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A VALUE ITERATION IN CONTROLLED DIFFUSION 

   PROCESSES ASSOCIATED WITH STOPPING

    By 

Yuji YOSHIDA*

                    Abstract 

   The present paper deals with an optimal control problem in con
trolled diffusion processes with stopping times. 

   In this paper we shall present a value iteration for the optimiza
tion problem associated with controls and stopping times.  Further
more we shall investigate the relations among the value interation, 
optimal stopping times and Bellman's equation.

   0. Introduction 

   Stopped decision problems in discrete time case have been studied by Dubins and 

Savage [2], Furukawa [3, 4], Hordijk [5] and etc.. On the other hand Krylov [6], 

Nisio [7], Ohtsubo [8] and etc. have studied optimization problems in controlled 

Markov processes with stopping. Especially [4] has studied a value iteration to find 

an optimal reward function in decision problems. And Doshi [1] has treated it in 
controlled Markov processes. This paper investigates the property of the iteration and 

its relation to Bellman's equation in the case of controlled diffusion processes with 

stopping times in infinite horizon. 

   In Section 1 we shall introduce diffusion processes associated with stochastic dif

ferential equations. In Section 2 we shall consider an optimal control problem as

sociated with stopping times. In Section 3 we shall give and study a value iteration 

to find solutions of the problem. In Section 4 we shall investigate the relation between 

the value iteration and Bellman's equation.

   1. Controlled Diffusion Processes 

   Let R+ be the set of all nonnegative real numbers, the time space. Let Rd be 

ddimensional Euclidean space and let E=R+ x Rd. B denotes the field of Borel subsets 

of E. Let Q be the set of all continuous mappings w : R+ _ Rd. A mapping x(t) is 

given by w—>x(t, w) =w(t) for t E R+ and w E S2. F denotes the smallest oalgebra ge
nerated by {x(t) : tER+}. Let P be a probability measure on (Q, SF). G is a compact 

subset of a separable metric space, the action space. 

   Now we consider a controlled stochastic differential equation. For (r t, x) E G x E,
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 a(r, t, x)(b(r, t, x)) is a dxddimentional matrix (resp. a ddimensional vector) for which 

there exist numbers 8>0, K>0 and a d x ddimensional matrix valued measurable func

tion C on R+ satisfying (i)'(iv) : 

 (i) a and b are bounded and continuous. 

(ii) (c(r, t, x)e, e)_3 I I 2 for all e Rd and (r, t, x) E G x E, 

d 

    where (y, z)= E yizi and 13/1 d=-(y,  y)112 for y= (yi) E Rd and z= (zi) E Rd. 
                              1=1 

(iii) 321eId2�(, C(t)e)<K2I I d2 for all eeRd and tER+. 
                 N (iv) II a(r, t, x) —C(t)11< K for all (r, t, x) E G x E, where 11.11 denotes the operator norm 

    and a(r, t, x)=a(r, t, x)a*(r, t, x). 

   REMARK. Conditions (iii) and (iv) are from Strook and Varadhan [10] and are 

clearly satisfied in the timehomogeneous case. 

   Let U be the set of all measurable mappings u: E–*G. In this paper we treat only 

Markov controls, therefore we shall call them only controls here. 
   The following existence theorem of controlled processes is due to Theorem 2.6.1 

of Krylov [6]. 

   LEMMA 1. For each u E U and (s, x)EE there exist a probability space (Qu, j u, 

Pu, s, x), a Wiener process (Wu(t), Ftu)t?s and a continuous process (Xtu)ts such that Xtu 

is progressively measurable with respect to { "tu} and (Xtu)t?s satisfies (1) : 

           Xtu=x+a(u(r,Xru),r,Xru)dWu(r)+tb(u(r, Xru), r, Xru)dr (1 ) 

                                                                       s 

             almost surely for all t>s . 

   Let Ztu= (t, Xtu) for t?s. Then for each (s, x)EE, (Ztu, tu, pus' x)1>sis a con

tinuous process. 

