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Abstract

The present paper deals with an optimal control problem in con-
trolled diffusion processes with stopping times.

In this paper we shall present a value iteration for the optimiza-
tion problem associated with controls and stopping times. Further-
more we shall investigate the relations among the value interation,
optimal stopping times and Bellman’s equation.

0. Introduction

Stopped decision problems in discrete time case have been studied by Dubins and
Savage [2], Furukawa [3, 4], Hordijk [5] and etc.. On the other hand Krylov [6],
Nisio [7], Ohtsubo [8] and etc. have studied optimization problems in controlled
Markov processes with stopping. Especially [4] has studied a value iteration to find
an optimal reward function in decision problems. And Doshi [1] has treated it in
controlled Markov processes. This paper investigates the property of the iteration and
its relation to Bellman’s equation in the case of controlled diffusion processes with
stopping times in infinite horizon.

In Section 1 we shall introduce diffusion processes associated with stochastic dif-
ferential equations. In Section 2 we shall consider an optimal control problem as-
sociated with stopping times. In Section 3 we shall give and study a value iteration
to find solutions of the problem. In Section 4 we shall investigate the relation between
the value iteration and Bellman’s equation.

1. Controlled Diffusion Processes

Let R. be the set of all nonnegative real numbers, the time space. Let R? be
d-dimensional Euclidean space and let E=R,XR? @ denotes the field of Borel subsets
of E. Let £ be the set of all continuous mappings w: R,—R% A mapping x(f) is
given by w—x(t, w)=w(t) for iesR, and w=2. & denotes the smallest ¢-algebra ge-
nerated by {x({):t=R.}. Let P be a probability measure on (2, ¥). G is a compact
subset of a separable metric space, the action space.

Now we consider a controlled stochastic differential equation. For (7, t, x) =G XE,
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a(y, t, x)(b(y, t, x)) is a dXd-dimentional matrix (resp. a d-dimensional vector) for which
there exist numbers 6>0, K>0 and a dXd-dimensional matrix valued measurable func-
tion C on R, satisfying ({i)~(iv):

(i) o and b are bounded and continuous.
(i) (a(r, t, x)&, E)=38|&|,® for all £€R? and (7, ¢, xX)EGXE,

d
where (y, z2)= Zlyizi and |y|s=(y, y)'/? for y=(y,)€R? and z=(z;)= R

(i) O%1&14°Z(E, Che)=K?|g| 2 for all EeR? and t<R,.
@iv) la(y, t, x)—é(t)ilé[( for all (7, t, x)€GXE, where |-|| denotes the operator norm
and a(y, t, x)=0(7, t, x)a*(, t, x).

REMARK. Conditions (iii) and (iv) are from Strook and Varadhan [10] and are
clearly satisfied in the time-homogeneous case.

Let U be the set of all measurable mappings u: E—G. In this paper we treat only
Markov controls, therefore we shall call them only controls here.

The following existence theorem of controlled processes is due to Theorem 2.6.1
of Krylov [6].

LEMMA 1. For each ucU and (s, x)€E there exist a probability space (2%, FY,
P52 a Wiener process (W(1), F:%“)12s and a continuous process (X;*);zs such that X,*
is progressively measurable with respect to {F;*} and (X,*);»s satisfies (1):

X+ atutr, X, 7, X0aWer)+ | btutr, X9, 7, X0ar (1)

almost surely for all t=s.

Let Z,*=(t, X\*) for t=s. Then for each (s, x)eE, (Z,*, F,*, P“>%)zs 1S a con-
tinuous process.

D, denotes the space of bounded continuous functions g on E such that g(¢, x) has
the first order derivative with respect to the time ¢ and has the first and the second
order derivatives with respect to the space x, which are bounded and continuous. For
ue U, A* is an operator such that

1h(t, 0= kit DL B an,lt, ), b DA kit %)
AR, )=k )5 20 00,0l 2, 8 x) 50 ki, X

< 0
+ igl bl(u(ty x): t, x)’axjk<t, X)

for kD, and (t, x)€E. Especially, if u is a constnat mapping u=y for some yegG,
then we express A* by A’
Then for each uc U a process (Z,%),»s satisfies (2):

{g(Zt")—S:A“g(ZT“)dr, G,u P52}, . is a martingale for (s, )€E and gDy,  (2)

This is due to Theorem 4.2.1 and Corollary 5.3.1 in Strook and Varadhan [10].
On the other hand from Corollary 7.1.7 and Theorem 6.2.2. in [10] and conditions
{i)~(@v), {P»*%:(s, x)€E} is a unique solution of the martingale problem for (2), is
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measurable and has strong Markov property. Consequently (Z,%, &% P**%),., is a
continuous strong Markov process.

