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DENSITY ESTIMATION FOR UNIFORM MIXING PROCESS

                By 

Khaled I. ABDULAL* ** and M. M. SIDDIQUI*

                    Abstract 

   Let {x„} be a stationary uniform sequence of random variables 
having a probability density function f(x).  Based on the first n 
observations an estimate of f(x) is given by 

fn (x) = (nan) -1n 7 K (an-1 (x— Xi)) 
                                        ~=1 

where K(y) is a known probability density function. Asymptotic 

properties of fn(x) have been studied.

   1. Introduction 

   Suppose that the sequence {X n} is stationary, then Xn's have the same probability 

density function f(x) and distribution function F(x). Based on the first n observations 

an estimate of f (x) is given by 

n fn(x)nanK(xan')(1.1) 
where K(y) is known p.d.f. satisfying the following conditions 

   (i) Sup K(y) < co 

 (ii) lim I yK(y) I =0(1.2) 
              lyl~~ 

and {an}  is a sequence of positive real numbers such that 

lim an=0.(1.3) 
                                                                               n-oo 

   Estimate f n(x) of f (x) based on a sample of independent observations have been 

considered by many authors, notably we mention Parzen [14], Leadbetter [10], Na

darya [12, 13], Murthy [11], Yamato [20], and Davies [6]. Roussas [17, 18] and Ro
senblatt [16] have studied the asymptotic properties of f n(x) when the observations are 

assumed to be sampled from a stationary Markov process. The purpose of this paper 

is to study the asymptotic properties of the estimate f n(x) under the uniform mixing 

condition. Results obtained here generalize those of Parzen [14] and Nadarya [13] for 

the i.i.d. case, and also those of Roussas [17, 18] for stationary Markov sequences. 
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   In Section 3, asymptotic unbiasedness, consistency, and uniform consistency (weak 

as well as strong) will be studied for fn(x). Asymptotic normality of the estimate 

f,i(x) will be established in section 4.

   2. Preliminaries 

   Let { Xn } be a stationary sequence of random variables defined on a probability 

space (Q, B, P). For a_<b define c(a, b) as the a-field generated by the random var

iables Xa, • • •, Xb and define v(a, co) as the a-field generated by XaXa+1, • • •• 
   We shall say that the sequence {X,,} is uniform mixing if, for each m(m> 1) and 

for each n(n>_ 1), AE v(1, in) and BE Q(rn+n, oo) together imply that 

P(AB)—P(A)P(B) I <a(n)P(A)(2.1) 

where a(n), n=1, 2, • • • is a nonnegative function of integers such that 

lim a(n) =O.(2.2) 

The following Lemma will play a central role in this paper. 

   LEMMA 2.1. Let {X7} be a uniform mixing stationary sequence and let the random 

variables 771 and 772 be measurable with respect to c(1, in) and Q(m+n, co) respectively. 

(a) If p>1 and q>1, are two real numbers such that 1/p+1/q=1, and if EI r711'<oo 
   and E l 77 21q<00, then 

IE[,71v2]—ECr711ED721I _-_2{a(n)E1 771I P}1IP{EI772Iq}1q.(2.3) 

(b) If I rli I <Ci<oo a.s., i=1, 2, then 

E[,71,72]—ED71]E[772] I <_2a(n)C1C2.(2.4) 

   PROOF. Can be found in Billingsley, pp. 170-171. 

   REMARK 1. If the random variables 771 and r7i are complex, then separating the 

real and imaginary parts, we again arrive at part b of Lemma 2.1 with 2 replaced 

by 4.

   3. Asymptotic Unbiasedness, Consistency, and Uniform Consistency 

   The following Lemmas play a central role in studying the asymptotic properties 

of f,i(x). 

   LEMMA 3.1. Suppose h(y) is a Borel measurable function satisfying the conditions 

   (i) Sup I h(y) I <00 

 (ii) •C I h(y) I dy < cc(3.1) 
  (iii) lim I yh(y) I =0 

Iy1-40. 

   Let g(y) satisfy the condition
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I  g()))  I  dy  <  00.(3.2) 

   Let {an} be a sequence of positive constants satisfying (1.3). Define 

                   gn(x)=----anh( yn----)g(x—y)dy.(3.3) 
Then at every point x of continuity of g(.) 

lim gn(x)=g(x).Ch(y)dy. .(3.4) n—. 