   DA denotes the space of bounded continuous functions g on E such that g(t, x) has 

the first order derivative with respect to the time t and has the first and the second 

order derivatives with respect to the space x, which are bounded and continuous. For 

u E U, Au is an operator such that 

       d32 Auk(t, x)=atk(t,x)-}2iEai,~(u(t,x),t,x)axiax;k(t, x) 
                       a  + E bi(u(t,x),t,x)ax

ik(t,x)                                             i=1 

for k E DA and (t, x) E E. Especially, if u is a constnat mapping u=-7  for some 7E G, 

then we express Au by AT. 
   Then for each uE U a process (Ztu)t>s satisfies (2) : 

 {g(Ztu)— Aug(Zru)dr, tu,Pu,s,x}t>s is a martingale for (s, x)EE and g E DA. (2 ) 

                s This is due to Theorem 4.2.1 and Corollary 5.3.1 in Strook and Varadhan [10]. 

   On the other hand from Corollary 7.1.7 and Theorem 6.2.2. in [10] and conditions 

{ Pu, s. x : (s, x)EE} is a unique solution of the martingale problem for (2), is
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measurable and has strong Markov property. Consequently  (Ztu, c tu, pu, s, x)t>s is a 

continuous strong Markov process. 
   Let I be the identity operator on DA. Then we can easily check that for a num

ber j3?O and uE U, a process (Ztu)t>s also satisfies (2') : 

                                   t 

            {e43(ts)g(Ztu)eP(rs)(Au-8I)g(Zru)dr, tu, pu,s,X}t,s (2') 

S 

            is a martingale for (s, x) E R+ x Rd and g E DA .

   2. Optimization Problems 

   Notations defined in this section will be used through this paper. We shall fix a 

number a>0, which is called a discounted rate. For u E U and (s, x) E E, 3d u denotes 

the set of all {9U} adapted Markov times and ,92u,s,x={zE pu,s,x(r>s)=1}. Let 
bg be the set of all bounded Borel measurable functions on E. For u\E U, {Qt' 13 } t>o 

denotes a semigroup of operators on b g which is defined by 

Qtu' l3g(s, x)=Eu, s, x[e-~ (ts)g(Ztu)] 

for 19�0, t E R+, g E bg3 and (s, x) E E. Hence from (2') of Section 1 we have 

             Eu s x[Js1-e S(rs)(Au—(3I)g(Zru)dr]=Qru' Isg(s, x)—g(s, x) (3 ) 
                for 13>0, uE U, (s, x)EE, gEDA and rE.5ktu's,x 

   From now on we write Au—aI by Bu for simplicity and we put C be a bounded 
measurable function. We consider the following problem (4) : 

            Find an control u E U and r E <Nu, s, x which maximizing 

(4)             Eu, s, x[e-a (r-s) f(Zru)+ r e-a (rs)C(Zru)dr] for each (s, x) E E.•
We use the knowledge concerning optimal stopping problem to investigate Problem (4). 
For each control u E U we define a semigroup { Stu } of operators on b . as follows : 

    uu,s,xa(t-s)+ta(r-s)ud       Stg(s, x)=Eeg(Ztu),~eC(Zr)dr]fort?sandxE.R 
                                                           S For each uE U an optimal stopping reward function Vu is defined by Vu(s, x)=sup 

Sruf (s, x) for (s, x) E E, where the supremum is taken over all -r E x We fix 

fEb.. 
   LEMMA 2. (Shiryayev [9]) Let uE U be arbitrary but fixed. Vu has properties 

(i) and (ii) : 

(i) Vu is the smallest excessive majorant of f with respect to {Stu}t,o. 

(ii) For s E R+ we define a Markov time r E 5 2u by 

r=inf {t>_s : ZtuE { Vu=f} }. 

Then it holds that 

Vu(s, x)=SruVu(S, x)=S-uf(s, x) for xERd.
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DEFINITION. (i) V*(s, x)=sup V u(s, x), (s, x)EE, is called an optimal reward func
                                      u`U 

tion for Problem (4). 

   (ii) A control u*E U is called an optimal control for Problem (4), if V*(s, x)= 
V u*(s, x) holds for all (s, x)EE. 

   (iii) Let an optimal control u* and (s, x)EE be fixed. A Markov time r* is an 
optimal for Problem (4), if Pu''s'x(r*>s)=1 and V*(s, x)=S *f(s, x) for all (s, x)EE and 

the optimal control u*.

