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ORTHOGONALITY OF HYPOTHESES AND 

IDENTIFIABILITY CONSTRAINTS IN THE 

  ANALYSIS OF VARIANCE MODEL

       By 

 vasutoshi WASHIO*

                    Abstract 

   We consider a sequence of hypotheses Hi : fi=O, i=1, 2, • , k, 
in a liner statistical model y=Xft+e=Xlfll+X2J92+•••+Xkftk+e. We 
assume that X is not of full rank —in the analysis of variance model— 
suitable identifiability constraints B8=O are given in the model. 

   First, we give some results on the orthogonality of hypotheses 
by introducing the null space representation for the hypotheses. 
Then, we confine our model to the analysis of variance model and 
discuss the relationship between orthogonality of hypotheses and 
identifiability constraints. A method for finding the identifiability 
constraints which make all the considerable hypotheses orthogonal is 
proposed.

   1. Introduction 

   Suppose we have a linear statistical model 

y=Xft+e _                                        fi
1_ 

                    =CX1''X2 .• Xk] 192 +e ,(1.1) 

-19k

where y is an n xi vector of observation, X is a known matrix of rank r (r<_ p) and 
called a design matrix, ft is a p x 1 vector of unknown parameters, X and 49 are 
expressed by partitioned matrices with appropriate sizes in the last formula in (1.1) and 
e is an n x1 vector of errors distributed as N(0, el.), where a2 is an unknown positive 
constant and In is the n x n identity matrix. 

   The concept of orthogonality of hypotheses is mainly associated with the analysis 

of variance model. In the analysis of variance model, the design matrix X is not of 
full rank and a set of linear constraints among parameters is usually introduced as a 
set of identifiability constraints to identify the parameters. Then, when X is not of 
full rank, we assume that suitable identifiability constraints 

Bf=0(1.2)
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are given in the model (1.1). A set of linear constraints Bf=O is called a set of 
identifiability constraints if the matrix B satisfies the following conditions (i) and (ii) : 

(i) The composite matrix [-------`Y ] has rank p. 
(ii) No linear combination of the rows of B is a linear combination of the rows of X 
except the zero vector. 

   Let's denote the expectation of y, E(y), by 6. For any matrix A, the range space 
of A will be denoted by 91[A], i, e. 91[A]={v I v=Au, for some u} and the null space 
of A will be denoted by 1[A], i. e. Jl[A]={v I Av=O}. For a subspace w the orthog
onal complement of w will be denoted by co'. 

   In the linear statistical model (1.1), we are interested in testing a sequence of 
linear hypotheses 

Hi: 13i=0, i=1, 2, ••• , k .(1.3) 

The hypotheses Hi, 1=1, 2, •••, k, can be expressed as follows: The linear model (1.1) 
states 

6ES2(1.4) 
and the hypotheses Hi further states 

Hi : 6 E wi (w CQ) , (1.5) 

i=1, 2, •••, k, where Q=31[X], wi=JR[X(i)] when X is of full rank and wi={v I v= 
X( )8O, Bc4ci>=0} when X is not of full rank, where X(i) is the matrix X with the 
submatrix Xi deleted, B(1) and M(i, are similarly defined. 

   As to the orthogonality of hypotheses, there are two kinds of definitions : One is 
given by Kempthorne [3] and the other is given by DarrochSilvey [1]. Although both 
of the definitions are given in a sense that all the considerable hypotheses Hi, H2, • • • , Hk 
are orthogonal, we shall give their definitions in a slight different form here. 

   DEFINITION 1.1. (Kempthorne [3]) The two hypotheses Hi and H; are said to be 
orthogonal (Hi 1 H;) if Ni and fi; are uncorrelated, i. e. if cov(fii, 11;) =0, where Ai and 
,; denote the least squares estimates of /3i and le; under the model (1.1). For hypotheses 
of more than two, they are said to be orthogonal if any two hypotheses of them are 
orthogonal. 

