfying the conditions

(1)  Sup [h(y)|<eo
—oo Yoo

i) (1h)ldy<ce 3.1
GiD)  tim_ 1 h(3)] =0

Let g(v) satisfy the condition
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Jao1dy<co. (32)
Let {a,} be a sequence of positive constants satisfying (1.3). Define
_ 1 y
gntx= | 1(2-)gte—dy. (33)

Then at every point x of continuity of g(-)

lim g,(x)=g ()| A(3)dy (3.4)

PROOF. This Lemma is Theorem 1A in Parzen [14].
LEMMA 3.2. Let h(y) and g(y) as in Lemma 3.1, then for any ¢=0,

. 1 y
i {2 #(2)
at every x of continuity of g(-).
PROOF. Note that if

1+c¢

glr—dy=g)| 1Ay "*dy 35

Sup_|h(y)| <eo and | A()|dy<eo
—eel y<oo

then for every ¢=0
{180 11edy <o 3.6

the rest of the proof follows along the lines of the proof of Lemma 3.1.
LEMMA 3.3. Assume that h(y) satisfies condition (3.1). If g(x) is wuniformly con-
tinuous, then

lim Sup | g(x)—g(x) | A(»)dy] =0, @7

N0 ~00 T

ProOOF. It is similar to the proof of Theorem 1A in Parzen [14] (modified to take
account of the uniform continuity of g(x)).

THEOREM 3.4. (Asymptotic Unbiasedness). Let {X,} be a stationary sequence, and
let fa(x) be given by (1.1). Suppose K(y) satisfies condition (1.2) and the constants a,
satisfy (1.3). If f(x) is continuous, then at all points x

lim Ef ,(x)=f(x). (3.8)
PrROOF. By stationarity, we have
X=X\ (L gl Y Ny
Ef o(x)=E— K( )= K( ) sty

which converges to f(x) as n—oo at all points x by an application of Lemma 3.1.
LEMMA 3.5. Assume that the conditions of Theorem 3.4 are satisfied. If f(x) is
uniformly continuous, then

lim Sup |Ef.(n—f(x)|=0. (3.9)

Moo —00l T

PrROOF. By stationarity
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Sup |Ef.(x)—f(x)|= Sup ES (x—X1
oL Lo ool <o

an

)]

= Sup_ || K(2) ey =1

~ez<o | Ay
which converges to 0 as n—oo by an application of Lemma 3.3.
The asymptotic behavior of the covariance of f,(x) at two points x and y will be
determined before and consistency is considered.
THEOREM 3.6. Let {X,} be a stationary sequence of r.v.’s which satisfies the uni-

form mixing condition and let f.(x) be defined as in (1.1). Suppose that the following
conditions hold :

(@) f(x) is continuous and bounded,
@) <o
=

(iz1)  K(y) satisfies condition (1.2),
(7v) the constants a, satisfy (1.3), and
(v) fix, y) (the joint density of X, and Xj, j=2, 3, -} are continuous, bounded

and
j;l 5, —F)f M| <M<oo  Vx and y.

Then at all points x and y
lim na, Cov [4(x), fn<y>1={ fNKr e if a=y (3.10)
0 if x#9y.

PRrROOF. The proof resembles that of the proof of the asymptotic covariance of
fa(x) at the points x and y in Rosenblatt [16].

By stationarity
e Co KT K]

23 —H—l)Cov[ (";X‘) K( y;X’)] (3.11)

n°an j=2

Cov [fa(x), fa(3)]=

Consider I,;, then
cOv[K("aX‘) (y X, )]— SK(Z)K(

_ aiSK(z)f(x—anz)a'zSK(z) f(y—a,2)dz

+z)f(x a,2)dz

=a {K@)ai K( ya"" +z) fx—an2)dz (3.12)

d n n

fa%SK(z)f(x a,z dzg (2)f(y—a,2)dz
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{a f(x)g Ydz  if x=y
0(a) if x#y

as n—oo, because f(x) is continuous and bounded.
The terms in I,, have the following asymptotic behavior,

Cov[K(Z520), K(2224)]

n

= a3 || KK (v—auz, y-auz)dzndz,
(3.13)
—a%,SK(z)f(x—anz)dzgK(z)f(y~anz)dz
=ai{f(x, )—fOf )}

as n—oo, because the joint density functions f;(x, y) are continuous and bounded func-
tions. We shall now get a bound on (3.13) under the assumptions that the sequence
{X,} satisfies the uniform mixing condition with mixing coefficient a(n) such that