   3. A Value Iteration 

First we suppose the following assumption throughout this paper 

   ASSUMPTION (I). It holds that V u E DA for each u E U. 

   Then we consider the following iteration. Take an arbitrary control u1 E U. For 

each natural number n, take a control un E U and a function V n in the following iterative 

manner. 

   Step (1.n). For a control un E U we find a function V n E DA which satisfied (i), (ii) 

and (iii) : 

    (i) 1/71�_f  everywhere. 

    (ii) BunVn+C<0 a.e. on E. 

   (iii) BunVn+C=O a.e. on {Vn>f}. 

And we go to Step (2.n). 

   Step (2.n). (a) If there exists (s, x)EE such that sup BIT/71(s, x)+C(s, x)>O, then we 
r`G 

select a control un+1 E U such that 

Bun+1V n(S x)=sup BIT/71(s, x) 
rEG 

for all (s, x)EE. And we return to Step (1.n+1). 

   (b) If sup BT V n(s, x)+C(s, x) <O for all (s, x)EE, then we stop this iteration. 
TUG 

   The existence of a control un+1 in Step (2.n) is due to Lemma 3. 

   LEMMA 3. For each gEDA there exists a control uEU such that Bug(s, x)=sup 

Brg(s, x) for all (s, x)EE.rEG 

   PROOF. Brg(s, x) is continuous with respect to (r, s, x) E G X E, therefore this lemma 

follows from Borel selection theorems. 

   Next the existence of a function Vn in Step (1.n) is due to Lemma 4. 

   LEMMA 4. Let uE U be arbitrary but fixed. The the following free boundary 

problem (5) has a unique solution Vu: 

   Find a function VEDA which satisfies (i), (ii) and (iii) : 

    (i) V> f everywhere. 

 (ii) BuV+C<_0 a.e. on E.(5 )
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   (iii)  Bu  V+C=0 a.e. on { V>f }. 

   PROOF. Let an arbitrary u E U be fixed. It is sufficient for the existence of V to 

prove that Vu satisfies (ii) and (iii), because of the definition of Vu. From Lemma 
2(i) we have V u(s, X)>_ SruV u(s, x) for each (s, x) E E and r E aiu, S° x Then using (3), 
we obtain

LCEusxrea(rs)(BuVu(Zru)+C(Zru))dr]<0. 
s Namely the set {BuVu C>0} is of potential zero with respect to (Zru) . Therefore 

for all number A>0, (s, x) E E and r E a2u, S, x it holds that 

                  Eu, s,XLJreca+A)(,s)(BuVu(Zru)+C(Zru))dr]<0. 
s Now we fix a bounded open subset D of E and we let (s, x) E D be arbitrary but fixed . 

Then we put r be the first exit time from D after starting at (s, x). Hence from 
Theorem 2.4.6(a) of Krylov [6] there exists a sequeuce {A,z } u in positive numbers 

which satisfies An—>oo(n—>cc) and 

              .~nEuSx[S. e(a+2)(rs)(BuVu(Zru)+C(Zru))dr] 
                      Js 

-->BuV u(s, x)+C(s, x) a.a.(s, x) E D as n—>oo . 

Consequently we have BuVu+C<0 a.e. on D. Since D is arbitrary bounded open, Vu 
satisfies the contition (ii). Next we let D be a bounded open subset of { V u> f } and 

we take (s, x) E D and r E aiu, s, x similarly. Then from Lemma 2 we have 

          Eu,s,x[frea(rs)(BuVu+C)(Zru)dr]=SruVu(s, x)—Vu(s, x)=0. 
S Therefore from Corollary 2.5.8 of [6] we have BuVu+C=0 a.e. on D. Since D is 

arbitrary bounded open subset of { V u> f }, Vu also satisfies the condition (iii). 