Let I be the identity operator on D,. Then we can easily check that for a num-
ber =0 and u=U, a process (Z,%),,; also satisfies (2’):

t
{e-ﬁ(t—s)g(ztu)_gse—ﬁ(ns)(Au_lsl)g<2ru)dr, G ¥, Pes T, @)

is a martingale for (s, x)e R, XR? and g D,.

2. Optimization Problems

Notations defined in this section will be used through this paper. We shall fix a
number a>0, which is called a discounted rate. For usU and (s, x)€E, H#* denotes
the set of all {F,*}-adapted Markov times and H***={r= H*: P***(r=s5)=1}. Let
b3 be the set of all bounded Borel measurable functions on E. For ue U, {Q,*#},.,
denotes a semigroup of operators on b# which is defined by

Q,“'ﬁg(s, x)ZE‘”"”[e‘ﬂ““"g(Z,“)]
for =0, t€R,, g=ba® and (s, x)E. Hence from (2’) of Section 1 we have
preoe| [Tempe-niar—png(zmar | = Pats, 11—g(s, » (3)
for >0, uel, (s, x)=E, gD, and € H** =,

From now on we write A*—al by B* for simplicity and we put C be a bounded
measurable function. We consider the following problem (4):

Find an control ue U and 7€ #* %% which maximizing
E“""’I:e““‘f‘*’f(Z,“)—l—Sre“’(""C(ZT”)dr] for each (s, x)€E. (4)

We use the knowledge concerning optimal stopping problem to investigate Problem (4).
For each control ucU we define a semigroup {S,*} of operators on b® as follows:

S,ig(s, x):E“t*v”[e"‘“‘“g(Zﬂ‘)JrSte‘“(“”C(Z,“)er for t=s and xeRY.

For each u€ U an optimal stopping reward function V* is defined by V*(s, x)=sup
S:f(s, x) for (s, x)eE, where the supremum is taken over all re #*** We fix
feba.

LeMMA 2. (Shiryayev [9]) Let ucU be arbitrary but fixed. V* has properties
@) and (1) :
(i) V™ is the smallest excessive majorant of [ with respect to {S;*} .
(i) For s€R. we define a Markov time < H* by

r=inf{t=s: Z,*{V*=/} .

Then it holds that
Vi, x)=52V%(s, x)=S:f(s, x) for x= R4,
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DEFINITION. (i) V*(s, x)=sgp V¥(s, x), (s, x)eE, is called an optimal reward func-
tion for Problem (4). =

(ii) A control u*=U is called an optimal control for Problem (4), if V*(, x)=
V#'(s, x) holds for all (s, x)E.

(iiiy Let an optimal control u* and (s, x) E be fixed. A Markov time 7* is an
optimal for Problem (4), if P*"**(z*=s)=1 and V*(s, x)=S%*f(s, x) for all (s, x)= E and
the optimal control u*.

3. A YValue Iteration

First we suppose the following assumption throughout this paper

AssUMPTION (I). It holds that V¥ D, for each uesU.

Then we consider the following iteration. Take an arbitrary control ¥*eU. For
each natural number n, take a control ¥ U and a function V™ in the following iterative

manner,
Step (1.n). For a control u*< U we find a function V"= D, which satisfied (i), (ii)

and (iii) :
(i) V"=f everywhere.
(i) B*"V"+C<0 a.e. on E.
(iii) B*"V*4-C=0 a.e. on {V">f}.

And we go to Step (2.n).

Step (2.n). (a) If there exists (s, x)&FE such that sup B'V (s, x)+C(s, x)>>0, then we
=@
select a control u**'< U such that !

B¥* 'V (s, x)=sup BTV (s, x)

7€6G
for all (s, x)E. And we return to Step (l.n-+1).

(b) If sup B'V™(s, x)+C(s, x)=0 for all (s, x)=E, then we stop this iteration.
rEG

The existence of a control »™*! in Step (2.n) is due to Lemma 3.

LEMMA 3. For each g€ D, there exists a control usU such that B¥g(s, x)=sup
Brg(s, x) for all (s, x)EE. e

PROOF. Bg(s, x) is continuous with respect to (7, s, x)€G X E, therefore this lemma
follows from Borel selection theorems.

Next the existence of a function V* in Step (1.n) is due to Lemma 4.

LEMMA 4. Let ucU be arbitrary but fixed. The the following free boundary
problem (B) has a unique solution V*:

Find a function Ve D, which satisfies (), (i1) and (if) :
@) V=f everywhere.