> a'’’(j)<oo,
Jj=1

From (2.3), we have

|cov[K(ZZ50), k(225 =) | =2fati-vE | (= 2R e k(2T
o (3.14)
=202 —1)anv/ F@) [ (¥ SKz(Z)dZ
for sufficiently large n. Inequality (3.14) implies that
B o [K(FTR), k(2]
(3.15)

<24, 3, & (VTG SKg(z)dz
The inequalities (3.12)-(3.15) indicate that

f(x)gKZ(z)dz+2anJ§nZ (1—1”-711){ [ 0= f10) i x=y
na, Cov [fa(x), fr()]= . 1
Oan)+2a, 3 (1= =) s 3)—f 0 F ) if x#y

and therefore by condition (v)

lim na, Cov [f4(x), fn<y>1:{ JE\KHdz it x=
e 0 if xy.
From the above theorem one can state conditions under which the estimate f,(x)
is consistent in quadratic means in the sense that
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lim E| fo(x)— f(x)}*=0 at all points x.

This implies that f,(x) converges to f(x) in probability.
LEMMA 3.7. Assume that the conditions of Theorem 3.6 are satisfied. Suppose that
the constants a, satisfy (1.3) and the following condition

lim na,=oo. (3.16)
Then at all points x
lim | Ef o(x)—f(x)]*=0 .17
and Ao
P
Salx) = f(x). (3.18)

PROOF. The mean square error can be written as
Eif(x)—fx)IP=Var f,(x)+ | Ef2(x)—f(x)]*

which converges to 0 as n—co at all points x by applying Theorem 3.4, (3.10), and
(3.16).

Now by (3.17) and Chebyshev’s inequality, we have

fa(x) —> f(x)  at all points x (as n—oo).

In the remainder of this section, we shall show that the estimate f,(x) is uni-
formly consistent.

We define
¢(t):$ 02 f(x)dx (3.19)
k(D) =Se”rK (3.20)
1a
Bull)=-- 3¢5 3.21)

where ¢(t), k(¢) and ¢,(f) are the characteristic function (c.f.) corresponding to the
p.d.f. f(x), the Fourier transform of K(y), and the sample c.f., respectively.
THEOREM 3.8. Assume {X,} 7s a sequence of stationary r.v.’s satisfying the uniform

mixing condition and let f,(x) be defined as in (1.1). Assume that the following condi-
tions hold:

@) f(x) is uniformly continuous
(7z) the constants a, satisfy (1.3), and

lim na,?=co (3.22)

o0

(i) S\ B) | di< oo, and

(i) ?1 a(j)<oo.
Then

P
Sup |fo(x)—f(x)] —>0 as n—oo. (3.23)
~0 T0
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ProOOF. Since K(y) and k(¢) are absolutely integrable, we have
K(y):ige‘“”k(z‘)dt.
2r
In terms of k(f), we have

fn(x):%;g{% Enl e“ka(anl)}e'“'”dt

Jj=1

:515 Se'“’gbn(t)k(ant)dt

Hence

'fn(’()_Efn(xH: .—2—];;S{¢"(z)_.¢(t>}k(anz)e—izzdt
Therefore, we have
1
Sup_1fu0— B0 S | 18a0— 901 k@t de

using the fact that |e~%|=1.
It follows from (3.26), Fubini’s Theorem and Schwartz’s inequality that

EL_Sup_ 1400~ Ef (0112 o [{E1$a0— 90171 k(aut)lat

= oot ka1,

By stationarity and Remark 1, we have
a*¢n f)]— Ele* X —g(1)}*

% f (n_j+1)E[eiLX1_Eei”“'1]m

J

:%[1 I¢t>|2] ni i (n— ]—I—I)E[e”(xl X)) _FoltX1Fe- uX]]

J
1 8¢& .1 @,
=<+ Bap=[148 5 a0))
It follows from (3.27) and (3.28) that

EL_Sup_ 1/a(0—Ef a0 1= ] g | Hetaat e[ 148 £ at) ]

=T S|k<t>tdt[1+82a<]>]
By applying (3.22), (iii), (iv), and (3.29), we have
lim EC_Sup _|fa()—Ef»(x)|1=0.

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

85
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It follows from (3.30) and Markov’s inequality that

P

Sup_[fn(0)—Efs(d]—>0  (as n—oo) (3.31)
In the inequality
_ < _
Sup 1fal®)—fG)IS_Sup |fal0)—Efn(x)]
+ Sup |Ef(x)—f(x)].
=0 o0

The RHS converges to 0 in probability as n—oco by (3.31) and (3.9).