   Next we show the uniqueness of solutions of (5). Let V be a solution of (5). For 

(s, x) E E we define a Markov time u by 

a=inf{t>s:ZtuE{V=f}} 

Then, by using the condition (iii) for V and Theorem 2.2.4 of [6], we have 

Sou V(s, x)— V(s, x)=Eu, s, xTea(r-8)(Bu V+C)(Zru)dr]=0. 
                                                          s Therefore it holds that 

                   V(s, x)=SQUV(s, x)=S,uf(s, x)<Vu(s, x) 

for all (s, x) E E. On the other hand, by using the condition (ii) for V and Theorem 

2.2.4 of [6], we have V(s, x) >_ Sru V(s, x) for (s, x) E E and r E az u, S, x. Since V> f , it 
holds that V(s, x) > Sru V(s, x) >_ Sruf (s, x) for each (s, x) E E and r E au' s, x Namely we 

have V>_ Vu everywhere. Consequently Vu is a unique solution of (5). This completes 

Lemma 4. 

   A sequence {V}, which is constructed in the iteration, has the following pro
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perty. 
   LEEMA 5. is a nondecreasing sequence of  functions on E. 

   PROOF. Let n be arbitrary but fixed. From the definition of un+l in Step (2.n), 
we have 

Bun+1Vn+C>_BunVu+C everywhere. 

Hence from Lemma 4 we also have 

                     Bun+1Vn+C=0 a.e. on {Vn>f }. 

Since Bun+1Vn+C is continuous from Lemma 3, it holds that 

Bun+1Vn+C>0 on {Vn>f }. 

Let 'Cm be a Mrkov time defined by 

                        rn=inf{t>_s : Ztun+lE {Vn= f } } 

for sER+. Then, by using (3), we obtain Vn(s, x)<Srnun+'Vn(s, x)<_ 
Vn+1(s, x) for all (s, x) E E. Therefore {V} n is nondecreasing. 

   The following proposition is designed for Step (2.n) (b). 
   PROPOSITION 1. If there exists a number n such that 

                        sup BrV"(s, x)+C(s, x)_<0 
rEG 

for all (s, x)EE, then V" is an optimal reward function and un is an optimal control. 
   PROOF. Let arbitrary u E U be fixed. We have B"V"±C __<.0 everywhere. By 

using (3) and Vn >_ f , we obtain 

Vn(s, x)~SruVn(S, x)>Sr"J (s, x) 

for each (s, x) E E and r Ea"• s° x. Therefore it holds that V n > V" everywhere. Since 

uE U is arbitrary and V'm=V"" from Lemman 4, Vn is an optimal reward function and 

u" is an optimal control. 

   Now we consider a limit of {V'}. Since f and C is bounded and a>0, { V n } n 
has upper bounds. Therefore from Lemma 5 we can define the limit funciton 

                  V(s, x)=lim Vn(s, x) for each (s, x)EE• 

Hence V is a lower semicontinuous function on E. 

   Hence we need one more assumption. 

   ASSUMPTION (II). Let any i, j E { 1, 2, • • , d} and any compact subset K of E be 

                            2 fixed. Sequences{-------axaxV nx}n'ax ZV nK}nand { atV nK}nare uniformly bounded 
                             J where K=K{ (t, x) E E : b(r, t, x)-#0 for some r E G } . 

   REMARK. In the timehomogeneous case when d=1, b  0 and f E DA, Assumption 

(II) is satisfied under Assumption (I). Because from Lemma 4 we can easily check 

2 dx2V n(x) GV2•(a• II.f1I+I1CII) 

for a. a. x E { V n> f } and all n. Moreover since V n E DA and f E DA, we obtain that
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 d2  

 d  x  2V n}is uniformaly bounded. 
   THEOREM 1. Let Assumptions (I) and (II) be satisfied. Then V is an optimal re

ward function. 

   PROOF. Let a compact subset K of E be arbitrary but fixed. From Assumptions 

(I) and (II) we can extract a subsequence {n'} from the set of all natural numbers such 

            2 that{ a Vn'}{------axZV}nand{ at V n'Iare weakly convergent for all i,       axtiaxjKn' 
KKn 

E 11, 2, • • •, cll.  Let a control uE U be arbitrary but fixed. Then a sequence { (B"V n' 

+C) I IC}  n' converges pointwise to some function g E b 3. Now we define N1= { n' } . 
First we shall show g<0 a.e. on E. We consider the following sets and Markov 

times : 

() {Buk+1Vk+C> IS} . 
k=711 
kEN1 

c ' m=inf { t>s : Ztun+1 EC }, 

Tfin=inf{t>s : Ztun+1E {Bun+1Vn+C< /,)} } 

for real number /3>0, s E R+, n, m E N1 satisfying n >_ m. From Theorem 2. 2.4 of [6] 

and Lemma 2(3) we have PH-1(s, x)>_S *+ 1 Vn+1(s, x) for all (s, x) E E, n E N1 and /3>0. 

