
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

ADMISSIBLE LINEAR ESTIMATORS IN A LINEAR MODEL
WITH THE NATURAL PARAMETER SPACE

Stepniak, Czeslaw
Department of Applied Mathematics, Agricultural University of Lublin

https://doi.org/10.5109/13378

出版情報：Bulletin of informatics and cybernetics. 22 (1/2), pp.71-77, 1986-03. Research
Association of Statistical Sciences
バージョン：
権利関係：



Bulletin of Informatics and Cybernetics Vol. 22, No.  1-2, 1986

ADMISSIBLE LINEAR ESTIMATORS IN A LINEAR MODEL 

     WITH THE NATURAL PARAMETER SPACE

      By 

Czesxaw STEPNIAK*

                    Abstract 

   It is known that the linear estimation, both with or without 
unbiasedness, may be reduced to a statistical game with a convex 
compact parameter set. Then all locally best estimators constitute a 
complete class and each locally best estimator being unique is admis
sible. However, if the considered locally best estimator is not unique, 
then all known sufficient conditions for the admissibility work very 
hard. We derive a simpler sufficient condition for the admissibility 
in a linear model with the natural parameter space.

   1. Introduction and Summary 

   The admissibility is a natural way of the selection of statistical rules. For some 

relevant results in the context of linear estimation see Cohen [1], LaMotte [5], Olsen, 

Seely and Birkes [6], Rao [7] and Stcpniak [8]. The papers [1], [7] and [8] refer 

to the linear model with the covariance matrix of the form rV, where r is an unknown 

scalar ; in [5] and [6] the set of the possible covariance matrices may be arbitrary 

subset of nonnegative definite symmetric matrices. 

   Olsen, Seely and Birkes [6] have shown that any admissible linear unbiased esti

mator is locally best for some element in the closed convex cone generated by the 

covariance matrices. A similar result for the linear estimation without unbiasedness 
was obtained by LaMotte [5]. Conversely, a locally best estimator is admissible 

provided is unique, but it may be inadmissible in general. LaMotte has presented a pro
cedure by which we can verify, in a finite number of steps, whether a linear estimator 

is admissible or not. 

   We restrict our considerations to the linear model with the natural parameter space, 

i.e. to the model with the covariance matrix of the form EriVi, where each ri is 

running an open or closed interval or ray with the beginning in zero. In Section 2 

the problem of linear unbiased estimation in such a model is reduced to a statistical 

game with a finite parameter set. In a similar way we may reduce the problem of 
linear estimation without unbiasedness in the case when the space of possible expecta

tions is onedimensional, i.e. when the expectation depends on a scalar parameter. 

This reduction makes it possible for us to derive some sufficient conditions for linear
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admissibility by some elementary results in the statistical decision theory. 
   Our spadework in statistical decision theory is collected in Section 3 and its ap

plications in linear estimation are given in Section 4. 
   Throughout this paper the usual matrix notation will be used. Among others, if 

A is a matrix then A' and R(A) will denote, respectively, the transposition and the 

range (column space) of A. Moreover the symbol Rn stands for the ndimensional 

Euclidean space represented by ndimensional column vectors.

   2. The Initial Reduction 

   The term "linear model" refers usually to the second order model of a random 
vector X in an Euclidean space R. Such a model is defined by the expectation vector 
EX and by the covariance matrix Cov X. Throughout this paper 

EX= AP 

and 

Coy X= E riV i , 
i=1 

where A is a given matrix of n x p, Vi, i =1, , q, are given nonnegative definite 
symmetric matrices of n x n ; A and ri's are unknown parameters. We shall assume 
that the linear span of the possible values of A is RP and each ri, i =1, • • •, q, is runn
ing an open or closed interval or ray with the beginning in zero. Instead of E riVi 
we shall also write Vr, where r is the short of (ri, , AY. The set of all possible 
values of r will be denoted by T. 

   Consider a parameter 0=0(48, r). Under the above assumptions this parameter 

possesses an unbiased estimator of the form P=h'X, hERn, if and only if I=k'1S for 
some k E R(A'). Denote by 9,J2 the set of all h E Rn such that E(h'X)=-k' P. The set 
may be written in the form V={hERn : A'h=k}. 