   PROOF. This Lemma is Theorem 1A in Parzen [14]. 
   LEMMA 3.2. Let h(y) and g(y) as in Lemma 3.1, then for any c>_0, 

lim1 h(y1+C I h(y) I+cdy (3.5) 
n an an 

at every x of continuity of g(.). 

   PROOF. Note that if 

                 Sup I h(y) I < co and .fI h(y) I dy < co 
then for every c?0 

h(y) I 'dy < (3.6) 

the rest of the proof follows along the lines of the proof of Lemma 3.1. 

   LEMMA 3.3. Assume that h(y) satisfies condition (3.1). If g(x) is uniformly con

tinuous, then 

lim Sup gn(x)—g(x) f h(y)dy I =O.(3.7) 
n-. —.<x<. 

   PROOF. It is similar to the proof of Theorem 1A in Parzen [14] (modified to take 

account of the uniform continuity of g(x)). 
   THEOREM 3.4. (Asymptotic Unbiasedness). Let {Xn} be a stationary sequence, and 

let fn(x) be given by (1.1). Suppose K(y) satisfies condition (1.2) and the constants an 

satisfy (1.3). If f(x) is continuous, then at all points x 

lim Ef n (x) = f (x).(3.8) 

   PROOF. By stationarity, we have 

          E f n(x)=E QK(x-------a Xl)—JanK(an-----)f(x_y)dy 
which converges to f(x) as n-->oo at all points x by an application of Lemma 3.1. 

   LEMMA 3.5. Assume that the conditions of Theorem 3.4 are satisfied. If f(x) is 

uniformly continuous, then 

lirn Sup I Ef n(x)—f (x) I =0.(3.9) 
n —.<x<co 

   PROOF. By stationarity
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           Sup 1 Efn(x)—f(x)1= Sup E---1 K( x—X1 ana )_f(x) 
                                     = Sup 1---K(y )f(x_y)dy_f(x) 

-.<x<00 an an 

which converges to 0 as n—>co by an application of Lemma 3.3. 

   The asymptotic behavior of the covariance of f n(x) at two points x and y will be 

determined before and consistency is considered. 

   THEOREM 3.6. Let {Xn} be a stationary sequence of r.v.'s which satisfies the uni

form mixing condition and let fn(x) be defined as in (1.1). Suppose that the following 
conditions hold: 

    (i) f(x) is continuous and bounded, 

   (ii) al/2(/)<00 
j=1 

   (iii) K(y) satisfies condition (1.2), 
   (iv) the constants an satisfy (1.3), and 

    (v) f;(x, y) (the joint density of X1 and X;, j=2, 3, ) are continuous, bounded 
        and 

E I f1(x, y)—f(x)f(y) I <<M<0O Vx and y. 
j3 1 

   Then at all points x and y 

lim nan Cov Cfn(x), fn(y)]= f(x).CK2(z)dz if x=y (3.10) 
n,->oo 

0if x*y. 

   PROOF. The proof resembles that of the proof of the asymptotic covariance of 

f n(x) at the points x and y in Rosenblatt [16]. 
   By stationarity 

                                                                  I Coy Cf n(x), fn(Y)i=1  
                       na27,x—Xy—XI 

Cov [K( an),K( an )] 

          } ------- 

              2( n—j+1)Cov[K(x—lK( y—X;)](3.11) 
        nanj=2an an 

= Inl+In2• 

Consider Inl, then 

Cov[K( x—XI  )'K( Y-11(1)]=aK(z)K(n  y—x  +z)f(x—anz)dz 
      anJanan 

—a n K(z)f (x — a nz)dz .CK(z)f ()I—anz)dz 
=a~~K(z) 1 K( y—x +z)f(x—anz)dz(3.12) 

an an 

—an K(z)f(x—anz)dzK(z)f(y—anz)dz
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 an  f  (x).0 K2(z)dz if x=y 
0(0,)if x�y 

as n-->co, because f(x) is continuous and bounded. 