DEFINITION 1.2 (DarrochSilvey [1]) The two hypotheses Hi and H; are said to be 
orthogonal (Hi 1 H;) if the subspaces Q, wi, w; satisfy the condition col nS21 w; nSQ, i. e. 
if the orthogonal complements of wi and co; with respect to Q are perpendicular. The 
definition of orthogonality of more than two hypotheses is the same as that in Defini
tion 1.1. 

   The equivalence between definitions 1.1 and 1.2 is proved by Seber [5]. 
   Although the matrix B in identifiability constraints (1.2) must satisfy some conditions, 

there still exist so many choices for B and we may choose any of them in the theoretical 
point of view (see Scheffe [4]). In testing hypotheses, however, the choice for B will 
alter orthogonality property of hypotheses. It is desirable to choose the matrix B so 
that the number of hypotheses which are orthogonal is as many as possible, because 
the orthogonality of hypotheses makes the computation of the sums of squares for Hi, 
1=1, 2, • • • , k, easier (See Section 3).
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   Seber [5] gave a necessary and sufficient condition on B for all considerable 

hypotheses in two-way layouts with and without replications to be orthogonal by the 
different methods under some further restrictions on B. 

   It seems to the author that there still needs a slight general and simple method to 

check orthogonality of hypotheses under the given identifiability constraints and to 
select suitable identifiability constraints for orthogonality property. This paper is 

motivated by this question. 

   In Section 2, first, the null space representation for the hypotheses are introduced 

and some properties of matrices being used in the representation are given as lemmas. 

Then, we shall give some theorems on orthogonality of hypotheses, which will be used 
in Section 3. Lastly, we shall give simpler proofs of two well known results on 

orthogonality of hypotheses. 

   In Section 3, we shall confine our model to the analysis of variance model, and the 

relationship between identifiability constraints and orthogonality of hypotheses will be 

considered. A theorem which proposes a method for finding the identifiability con

straints which make all the hypotheses orthogonal is given. The method is illustrated 
by some examples.

   2. Some Theorems on Orthogonality of Linear Hypotheses in the Linear Model 

   First, we shall give the null space representation for the hypotheses H1,  H2, • • • , Hk. 
   The linear model (1.1) states the expected value of y, e, belongs to Q. 

   When X is of full rank, 9 can be expressed as 

48=(X'X )-1X'9(2.1) 

by using e since e=Xfl, where the prime denotes the transpose of a matrix. If we 
_A

1_ 
put A(X'X)-1X' and if we partition A into k submatrices such as A= corre

                                                                                   _Ak_ 
sponding to the partition of p, (2.1) turns out to be 

                                             9, _ _Aie _ 
           ,9=A8  or/=.(2.2) 

                                          -Pk  -Ake

It is clear from the definition of A, A1i • • • , Ak that 

3.[A']CQ, JR[A1]CQ, , JR.[Ak]CQ.(2.3) 

By making use of matrices A1, • • • , Ak, the hypotheses H1, • • • , Hk can be written as 

Hi: O E SQ and Aie =O ,(2.4) 
i=1, 2, ••• , k. 

   When X is not of full rank, as mentioned in Section 1, suitable identifiability con
straints B 9=0 are given to identify the parameters, where B is a (p—r) x p matrix of 
rank p—r. From the property of the matrix B, the equation 

[B]l9—[0](2.5)
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has a unique solution in /3 for every 0E Q. Since [ B  17=G  has rank p, from (2.5), we 
have 

ft=(G'G)-1G'[-e0 ] =(G'G)-1X'9 .                                                           (2.6) 

For this case, if we put A(G'G)-'X' and if A is partitioned into k submatrices as 

before, then 13 can again be expressed as (2.2). Furthermore, the property (2.3) also 

holds true, and the hypotheses H1, H2, • • • , Hk can be expressed as (2.4). 

   Therefore, in general, in the linear model (1.1) we can express /9 as 

A19  
                      19=A8==Ae or 

         pp(2.7)                                         -Nk _Ake_ 

andthe hypotheses Hi, i=1, 2, • , k, can be expressed as 

Hi: eEQ and Ai6=O,(2.8) 

where A, A1, • • • , Ak have the property such that 

Jt[A']CQ , ?.[AZ]CQ , i=1, 2, , k. (2.9) 

   Let C be a matrix such that S2=T[C] and the rows of C are linearly independent. 