   The estimators h' X, h E V, are compared, as in Olsen, Seely and Birkes [6], ac

cording to their possible variances. For h1, 122E 9)2, h1 is said to be as good as h2 if 
h1 Vrh1 <h2 Vrh2 for all r E F ;121 is better than h2 if hi is as good as h2 and h2 is not as 

good as h1. An h E t is said to be admissible if no vector in 9J is better than h. 
   It follows from our assumptions about F that the minimal closed convex cone gen

erated by { Vr : r E F} is identical with one generated by the set { Vl, • • •, Vq } . Thus, 
by some arguments in [6] the problem of linear unbiased estimation for the parameter 
0 is reduced to the statistical game (9, D, R) with the parameter set 9{O, • • •, 6q}, 
the decision set D={hERn : A'h=k} and the risk function R(Bi, d)=d'Vid, i=1, , q, 
d E D.

   3. Bayes and Admissible Rules 

   Consider a statistical game (9, D, R), where © is the parameter set, D is the set 

of the decision rules and R=R(B, d) is the risk of a rule dED under a parameter 
0Ee.
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   Let be the minimal  o-field in 0 such that all oneelement subsets of 9 are 

members of and the function R(., d) is Zmeasurable for all dED. Consider the 
set of all distributions r on (9, Z) such that the value 

r(r, d)=.CeR(d, d)dr(0)(1) 
exists for all dED. The value (1) is called the Bayes risk of the rule d with respect 

to a prior distribution r on 0. 

   A rule do E D is called r-Bayes if r(r, do)= inf r(r, d) and Bayes if is r-Bayes for 

d 

 prior distribution r on 0. 
   In this Section we shall show some limit properties of the set of Bayes and admis

sible rules and give some sufficient conditions for the admissibility. 

   THEOREM 1. Let (0, D, R) be a statistical game with a finite set 0 and let do, d1, 

d2, ••• be statistical rules such that do is rn-Bayes for some prior distribution rn, n=1, 2, 
   and do satisfies the condition 

lim [r(r„, 4)—r(rn, do)]=0.(2 ) 
                                                            n->oo 

Then do is Bayes. Moreover, if rn weak converges to some prior ro then do is roBayes. 

   PROOF. Let do be rn-Bayes rule, n=1, 2, • • •. Because the set of all distributions 

on a finite set is compact, we can choose a subsequence of { rn } being weak convergent 

to some prior To on 0. Without loss of generality assume that rn= ro. We are ready 
to show that any do satisfying the condition (2) is roBayes. 

   Suppose not. Then there is a rule dED such that 

r(ro, d)<r(ro, do)—E 

for some s>0.  On the other hand, by the weak convergence of rn and by (2), there 

exists an integer n such that 

r(rn, do)—r(ro, do) I <4 , 

r(r., d)—r(ro, d) I 4 

and 

r(r., dn)—r(7., do) I <4 • 
Thus 

r(rn, dn)=[r(rn, dn)—r(rn, do)]+Cr(rn, do)—r(ro, do)]+r(ro, do) 

> r(ro, d)+ 2 > r(rn, d) . 
This contradicts the condition that do is rn-Bayes and completes the proof. ^ 

   A consequence of this Theorem is 

   COROLLARY 1. Let (0, D, R) be a statistical game, where 0=0„ • • •, Ba}, D is a 

closed subset of an Euclidean space Rn and R(8i, •) is a continuous function of d, i=1, 

  q. Then the class of all Bayes rules in the game is closed in Rm.
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   It would be nice to have a similar result for the admissible rules. Unfortunately 

this is impossible without some additional assumptions. 
   THEOREM 2. Let (0, D, R) be a statistical game, where 0=10i, 02}, D is a closed 

subset of Rn and R(0i, d) is a continuous function of d, i=1, 2. Then the set of the 

admissible rules in the game is closed in Rn. 

   PROOF. Let do be admissible, n=1, 2, • • •, and let 

lim do=do•(3 ) 
                                                                             n -+oo 

By Ferguson ([4], Th. 2.10.1) there exists a sequence of prior distributions rn on 0 

such that do is rnBayes, n=1, 2, • • •. It follows from Corollary 1 that the rule do is 

ro-Bayes for some prior distribution ro. 