THEOREM 3.9. Assume that {X,} is a sequence of stationary r.v.’s which satisfies
the uniform mixing condition and let f,(x) be defined as in (1.1). Suppose that the fol-
lowing conditions hold :

(&) f(x) is uniformly continuous.
(#7) The constants a, satisfy (1.3), and

- 1
néll (na?)? <0,
(i) §|k(t)tdt<oo, and
@) 3 avi(j)<oo.
j=1
Then
W.P.1
_§<uxp<wlfn(X)—f(x)l ——>0  (as n—oo). (3.32)
Proor. From (3.26), we have
Sup_|fa0—Efa0)| S5 §|¢n<t — ()| | klant) | dt. (3.33)

It follows from (3.33), Schwartz’s mequallty, and Fubini’s Theorem that
4
EL_Sup_ 1200~ = 1r E] [18a0— 90011 aat) 1]

:TG_I,FSSSS 114;11 [k(aat)] (E 1131 | @n(t:)—B(t:) |)dti (3.34)

< (0L et 1 B gt —pieo

Since [e*¥ —¢(f)| <2, then by Lemma 4, p. 173 of Billingsley, we have

Elgu0—g(0)|* =z B 3 14 Ti— (o)
(3.35)

ﬁ(76:)16[2 alli(; )]

It follows from (3.34) and (3.35) that
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. 768 /& \2 4
EL Sup /20— Efat) 1=~ 5 ) (14t dt)
(3:36)
768 S e\ 4
=gt (B 0) (1601 )"
By Markov’s inequality and (3.36), we have for ¢>0
PL_Sup |fa()—Efal)] >e]
(3.37)
768 S e\ 1
:W(Ea /2(])) (S!k(t)ldt) .
It follows from (3.37), (ii)-(iv), and Borel-Cantelli’s Lemma, we have
W.P.1
_S<ug [f ()= Efn(x)| ——>0 (as n—oo). (3.38)

In the inequality
_Eggwlfn(X)—f(x)l§_§é1$p<w|fn(x)“Efn(x)I
4+ Sup [Ef.(x)—f(x)].
N

The RHS converges to 0 W.P.1 as n—oo by (3.38) and (3.9).

4. Asymptotic Normality of £,(x)

In this section we will establish the asymptotic normality of f,(x) when {X,} is a
sequence of r.v.’s satisfying the uniform mixing condition with the assumption that

i al’2(j) < oo.
j=

The main idea is to present v/na,[f.(x)—Ef,(x)] as a sum of big blocks separated by
small blocks which will be shown to be negligible and the big blocks approximately
independent. Liapounov’s Theorem is then used to get the asymptotic normality.
THEOREM 4.1. Assume that the conditions of Theorem 3.6 are satisfied. Suppose
that the following conditions hold:
@) limaa,=o

-0

(i) for any pair of sequence m=m(n), r=r(n), such that m, r—co as n—oo but
m=o(n*a,%%), r=o0(m(n)), and

lirp nm~ta(r)=0, 4.1)

and

(tv) the joint density functions up to the fourth order are continuous and bounded.
If fu(x) is defined as in (1.1), then

S D
Vay Lfal)—Efu0] —N(0, f00 | K*2)dz),
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PROOF.
X—Xj x—Xj
ViaaLf o0~ Ef 0= 3} \/m [ x( G )]
4.2)
v v+1
=X A+ 2 By
q=1 g=1
with
qm+@-1r
‘4‘l:4 2 Uj! qzlr e, U (4-3)
Jj=@-1(m+r)+1
B _ g(m+r) U *1 4 4)
qﬁj=qm+§—1)r+1 pog=h v (4.
Be= X U, (4.5)
Jj=v(m+r)+1
where
1 x—X; —X;
U= Vna, [K( a, ) EK( an )] (4.6)
and v:v(n):[ 1 ] is the greatest integer less than or equal to n . Notice that
m-+r m-tr

p—00 as nm—oo, since m, r=o(n).
By stationarity,

zl

<
F

1

Bq] =vEB}+EB}at2 3} (—g+1) Cov (By, B
p3

1

3
Il

4.7
+2 5, Cov (B, B

The four terms in the RHS of (4.7) are evaluated as follows:

Va [ (== X’ )]+ n: ;Z)z(r—j—f—l)Cov{K( ";;X‘ ) K(x;f')]
) (52 k()
= {Var[K(x;—nXl)]—M ,i a“(j)E‘ k(=

=2 {f<x>§K2<z>dz[1+4z @)} by Lemma 3.2

vr
vEBi=

n

4.8)

—X )12} by (2.3)

Similarly, the second term will be

EBg =[P ) [ eda(144 5 () |
(1.9)

(D) s | k@ da(1+4 £ a)]
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because n—v(mﬁ—r):n—(m—{—r)[ }§m+r is the number of terms in B,.,. The third

m-+r
term is

2g<u—q+1)cOv (B,, By

ST oo E A, SrC )

g=2 nap Jj=@-1)(m+r)+1

r g amgpe COV[K( ";X"), K( "‘X’)] (4.10)

Ny g=2 j=@-1(m+1)+1

Il

A

4ur g(m+ri-m

= fo | Kz 3

g=2 j=(g-1)(m+r)+1

)]

4ur

= f(X)SKZ(Z)dZ[Z): a”z(j)].