   The terms in /n2 have the following asymptotic behavior, 

Cov [K(  x—Xi) K(  y—Xj )] 
an ' an 

=an
JJK(z1)K(z2)fj(x—anz1, y—anz2)dz2dz1 

                                                       (3.13) 

— a .0 K(z)f (x—anz)dz K(z)f (y—anz)dz 
an{fj(x, y)—f(x)f(y)} 

as n-400, because the joint density functions f j(x, y) are continuous and bounded func

tions. We shall now get a bound on (3.13) under the assumptions that the sequence 

{ Xn } satisfies the uniform mixing condition with mixing coefficient a(n) such that 

E a112(j)<co. 
                                                   j=1 

From (2.3), we have 

Coy [K(  x—X1  ),K(--------yX' 2{a(J_1)E K(  x—Xl)2E K( y—X') 2}1/2 
anananan 

                                                       (3.14) 

2a1'2(j1)an-N/f(x)f(y) K2(z)dz 

for sufficiently large n. Inequality (3.14) implies that 

—±  n~ (n— j+1) Coy [K( x——X1),y_K(Xi )] 
n j=2anan 

                                                       (3.15) 

2an E a112(j)N f (x)f (y) .CK2(z)dz. j=1 

The inequalities (3.12)(3.15) indicate that 

f(x) K2(z)dz+2an (1—-1){f.(x, x)— f 2(x)} if x=y 
nan Coy [f n(x), f n(y)]==2 n 

l 0(an)+2an ±2(1-J-1){fj(x, y)—f(x)f(3))} if x#y              = n 

and therefore by condition (v) 

lirn nan Coy [f n(x), f n(y)]= f(x).CK2(z)dz if x=y 
0if x # y. 

   From the above theorem one can state conditions under which the estimate f n(x) 

is consistent in quadratic means in the sense that
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 lim  E  I  f  n(x)—  f  (x)12=0 at all points X. 
n—co 

This implies that f n(x) converges to f(x) in probability. 
   LEMMA 3.7. Assume that the conditions of Theorem 3.6 are satisfied. Suppose that 

the constants an satisfy (1.3) and the following condition 

lim nan=oo.(3.16) 

Then at all points x 

lim I Ef n(x)—f(x) 12=0(3.17) 
andn-°°° 

P 
f n(x) ' f (x).(3.18) 

   PROOF. The mean square error can be written as 

Elf  n(x)—f (x) 12=Var f n(x)+ i Ef .(x)—f(x)12 

which converges to 0 as n–>oo at all points x by applying Theorem 3.4, (3.10), and 

(3.16). 
   Now by (3.17) and Chebyshev's inequality, we have 

P 
f n(x) f(x) at all points x (as n too). 

   In the remainder of this section, we shall show that the estimate f n(x) is uni

formly consistent. 

   We define 

¢(t)=•Ceitx f (x)dx(3.19) 
k(t)= eitxK(x)dx(3.20) 

                 On(t)=nJEeitx;(3.21) 
where O(t), k(t) and On(t) are the characteristic function (c.f.) corresponding to the 

p.d.f. f(x), the Fourier transform of K(y), and the sample c.f., respectively. 
   THEOREM 3.8. Assume {X72} is a sequence of stationary r. v.'s satisfying the uniform orm 

mixing condition and let fn(x) be defined as in (1.1). Assume that the following condi

tions hold: 

    (i) f(x) is uniformly continuous 

    (ii) the constants an satisfy (1.3), and 

lim nan2=co(3.22) 

   (iii) I k(t) I dt<00, and 

    (iv) Ea(j)<oo. 
7=1 

    Then 
P 
                  Sup Ifn(x)—f(x) 1 0 as n,co.(3.23)
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   PROOF. Since K(y) and k(t) are absolutely integrable, we have 

                  K(y)=__e-zzyk(t)dt.(3.24) 
In terms of k(t), we have 

                  r n                     f n(x)= J{—ei,tx;k(ant)}e-ztxdt                  27r n ;=1J 
                                                       (3.25) 

 _  1 
                             ~r. eitxcn(t)k(ant)dt. 

Hence 

fn(x)—Efn(x)I = 2n {cbn(t)0(t)}k(ant)e-itxdt 

Therefore, we have 

              Sup I fn(x)—Efn(x) I2 7C.IO(t)—¢(t)1Ik(ant) 1 dt (3.26)          -.0<x<c.— 

using the fact that I e-"x I =1 
   It follows from (3.26), Fubini's Theorem and Schwartz's inequality that 

                         1  E[ S
up I fn(x)—Efn(x) I ] � 2

7CJ{E I~n(t)-0(t) 12}h/2I k(ant) I dt 
                                                       (3.27) 

27I J {0'2[95n(t)1}h/2I k(ant) I dt. 