   Suppose do is inadmissible. Then, by Ferguson ([4], Th. 2.3.2) ro(0i)=0 for some 

iE{1, 2}, say for i=1. Thus there exists a rule d such that R(02, d)=R(02, do) and 

                 R(01, d)=R(01, do)-6(4 ) 

for some e >O. As the rule d is ro-Bayes and ro(02) =1, we get 

                   R(02, dn)>-R(02, d), n=1, 2, •...(5 ) 

On the other hand, by (3), there exists an integer n such that R(01, dn)>R(01, d0) 2 . 

Thus, by (4), R(01, dn) > R(01, d) and, via (5), r(r, dn) > r(r, d) for any prior distribution 

r. In particular r(rn, dn) > r(rn, d). This contradicts the condition that do is rnBayes, 

completing the proof. ^ 
   REMARK 1. The assumption that 0 containes not more than 2 elements is es

sential to this Theorem as shown by the example. Let 0 = { 01i 02, 031, D be the con

vex hull of the sets S1={x=(xi, x2, x3) : x7+x2<1, x3=1} and S2={(-1, 0, 0)} and let 

R(0i, d)=d"', i=1, 2, 3, for any d=(d(1), d(2', d(3')ED. Then the rule do=(   n  , 
n+1 

,J  1  1),n=1,2,•••,is admissible but lirn do=(-1, 0, 1) is inadmissible because is 
 n+1'n-•.0 

dominated by d=(-1, 0, 0). 
   If we known that a rule do is r-Bayes for some prior r then the class of all candi

dates for domination of do may be reduced by the following 

   LEMMA 1. Let (0, D, R) be a statistical game with a finite set 0 and let r be a 

prior distribution on 0 with the support OocO. Then a r-Bayes rule do is admissible 
if and only if it is admissible in the class of the rules satisfying the condition R(0, d)= 

R(0, do) for all 0E00. 
                 The proof of this Lemma is similar to the proof of Theorem 2.3.2 in Ferguson 

[4] and is omitted. 
   Now for given but arbitrary prior distributions r and T such that supp (i)=0 and 

for a given sequence { cn } of scalars such that 0<c1, n=1, 2, • • •, and lim cm =0 we 
n->.0 

define a sequence {v} of prior distributions on 0 by 

r-FcnF(6) 
rn=1±

c7,n=1, 2, •••.
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   THEOREM 3. Let  (0, D, R) be a statistical game, where e=01,  , 0q}, D is a 

subset of Rn and R(0i, •) is a continuous function of d, i=1, •••, q. Moreover let dn, n=1, 

2, •••, be rnBayes, where zn is defined by (6). Then lim dn, if exists, is admissible. 
                                                                                      n-•~ 

   REMARK 2. The priors rn in this Theorem may be replaced by generalized priors 
7Ln=T+c7i1T, n=1, 2, •• . 

   REMARK 3. Perhaps Theorem 3 may be derived from the original works by Far
rell [2, 3]. However we do not see how to do it in a simple way. 

   PROOF. Let 
lim do=do.(7) 

Then by Theorem 1 the rule do is vBayes. 
   Suppose do is inadmissible. Then there exists a v-Bayes rule d such that R(0i, d) 

<R(0i, do) with the strict inequality for some i=io. Thus R(0~0, d)<R(0io, do) _ E  
                                                     r(0id 

for some s >O. This implies 
r(z, d) < r(z, do)-6 .(8 ) 

On the other hand, by (7) and by continuity of R with respect to d we get r(f, dn)> 
r(z, do)-s for some integer n. This, by (8), implies r(v, dn)>r(z, d). Therefore, as d 
is zBayes, we get 

r(Tn, dn)=--------1r(r,dn)=Cm r(v, dn)                 1+
cn1+cn 

                       > 1-------+
cn r(r, d)+-------1+crer, d) 

= r(rn , d). 

This contradicts the assumption that do is zn-Bayes and completes the proof. ^

   4. Applications in Linear Estimation 

   Return to the problem of linear unbiased estimation of a parameter 0=k' j3 in a 

linear model EX=AJ3 and Coy X= E riVi, considered in the Section 2. This problem 
i=1 

was reduced to the statistical game (0, D, R), where 9=0„  • • •, 0q } , D= { d E Rn : 
A'd=k} and R(0i, d)=d'Vid, i=1, , q. A direct consequence of Theorems 2 and 
3 is 

   THEOREM 4. For the problem of linear unbiased estimation of a parameter 0=k'P 

in the linear model EX= A1 and Cov X= E riVi with the natural parameter set 
i=1 

(a) Any unbiased estimator do=doX minimizing E rid'Vid for some ri>0, i=1, •••, q, i=1 
   is admissible. 