Then from Lemma 5 and (3) it holds that 

Vn+1(s, x)—Vn(S, x) 

?S 7 1Vn(S, x)—V n(s, x) 

=Eun+1 3,xlYI3nea(rs)(Bun+1Vn+C)(Zrun+1)dr] 

                                             s ~1SEun+1s,x[~s17?'                                            ea(r-s)dr] 

� Eun+l,3,x[1_ea(rr3n-s)] —
a 

                              liun+1s,x[1e-0 (a,,n, ni-s)] 

a for (s, x) E E, />0 and n, m E Ni(n > m). By letting n(E N1) infinite, we obtain 

                                 lim Eun+1, s, x[0. 9n, m—s]=0 
nEN1 

for (s, x) E E, Q>0 and m E N1. We also have and following inequalities. Let • I'd be 
the matrix norm and define 721/\722= min (721i 772) for real numbers ri and r2. 

Eun+1 s, x[Zafl±mAT—(S,x) Id+1] 
                                               n, m            <2.Eun+1s'xpAT ~Q(um+l(Zrun+1)Zrun+1)I1ddr]
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              +2. Eun+ls, Jr'n' m/~TI b(un+1(Zrun+1),  Zrun+l)adr. ((o.pn, nAT)__                                                                                   L.) 

<2K2{ Eun+1, s x[(QAn m/ \T)—s]+Eun+1, s, X [((Q,3n, m AT) s)2] 

                                                        for (s, x)EE, jS>0, numbers T>s and n, m N1(n> m). Therefore we obtain 

lim Eun+1, s, X[ I Zuan+m—(s,x) Id+1]=0 
nENlrs 
n-400 

for (s, x)EE, j3>0 and mEN1. From the definition of Q,gn' m and this equality we have 

that EC(CAm)° for 1>0 and mEN1, where (CAm)` implies the closure of the comple
ment of Cpm in E. Moreover since C,gmD kn {Buk+1Vk+C>213} for p>0 and nEN1, 

                                                    kEN1 

we obtain (6) : 
             Ec U {Buk+1V k+C<2p} for p>0 and mEN1.(6 ) 

                            kam 
kEN1 

On the other hand we have 

{g>2jS}C U n {Buk+1Vk+C>21}fK mEN1 kEN1                                                  k=m 

for j3>0. By putting 0,3m= U {Buk+1Vk+C<2J3} for j9>0 and mEN1, we obtain (7): 
k? m 
kEN1 

{g>2j9 } C U (Osm)cn K for p>0. (7 ) 
mEN1 

Since Oism is open, (6) and (7) imply that g�2,8  a. e. on E. However since ,6 is arbi

trary and positive, we obtain g�0 0 a. e. on E. 

   Next let any (s, x) E K be fixed. We define a Markov time rl =inf { t>s : Ztu cE K}. 

From (3) we have 

                       Eu, s, z Ll7nre-a (r-s) (BuV n+C)(Zru)dr] 
                                               s =S,jAVV n(s, x)—V n(s, x) 

for all n E N1 and r E n u, s, x Since<_0 a.e., by using the bounded convergence 

theorem and Theorem 2.2.4 of [6], we obtain V(s, x) >_ STArV (s, x) for all (s, x)EE and 
r E nu' s° x. Since K is arbitrary and a>0, we have 

V(s, x) > SruV (s, x) > SzuJ (s, x)(8) 

for all (s, x)EE and r E 51 u' s, x Therefore it holds that V >_ V u everywhere for all 
uE U. Therefore V is an optimal reward function. 

   A sequence {u'} of controls, which are constructed in the iteration, has the fol
lowing property. 

   PROPOSITION 2. Let Assumptions (I) and (II) be satisfied. If { un } has a subse

quence which converges almost surely to some u*E U, then u* is an optimal control and 
r*=inf{t>_s:ZU`E{V=f}} is an optimal Markov time. 