(1) B*V4+C=0 a.e. on E. (5)
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(i) B*V+C=0 a.e. on {V>f}.

PROOF. Let an arbitrary ue U be fixed. It is sufficient for the existence of V to
prove that V* satisfles (ii) and (iii), because of the definition of V* From Lemma
2(i) we have V*(s, x)=S*Vs, x) for each (s, x)€E and rc#***. Then using 3),
we obtain

ges| [l emeropevaz ez 0.

Namely the set {B“V*4C>0} is of potential zero with respect to (Z*). Therefore
for all number >0, (s, x)€E and r=.#*** it holds that

Eu, s, I[Sre_(‘”“("S)(BuV“(ZT")—!-C(Zru))dT]éo B

Now we fix a bounded open subset D of E and we let (s, x)& D be arbitrary but fixed.
Then we put 7 be the first exit time from D after starting at (s, x). Hence from
Theorem 2.4.6(a) of Krylov [6] there exists a sequeuce {i,}, in positive numbers
which satisfies 2,—oo(n—o0) and

XnE"'s"”Ure'(”‘”")”'”(B“V“(Zru)—f-C(Zr“))dr]
—B*V¥(s, x)+C(s, x) a.a.(s, x)D as n—oo.

Consequently we have B*V*+C=<0 a.e. on D. Since D is arbitrary bounded open, V*
satisfies the contition (ii). Next we let D be a bounded open subset of {V*>f} and
we take (s, x)eD and 7€ M*** similarly. Then from Lemma 2 we have

B o#| [T e e -0 BV O(Z,1)dr [=54V s, )~ V(s, )=0.

Therefore from Corollary 2.5.8 of [6] we have B*V*+C=0 a.e. on D. Since D is
arbitrary bounded open subset of {V*>f}, V* also satisfies the condition (iii).

Next we show the uniqueness of solutions of (5). Let ¥ be a solution of (5). For
(s, x)e E we define a Markov time ¢ by

o=inf{t=s: Z,»e{V=rf}}
Then, by using the condition (iii) for V and Theorem 2.2.4 of [6], we have
S, Vis, )= Vis, y=Ev-s#[ " e=er-0 V4002 *)dr |=0.
Therefore it holds that
Vis, )=8,4V(s, x)=S,*f(s, ) S Vs, x)

for all (s, x)€E. On the other hand, by using the condition (ii) for V and Theorem
2.2.4 of [6], we have V(s, x)=S.*V(s, x) for (5, x)€E and t=.H“"% Since V=f, it
holds that V(s, x)=S.*V(s, x)=S.“f(s, x) for each (s, x)€E and r=.#**>. Namely we
have V=V* everywhere. Consequently V* is a unique solution of (5). This completes
Lemma 4.

A sequence {V"},, which is constructed in the iteration, has the following pro-
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perty.
LEEMA 5. {V™}, is a nondecreasing sequence of functions on E.
PrRoOOF. Let n be arbitrary but fixed. From the definition of u®*' in Step (2.n),

we have
Br"YVr L C>BY"VE4C everywhere.

Hence from Lemma 4 we also have
B***'YV* L C=0  a.e. on {V*">f}.
Since B*"*'V*-+-C is continuous from Lemma 3, it holds that
B**"'V*4C=0 on {V*>f}.
Let z* be a Mrkov time defined by
=inf{t=s: Z,*" " e{V"=f}}

for s€R.. Then, by using (3), we obtain Vs, x)<Su"V7(s, x)=Su" 1 f(s, x)<
Voti(s, x) for all (s, x)e E. Therefore {V"}, is nondecreasing.
The following proposition is designed for Step (2.n) (b).
PROPOSITION 1. If there exists a number % such that
sup B'V(s, x)+C(s, x)<0

rEC
for all (s, x)EE, then V® is an optimal reward function and u" is an optimal control.
PROOF. Let arbitrary ueU be fixed. We have B*V*+(C=0 everywhere. By
using (3) and V*=f, we obtain

Vs, 0)=SHV s, x)=S:*f(s, x)

for each (s, x)eFE and re€. ™ **. Therefore it holds that V?*=V* everywhere. Since
ue U is arbitrary and V?=V*" from Lemman 4, V” is an optimal reward function and
u™ is an optimal control.

Now we consider a limit of {V"},. Since f and C is bounded and a>0, {V"},
has upper bounds. Therefore from Lemma 5 we can define the limit funciton

Vs, x)=lim V(s, x) for each (s, x)€E.