(b) Let r(n'=cn0+(1-cn)0, n=1, 2, •••, for some 0=(01i •••, 8q)' and 0=(01, •••, 0q)' sat
   isfying the conditions Bi>0 and 0i>-0, i=1, •••, q, and for some positive c1, c2, ••• 

   going to zero. Moreover let dn, n=1, 2, • •, minimize d'Vr(n)d over dED. Then 
lim dn, if exists, is admissible.
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(c) If q=2 and dm, n=1, 2, •• , is admissible then lim dn, if exists, is admissible. 
n~oo 

   A similar result may be obtained for the problem of linear estimation without 

unbiasedness in a linear model with the natural parameter space and the expectation 
EX= In p, where 1n is the column of n ones and p is an unknown scalar. 

   EXAMPLE. Linear unbiased estimation in the unbalanced 1-way random linear 

model. 

   Suppose n experimental units are submitted to 1-way classification with k sub

classes, where the number of units in the i-th subclass is ni, i =1, • • •, k. Let Xi; be the 

observation corresponding to the j-th experimental unit in the i-th subclass. Then we 
may write 

Xi;=pFai-Fei;,(9 ) 

where p is the general mean, ai, i=1, , k, is the effect of the i-th subclass and 

e1,, i =1, • • •, k, j=1,  ni, is the effect of error. Assuming all these effects are in

dependent random variables with the expectations zero and with the variances 

Var (a1)=r1 and Var (e0)=72, i=1, , k, j=1, •••, ni, we reach the model 

EX= p1 n
(10) 

Cov X=71In,+r2 diag (1n11; ..., lnklnk), 

where X=(X11, Xin1; ••• ; Xki, Xknk)', E ni=n, pER, rl>0 and r20. The prob
                                                                        2=1 

lem of linear unbiased estimation in such a model reduces to estimation of the pa
rameter p. 

   For given p>0 let d'X be a locally best linear unbiased estimator of p at the 

point r1=1 and 72=p. It is well known that such estimator is unique and one is de
termined by the conditions 

d'ln=1 and Vpd=cln for some cER,(11) 

where Vp=ln-F p diag (lnln , 1nklnk). Denote this solution of (11) by dp. By 

Theorem 4(b) any dp, p>0, is admissible. 

   Define also a set 

Do={dERn : d'1n=1 and diag (lni1 i,, lnklnk)d=cln, cER}. 

Then DoU { d p : p >_ 0 } is the class of all Bayes rules in our problem. It is well known 
(cf. Olsen, Seely and Birkes [6]) that this class is complete but, perhaps, not minimal 
complete. We shall show that the sequence {d,n, m>_ 1 }, is convergent. This implies 
that its limit is admissible. 

   An explicit solution of (11) is 

          1
\—[nlnk            dp -------------n

i Inp1--------+nlplnl,l+nkp lnk 
i=11+nip 

Let dp")  be the subvector of dp consisting of the first n1 components. It can be shown



Admissible linear estimators in a linear model with the natural parameter space 77

         ni(1I-nlp) -ll
n.Thus limprocedure 

                            1=-----kn that d (i)=
l1,i.Applying thisrocedure     Ci=11--~nipJ1m~~1 

to the other subvectors of  dp we get 

 d~=lim                               d.=-1(117,'knii,•••,nkl;~k) 
By Theorem 4(c) (or 4(b)), the rule d. is admissible. 

   It can be shown that the rules dp, p E [0, oo], constitute the minimal complete class 

for linear unbiased estimation of the parameter p in the model (10). 

   We note that the estimator doX, corresponding to p=0, may be presented in the 

form 

                                                 k 
                                 dpX=— ± niXi, 

n i=i 

k 

where Xi=— E Xi; is the mean in the i-th subclass, while 
ni i=i 

                                                 k 

                             d;.X=— E Xi.                                             k 
i=1 

Thus any dp, p E (0, oo), is a compromis between do and d~.
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