By stationarity and Remark 1, we have 

         a2[0n(t)]='El eitx—O(t) 12 
                  2n                   +---E (

n—j+1)E [eitxl—Eeitx,][eitxEeitx;] 
                           n2j=2 

                                                        (3.28) 

            :=--n[1—I0(t)I2]+n2E(n—>+1)E[eitcxlx;>—Eeitx~Ee-itx;~ 
1 8 E a( j)__[1-}-8 a(j)]. 
n n j=1n j=1 

It follows from (3.27) and (3.28) that 

E[ SuPIf n(x)—Ef n(x) 1[------------2~r ^ nJIk(ant)Idt] [1+8,~                                                                a( j)\--11/2 
      -.0<x<=0— 

                                                        (3.29) 

                         2r-^naJIk(t) I dt[1+8~Ea(j)]~i2 
By applying (3.22), (iii), (iv), and (3.29), we have 

lim E[ Sup if ,,,(x)—Ef n(x) I ]=0.(3.30) 
n-+oo oo<x<os
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It follows from (3.30) and Markov's inequality that 

P 
                 Sup I fn(x)—Efn(x) I -> 0 (as 72,00).(3.31) 

In the inequality 

Sup I fn(x)—f(x) ICSup I f n(x)-Ef n(x) I 
                          -.<x‹. 

                             + Sup I Ef n(x) —f (x) I. 
<x<„ 

The RHS converges to 0 in probability as n->co by (3.31) and (3.9). 

   THEOREM 3.9. Assume that {Xn} is a sequence of stationary r.v.'s which satisfies 

the uniform mixing condition and let fn(x) be defined as in (1.1). Suppose that the fol

lowing conditions hold: 

    (i) f(x) is uniformly ormly continuous. 

   (ii) The constants an satisfy (1.3), and 

  1  E< co, 
n=1 (na, )2 

  (iii) I k(t)I dt<O0, and 

   (iv) E a'U2(1)<00. 7=1 

Then 
W. P.1 

                Sup I fn(x)—f(x) I -----------> 0 (as n->00).(3.32) 

   PROOF. From (3.26), we have 

              Sup I f .(x)-Ef n(x) I 2
7r J I On(t)—O(t) I I k(ant) I dt. (3.33) 

It follows from (3.33), Schwartz's inequality, and Fubini's Theorem that 

E[ Sup I fn(x)—f(x) 14]< 6r4 E[ I¢n(t)-54(t) I I k(ant) I dt]4 _w<x<.— 

---- Hifi16~r4I k(anti) I (EIIIon(4)-c(ti) I)dti(3.34) 

16n4-----uiIk(anti) I E"4 I On(ti)-0(ti) 14dti. 
Since I eitx-On <2, then by Lemma 4, p. 173 of Billingsley, we have 

                  EI On(t)-95(t) 1414EE I eitX~-0(t)1 4                                —n;
=1 

                                                       (3.35) 
                         (768)16 [ah12(j)]2. 

                             n;=1 

It follows from (3.34) and (3.35) that
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 E[ Sup I fn(x)—Ef n(x) 14]=< n 1L768  (~al/2(j))2(rk(ant)Idt)4           -00-00<x<0.`j=11 

    7//// (1'(3.36) 

              

4-----------na4\al/2(J))2`JIk(t) I dt)4• 
                     zrnj=1 

By Markov's inequality and (3.36), we have for s >0 

P[ Sup I f n(x)—Ef n(x) I >s] 
-.<x<, 

                 (/(t(3.37) 

                            E 

                           4n26aj =1                       44(al/2(j))21JIk(t)Idt)4•                                     nir                 768  

It follows from (3.37), (ii)-(iv), and BorelCantelli's Lemma, we have 

W.P.1 
               Sup I f n(x)—Ef n(x) I ------------> 0 (as n—>oo).(3.38) 

-=<x<. 

In the inequality 

               SupcoIfn(x)—f(x)I<—Sup~Ifn(x)—Efn(x)1 
                  + Sup I Ef n(x) —f (x) I . 
-'<x<' 

The RHS converges to 0 W.P.1 as n-->oo by (3.38) and (3.9).