Hence V is a lower semi-continuous function on E.
Hence we need one more assumption.
AssuMpTION (II). Let any 7, je({1, 2, ---, d} and any compact subset K of E be

fixed. Sequences {_G%Vn K}»n, {ai, yr E}n and {gt— 1%
where K=K{(t, x)€E: b(y, t, x)#0 for some y=G}.

REMARK. In the time-homogeneous case when d=1, b=0 and fe=D,, Assumption
(I) is satisfied under Assumption (I). Because from Lemma 4 we can easily check

|42
dx*

for a.a. xe{V">f} and all n. Moreover since V"D, and f=D,, we obtain that

K} are uniformly bounded

V(0| <o (e IF1HIC)
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2
{_;17 V"} is uniformaly bounded.

THEOREM 1. Let Assumptions (I) and (II) be satisfied. Then V is an optimal re-
ward function.

PROOF. Let a compact subset K of E be arbitrary but fixed. From Assumptions
(D and (II) we can extract a subsequence {n’} from the set of all natural numbers such

that {8xa;x, 7 {aii ve| ), and {at

j€{1, 2, ---, d}. Let a control us U be arbitrary but fixed. Then a sequence {(B*V™
+C)|k}a converges pointwise to some function g=b®. Now we define N,={n'}.
First we shall show g<0 a.e. on E. We consider the following sets and Markov

times :

K} are weakly convergent for all 7,
o

cﬁmzkgn {B** "'V +-C>B).

EEN,
o™ m=inf{t=s: Z,*""'eCs™},

s =inf{t=s: Z,*" " e BV C<L B}

for real number B>>0, sER,, n, me N, satisfying n=m. From Theorem 2.2.4 of [6]
and Lemma 2(3) we have V¥, x)gS:‘ﬁ"J’V"“(s, x) for all (s, x)€E, neN, and B>0.

Then from Lemma 5 and (3) it holds that
VrHi(s, x)—V™(s, x)
ZS;‘;;T’V"(S, x)—V™(s, x)

=gt [ gmenggurs iy oz ar |
gﬂEun*‘l,s, zl:grlsne—a(r—s)dr]

ZﬁEu"“,s,z 1_e—a(r5"—s)
= [ ]

Eu"+1, s, I[l_e'd(aﬁn' m—s)]

v
S [

for (s, x)€E, >0 and n, meN,(n=m). By letting n(e N, infinite, we obtain

nhn’} Eumtls. J:[o.an m__sj 0
1

for (s, x)€E, >0 and meN,. We also have and following inequalities. Let |-/, be
the matrix norm and define 7,;/\7.=min (5,, %,) for real numbers %, and 7.,.

BV | 288 e —(s, 2 ei]

o s mAT
§”D P ez mm, Zﬁ"“)[zadr}

8
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—{—ZE""““"[S:“'W\TIb(u"“(Zr“"H) ARSI CARINIED]

§2K2{Eun+1,s, x[(aﬁnlm/\T)__s:]_i_Eun+l,s, z[((oﬁn, m/\T)_s)ZJ}
for (s, x)€ E, >0, numbers T>>s and n, meN,(n=m). Therefore we obtain

lim E*»"*» x[|Zun+l'—<s x)1%+:1=0

neEN,y

for (s, x)€E, >0 and meN,. From the definition of ¢,™™ and this equality we have

that EC(Cs™)° for >0 and meN,, where (Cs™)° implies the closure of the comple-
ment of Cs™ in E. Moreover since Cﬁm:)kﬂ {Bv**'VrC=28} for >0 and neN,,
k_m

we obtain (6): =

EC \J {B**"'V*+C<28)  for $>0 and meN,. (6)

kEN,

On the other hand we have

{g>25}cmyv ;Qv {B**'V 4+ C=2B8)NK

for §>0. By putting Olam:kU {B“k“V”—i—C<2‘B} for >0 and meN,, we obtain (7):
e

(g>281C | OmrNK  for 0. (7)

Since O™ is open, (6) and (7) imply that g=28 a.e. on E. However since § is arbi-
trary and positive, we obtain g=<0 a.e. on E.

Next let any (s, x) K be fixed. We define a Markov time p=inf{t=s:Z,*&K}.
From (3) we have

Eu, s, z[{:/\re—a(T-S)(Ban+C)(ZTu)dr]

=StV ™s, 1)— Vs, x)

for all neN, and reH*** Since g=0 a.e.,, by using the bounded convergence
theorem and Theorem 2.2.4 of [6], we obtain V(s, x)=S.V(s, x) for all (s, x)€E and
TeM®*®.  Since K is arbitrary and a>0, we have

Vs, x)=S:*V (s, )2 S/ (s, x) (8)

for all (s, x)eE and reu***. Therefore it holds that V=V* everywhere for all
ue U. Therefore V is an optimal reward function.