   PROOF. Let a compact subset K of E be arbitrary but fixed. Let N2={721 be a 
subsequence of all natural numbers for which { un' } converges almost surely to u*. In
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the same line as the first part of proof of Theorem 1, we can extract a subsequence 
 N3=  {  u"  } of the set N2 for which { (Bu'V n"+C) I K } n" converges pointwise to some func

tion g E b B. Then for each n E N3 and (s, x) E E we have 

Bun+1Vn(s, x)—Bu'V n(S, x) I 

d E I a1, j(un+1(s, x), s, x)_a1, (u*(s, x), s, x) I L 
Z, j=1 

d 

I E I bi(un+1(s, x), s, x)_bz(u*(s, x), s, x) I L, 
i=1 

where L is a constant.Therefore we obtain (9) : 

                g= lim (Bun+1Vn+C) a.e. on E. (9 ) 
n->o. 
nEN2 

On the other hand from the difinition of 0+1 in the iteration we have 

Bun+1Vn±C>0 on {Vn>f) 

for all n. Therefore from Lemma 5, (7) and this fact we have g>0 a.e. on { V> f }. 
In the same line as the first part of Theorem 1 we have 

V(s, x) <_ S :'V (s, x) = Sr •f (s, x) 

for all (s, x) E E and r*=inf { t>s : Ztu' E { V =f11.  Consequently u* is an optimal control 

and r* is an optimal Markov time.

   4. Bellman's Equation 

   We need one more assumption to study the relation of the value iteration and 

Bellman's equation. 

   ASSUMPTION (III). VC DA. 

   THEOREM 2. Let Assumptions (I), (II) and (III) be satisfied. An optimal reward 

function V, which is constructed in the iteration, satisfies the following equations (i), (ii) 
and (iii) : 

    (i) V �f everywhere. 

   (ii) sup (BIT +C)_<0 everywhere. 
lEG 

   (iii) sup (BTV+C)=0 on {V> f }. 
lEG 

   PROOF. (i) is trivial. From the proof of Theorem 1 we have SrTV (s, x)<_V (s, x) 
for all (s, x) E E, 7 E G and r Eu, s, x Then we obtain (ii) in the same line as the first 

part of the proof of Lemma 4.Next from Lemma 3 we can choose a control /GE  U 
such that 

B''V +C=sup (BrV +C) everywhere. 
                                       TEG 

Let a natural number m and a bounded open subset 0 of { V m > f } be fixed. Define a 

Markov time rn=inf{t>s : ZtunErO}. By using Lemmas 2, 4, 5 and (8) we have 

Vn(s, x)=Sru Vn(s, x)<SrnV(s, x)<V(s, x)
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for  n>_  m and (s, x) E 0. Therefore we obtain 

sup{Szn Vn(s, x)—V(s, x)}=0 for all (s, x)E0. 
nam 

Namely, it holds that 

                   sup Eun,s, x((rnea<r-s)(Bu'V+C)(Zru*)dr]>_0 
                             n>_m 

for all (s, x) E 0. From this inequality and Assumption (III), by using Corollary 2.5.8 of 

[6], we have 
BuV(s, x)+C(s, x)=0 for all (s, x)E0. 

By considering the choice of 0, we obtain (iii). 

   COROLLARY 1. Let Assumptions (I), (II) and (III) be satisfied. Let u* be a con
trol which is defined in Proposition 2. Then it holds that 

Bu`VH-C=sup (BrV+C) a.e. on {V> fl.(10) 
rac 

Conversely a control u*E U, which satisfies (10), is an optimal control and a Markov time 
z*=inf{t>s : Ztu`E {V=f}} is an optimal Markov time. 

   PROOF. From Proposition 2 we have Vu*=V everywhere. Therefore from Lemma 4 

we obtain (11) : 
Bu`V+C=0 a.e. on {V > f }.(11) 

This inequality and Theorem 2 imply that u* satisfies (10). Next let u* E U satisfy 

(10). Then u* satisfies (11) from Theorem 2. Define a Markov time z*=inf{t>s : Ztu• 

  { V= f } } for (s, x) E E. Hence from (3) and (11) we obtain 

                V(s, x)=Su'V(s, x)=S*f(s, x) for all (s, x)EE. 

This equality completes this corollary.
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