   4. Asymptotic Normality of fn(x) 

   In this section we will establish the asymptotic normality of f n(x) when {X} is a 

sequence of r.v.'s satisfying the uniform mixing condition with the assumption that 

E al/2(j)<c. 
j=1 

The main idea is to present -^nan [ f n(x) —Ef n(x)] as a sum of big blocks separated by 

small blocks which will be shown to be negligible and the big blocks approximately 

independent. Liapounov's Theorem is then used to get the asymptotic normality . 
   THEOREM 4.1. Assume that the conditions of Theorem 3.6 are satisfied . Suppose 

that the following conditions hold: 

    (i) lim conan= 

    (ii) for any pair of sequence m=m(n), r=r(n), such that m, r--oo as n—*oo but 
m=o(n1/3an-213), r=o(m(n)), and 

lim nnala(r)=0,(4.1) 
n-. 

and 

   (iv) the joint density functions up to the fourth order are continuous and bounded. 
  If f n(x) is defined as in (1.1), then 

-^nan Cfn(x)—Efn(x)] N(0, f(x).CK2(z)dz).
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   PROOF. 

----- {({ ^nan [K( x-------X3)_EK(-------xXi)]na~Jlx)—EJ(x)~—~-------- 

                                              1 

                                                          (4.2) 
                    v v+1 

=2Aq-I-~Bq 
q=1 q=1 

with 

qm+(4-1)r 
              Aq= E U;, q=1, •••, v (4.3) 

J=(4-1)(111,+r)+1 

q (m+r) 

Bq= E U3, q=1, •••, v (4.4) 
,7qm+(q-1>r+1 

By+1= .U,(4.5) 
                                                   ,7=v(in+r)+1 

where 

               1 
^nan[K(anan                     X5-------)_EK( XX')1(4.6) 

and v=v(n)=[-------m+r ] is the greatest integer less than or equal to m-------+r . Notice that 
v—*oo as n—*co, since m, r=o(n). 

   By stationarity, 

             E[v Bq]2=vEBN-EB41+2 (v—q+1) Cov (B1, Bq) 
     q=1q=2 

                                                          (4.7) 

+2 Cov (Bq, Bro+1). 
q=1 

The four terms in the RHS of (4.7) are evaluated as follows : 

vEB1=-----yr Var[K(-------x—X1 )]+2v(r—j+1) Cov[K(-------x—X1 ), K(x— X')] 
    nan an nan;=2anan 

yr------iVar [K(  x —X 1 )] +2 ± Cov [K(------x—X1),K(------x —X')} 
  nanan;=2 anan 

                                                        (4.8) 
         yr  {Var[K(x—X1  )]+4ah12J)E K(x—X1)2}by (2.3) 

nanan;an 

n----{f (x)K2(z)dz[1+4 a1/2( j)]} by Lemma 3.2. 
Similarly, the second term will be 

                  n—v(
nm+r)f° 

                                                                         1 

        EBv+1=[][fK2d(1+4 i«1l2(j))] 
                                                          (4.9) 

<( mn r )[f(x)~K2(z)dz(1+4 «1/2(j))]
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because  n—v(m r)=n—(na+r) -------                                <m±r is the number of terms in By+1. The third 
                             i d r 

term is 

2 (v—q+1) Cov (B1i Bq) 
                 q=2 

 =2~ -------v            v(v—q~-1lCov [K                             q(m+r)-m(  x—XJ)
' K\r(x--------—nplJ             \n an1j=(q-1)(+r)+1\ana.I 

        <  2vr q(m) -m Cov [K( x—X')K(x—Xr )](4.10) 
           nan q=2 j=(q1)(m+r)+1 anan 

                                    vq(m+r)-m           f(x)KZzdza1l2r] 4vr.fO[O~~(~—) 
            nq=2 1=(q-1) (m+r)+1 

       < nrf(x)K2(z)dz[ a1I2(j)]. 
Similarly, the fourth term 

Coy (B9, By+1)_4~-------m+r )[f(x4K2(z)dz][ah12(j)].(4.11) 
q=1n,j-1 

Substituting (4.8)(4.11) into (4.7), we obtain 

[Bq]<2[------------n                       l[f(x)K2(z)dzi[1+4  Ea1/2(j)].(4.12) 
Since E a1'2(j)<oo,yr?' =o(1), m, r=o(n), then =1n 7n 

E[v Bq]2=o(1).(4.13) 
J=1 

It follows from Chebyshev's inequalitythat 

                                          v+1 

                  Bq---r> 0 as n>oc.(4.14) 
                                               q=1 

Next, we prove the asymptotic normality of Aq. 
q=1 

(1) We have to show that Aq's are asymptotically independent, i.e., 

In=  E exp {it ± Aq} — lI E {exp it Aq } -->0 as n—>co.(4.15) 
q=1 q=1 

   From p. 318 of Ibragimov and Linnik [9], we have 

I v� E exp {it Aq} — E exp { it As} E exp {it E Aq} .(4.16) 
    s=2q=1q=1 

Now, since exp {it Aq} is measurable with respect to v((v1)m+(v-2)r) and 
q=1 

exp (it Av) is measurable with respect to a((v1)(m+r)-1-1) then by Remark 1 

         E exp {it A,}—E exp {it Aq}E exp {it Ad <4a(r+1). (4.17) 
q=1q=1
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Similarly for s_—<v-1 