A sequence {u"} of controls, which are constructed in the iteration, has the fol-
lowing property.

PROPOSITION 2. Let Assumptions (I) and (II) be satisfied. If {u™} has a subse-
quence which converges almost surely to some w*€ U, then u* is an optimal control and
t¥*=inf{i=s: Z¥{V=/f}} is an optimal Markov time.

PROOF. Let a compact subset K of E be arbitrary but fixed. Let N,={n’} be a
subsequence of all natural numbers for which {u™} converges almost surely to u*. In
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the same line as the first part of proof of Theorem 1, we can extract a subsequence
Ny;={u"} of the set N, for which {(B*'V™-+C)|g}.  converges pointwise to some func-
tion gebd. Then for each neN, and (s, x)e E we have

| BV (s, x)— BV (s, x)|

d
= iZ} ) la;, j(u™*'(s, x), s, x)—a;, {u*s, x), s, x)| - L
» J=

d
+ 2 lbi(un+l(5; x)y S; x)_bi(u*(sx x); S’ x)l 'L’
where L is a constant. Therefore we obtain (9):

g= lim (B*"*'V*4+C) a.e. on E. (9)
neN,
On the other hand from the difinition of x™*! in the iteration we have

B*™'V*4+C=0 on {V*>f)

for all n. Therefore from Lemma 5, (7) and this fact we have g=0 a.e. on {V>rt
In the same line as the first part of Theorem 1 we have

Vs, x)SSEV (s, x)=S%f(s, x)

for all (s, x)€E and t*=inf{t=s:Z,*€{V=f}}. Consequently u* is an optimal control
and 7* is an optimal Markov time.

4. Bellman’s Equation

We need one more assumption to study the relation of the value iteration and
Bellman’s equation.

AssuMpTION (IlI). VeD,.

THEOREM 2. Let Assumptions (I), (II) and (III) be satisfied. An optimal reward
function V, which is constructed in the iteration, satisfies the following equations (i), (i7)
and (7i1):

(7)) V=f everywhere.
(#) sup (B'V+C)=Z0 everywhere.

7€G

(z77) sup (B'V+C)=0 on {V>f}.

7€G

PROOF. (i) is trivial. From the proof of Theorem 1 we have S./V(s, x)<V(s, x)
for all (s, x)€F, yeG and r=.#***. Then we obtain (ii) in the same line as the first
part of the proof of Lemma 4. Next from Lemma 3 we can choose a control el
such that

B*V+C=sup (B'V+C) everywhere.

7€6

Let a natural number m and a bounded open subset O of {V™> f} be fixed. Define a
Markov time r"=inf{t=s:Z,*"¢0}. By using Lemmas 2, 4, 5 and (8) we have

Vs, x)=S&E Vs, x) S V(s, )ZV(s, x)



68 Y. YosHIDA

for n=m and (s, x)=0. Therefore we obtain
sup{Sz V(s, x)—V (s, x)} =0 for all (s, x)€O0.
Namely, it holds that

sup Eun, s, z[grne-n(r—s)(Biv_i_c)(zru*)dr] ZO
s

nzm

for all (s, x)€0. From this inequality and Assumption (IIl), by using Corollary 2.5.8 of
[6], we have
B®V (s, x)+C(s, x)=0 for all (s, x)=0.

By considering the choice of O, we obtain (iii).
COROLLARY 1. Let Assumptions (I), (II) and (III) be satisfied. Let u* be a con-
trol which is defined in Proposition 2. Then it holds that
B*V+C=sup (B'V+C(C) a.e. on {V>f}. (10)

rEG

Conversely a control u*< U, which satisfies (10), is an optimal control and a Markov time
t*=inf{t=s: Z,*'€{V=/f}} is an optimal Markov time.

ProoF. From Proposition 2 we have V*'=V everywhere. Therefore from Lemma 4
we obtain (11):
B*V+4C=0 a.e. on {V>f}. (11

This inequality and Theorem 2 imply that u* satisfies (10). Next let w*€U satisfy
(10). Then u* satisfies (11) from Theorem 2. Define a Markov time t*;inf{tés:Zﬂ’
e{V=f}} for (s, x)F. Hence from (3) and (11) we obtain

Vs, x)=S%V(s, x)=S%f(s, x) for all (s, x)EF.

This equality completes this corollary.
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