Similarly, the fourth term
m+r

n

21 al/z(]')}. (4.11)

J

£ Cov(y, Bu)=4(" )0 | K@dz]]
Substituting (4.8)-(4.11) into (4.7), we obtain

B Bq}zgz[%] [ f(x>SK2<z)dz][1+4 B Pl 4.12)

Since ;‘i‘, al’*(j)< oo, —=—=0(1), m, r=o(n), then
Jj=1 n m

v+1 2
E[ b5 Bq] =o(1). (4.13)
=1
It follows from Chebyshev’s inequality that

v+1 P
X B,—>0 as noe. (4.14)

k4
Next, we prove the asymptotic normality of X A,
g=1
(1) We have to show that A,’s are asymptotically independent, i.e.,

1n=]E exp {it é‘,lAq}4q]iIIE{exp it A}

-0 as n—oo. (4.15)
From p. 318 of Ibragimov and Linnik [9], we have

L3

Eexp {it qz_;l Agp—E exp it A,}E exp {it qgi A}

. (4.16)

Now, since exp {it v_ZlAq} is measurable with respect to e((v—1)m-+-(v—2)») and
q=1

exp (it A,) is measurable with respect to g((v—1)(m-7r)+1) then by Remark 1

[E exp fit 3 Aq}—E exp {it "iAq}E exp {it Ay} <da(r+1). @.17)
g=1 g=1
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Similarly for s<v—1

‘E exp fit 3 A} —Eexp {it S AJE exp fit Al | <tatr+1. (4.18)
g=1 q=1
From (4.16)-(4.18), we have
L.Z4va(r)z=dnm'a(r+1). (4.19)
It follows from (4.1) that
I,—0 as n—co. (4.20)

So A/’s are asymptotically independent. Thus the normality of élAq will follow
if we prove that !
) Cy/D;—>0  as n—oo (v—oo)
where

D,= X E(AY, and 4.21)

?Mﬂ

Co= z E(AY. (4.22)

By stationarity

D=2 v (2]

n

+~nz7j7‘;2(m—]'+1) Cov [K( = )’ K( o )}

an an

(4.23)

vm

=2 o | K@ dz 114 5w |}

n
. f(x)SK2<z)dz[1+4§ a”z(j)].

The first inequality is similar to the proof of (4.8) and the limit because —%n—wl.

From (4.22), we have

ComvE(AY = {mE | K( X )—n|

tBE K(x f) ﬂzK(xZ;Xj)—ﬂz

+ 3 B () | | K (55— (.20
M%LE!K(—’CZ—;’("—)—#HK("Z,‘?( ol (2ol

b B KO —a KT~ KOG (K5}
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where

p=EK(X )= (K (D )re—aas]

=a,f(x) —0 as n—oo. (4.25)
Then from (4.24) and (4.25) implies that
ey () gl (555 K<———x;f‘f>2
+E‘K(x;Xi)HK( B (S ) lK(x;Xl)z
BB (R >1}. o
But
() =2 e
4.27)
=a,f(2) | K *wdu,
ElK( )Kg( x;Xj) :S'K( xa z; )K (xa—zz) foen z)dzdze
n ' (4.28)
a8 foln 20 | 1w du,
Similarly,
E|ro( = L x;X )| =at s, 2| K (wdw,| (4.29)
EIK( x;nXi )K( . a;X )Kz( x;;Xl ) =a5fin(zy, 22, Z3)SK2(w1)dwl (4.30)
and

E’K x r;X )K( x;,;XJ )K< x;j{l >K(x;fw)‘ 2ahfiiw(z1, 22 2, 24). (4.31)

Since the joint probability density functions up to the fourth order are continuous and
bounded, (4.24)-(4.31) imply that

um vm? vmia, vma?

Cv§—712_M1+——M2+ 2 M3+ 2 M4

a, n® n n

4.32)

M1 vm
é_ﬁ?[ . +vmi+t+ovmba,+vmt az]
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where M=Max [M,, ---, M,] and M, are constants, /=1, ---, 4. But since 3;:—l~1 and

conditions (i) and (ii), we have

2 3,2
1 ym may +M]:0(1). (4.33)

an n n n

Cué 1M[
n

It follows from (4.23)-(4.33), that
C,/D3—>0 as n—oo,
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