        E exp {it ±Aq}— E exp{it2Aq}Eexp { it A} 1 <4a(r+ 1). (4.18) 
        q=1q=1 

From (4.16)(4.18), we have 

In <4va(r) =4nnmla(r+1).(4.19) 

   It follows from (4.1) that 

In ---> 0 as n--“Do.(4.20) 

   So Aq's are asymptotically independent. Thus the normality of Aq will follow 
                                                                                                          q=1 

if we prove that 

(2) GI D;, --> 0 as n—>oo (v-->co) 

where 

Dv= E(Aq) , and(4.21) 
                                                        q=1 

                                                   v 

            Cv= ± E(AQ).(4.22) 
q=1 

By stationarity 

Dv=vEA=  nn{Var[K(-------xa)]} 

                               m 

                  — E (m—j+1) Cov [K( X_Xl  ),K(x--------)] 
n2j=2anan 

                                                       (4.23) 
v2  {f(x)K2(z)dz[1+4ah12(j)]} 

--> f (x) . K2(z)dz[1+4 al/2(j)]. 
7=1 

The first inequality is similar to the proof of (4.8) and the limit because Vl2 

   From (4.22), we have 

Cv=vE(Ai)=------n 2an {mE K(x-------)1)— 
    I_ rx—Xi_2x-X;2    TiuE K(------anK(--------an)—p 

   -I-EE K(x—Xi)—,uK(  xj)—,u(4.24)          ana n 

         Xti _x—X;_—Xl2     {-i#lE K(x—an )feK(--------an)K(xan)—fc 

+ E E K(x—Xi )—~K(x—X2  )—p K(x—Xt  )— p K(x—Xw  )—p}x#j#1#wanananan
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where 

             p=EK(  x—aX1  )=an[ 1 K( az)f(x—z)dz 

                                     l 

        nannJ 
                                                         (4.25) 

 anf(x) —> 0 as 

Then from (4.24) and (4.25) implies that 

Cv  22 {nE K(-------x—X1) 4+ E [E K( x—XZ) 2 K( x —X')2 
 nanani,anan 

  +E K(-----x—aXi) K(-------x—X; ) 31+E K( x—Xi  )K(  n—X;) K(x—Xc)2                           a
nani� *t an anan 

        x—Xix—X;(x—Xcx—Xw(4.26)   +i#j'~i#u,E K\--------an)K()K(anan)K(--------an) I. 
But 

                E K(xan1  )4+4(-----xanzl )f(z1)dz1 
                                                       (4.27) 

a of (z) K4(w1)dw1 

     E K(------x —X i )K 3(-------x—X;)—JK(x------—z1)K 3(x-------—z2)z1,z2)dzldz2                                           fi;( 
ananan an 

                                                       (4.28) 

anf i,(z1, z2) I K3(w1) I dw1. 

Similarly, 

          E K2(x------—aaXi )K2(-------x—X;)=anfi;(z1,z2)[~K2(wi)dwl]2(4.29)         nan 

      E K(x—X1  )K( x—X; )K2( x—X1anfi;c(z1,z2, z3).K2(wi)dwi(4.30)        anJanan 

and 

      E K(x—Xi )K( x—X; )K(x—Xc )K/x—XW=anfij1(z1,z2,z3,z4). (4.31) 
        anJanJan l an 

Since the joint probability density functions up to the fourth order are continuous and 
bounded, (4.24)(4.31) imply that 

viii VM2wiz' anvma, C
y<n2a

nM1+ n2M2+ n2M3+------n2M4 
                                                       (4.32) 

       <M[Vin----±]                                           v7n2~-vm3an~-vm4an 
                      n2 an
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where  M=  Max [M„ • • •, M4] and 11/11 are constants, i=1, • • •, 4. But since ---- ti 1 and 

conditions (i) and (ii), we have 

               23                C'CMCnan+nl+mnn+mnn]=o(1).(4.33) 
It follows from (4.23)(4.33), that 

Cv/DU- 0 as n—> 00 .
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