The linear model (1.1) says 

6 E Q = 9l [C](2.10) 
and the hypothesis Hi states 

Hi: 9 E wi =91[ Ai ] .(2.11) 
Here we note that 

1[Af 11[C] , i=1, 2, ••• , k(2.12) 

from (2.9) and the definition of C. (2.10) and (2.11) are the null space representations 

for the model (1.1) and the hypothesis Hi. The properties of (2.9) and (2.12) for the 

matrices A, Ai, C in the null space representation are important and will often be used 

later on. 
   LEMMA 2.1. In the null space representation for the linear model and the hypothesis 

Hi, we have 

cot nQQ=5R[A'i] . 

   PROOF. 

t2ncoi =T[C] n(91[ Az ]~ 
=9-t[C]n[C'; Az] .(2 .13) 

We show (2.13) is equal to 51[Ai]. It is clear from (2.9) that 

vt[C]n 1[C' AnDNA0 . 

If x belongs to (2.13), then Cx=O and x=C'a+A'ir for some a and r. Thus
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 C(C'a-{ Ai r) =CC'af-CA'ir 

=CC'a+0=0. 

Since CC' has the inverse matrix, we have a=0 from the above equation. Therefore, 
x= Ai r E 3t [Ai] and the lemma is proved.q. e. d. 

   LEMMA 2.2. In the null space representation for the linear model and the hypotheses 
Hi, i=1, 2, • • • , k, 

Hi1H;<=>i[A21JR[A;] . 

   PROOF. The lemma follows from Definition 1.2 and Lemma 2.1. q. e. d. 
   LEMMA 2.3. In the null space representation for the linear model and the hypotheses 

H1, i=1, 2, • • • , k, the equation 

                            C_ I _ C\1                                 v
A11 

           TA~~nt=[Af(2.14) 
                                             `~                                     -Aiq 

                                             A1_ 
holds true if and only if 

H11H;1, H1 1H;2, ••• , Hi1H;q .(2.15) 

   PROOF. Since the left hand side of the equation (2.14) is 

 C C -V   C 
         AiiA71A;1,,,                91 -------n 91 -=91nJR[CA

;1 •••A;qAl] 

_Ajq_ Ajq /_Ajq_ 
                               _A1_ 

                     —91[A--------yNC''A,i], (2.16) 
_A>1  

whereA; is the matrix consisting of linearly independent rows of • , it is clear by 

Lemma 2.2 that (2.14) implies (2.15).-A3q 
   Conversely suppose that (2.15) is true. It is clear from (2.16) and Lemma 2.2 that 

  C / C -\1 C 
            A;l 

Ajq \ Ajq I 
Al 

If x belongs to the left-hand side of (2.14), then 

               xE~2[-A-] and x=C'a+A;r+Ai8 
                                    1 for some a, r and 8. From Cx=0, we have a=0 by using the property of matrices 

C, A;, A. Similarly, from A;x=0, we have r=0 by using the assumption. Thus 
x=AiB, which means xEJR[Ai]. Then (2.14) holds true.q. e. d. 

   In this paper, the least squares estimates of fii under various situations will be
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considered. The least squares estimate of pi under the general model (1.1) will be 
denoted by /9i. The least squares estimate of 46i under j8;=0, that is, under Hi, will 

                                                                      QA be denoted byA~i, H;. Similarly, we shall use the notations/•~iH;nHI, H;nxinxm, etc. 
For example, j9iHnHj denotes the least squares estimate of lei under f;=0 and fti=0. 

   THEOREM 2.1. 
                              ,,ppAQQA,,QQAQQA                        HilH1~Ni=ficH; (Ni—N7.Hi) 

   In words, Hi and H; are orthogonal if and only if the least squares estimate of pi 
(f;) is the same whether or not we put 49;=0 (49i=0). 

   PROOF. Since pi=Ai9 from (2.7), we have 

                                                       (2.17) 
and 

 Hi= Aids,(2.18) 

where 9 and 9; are the least squares estimates of B under 8E Q and under 6 E w; 
respectively. 9 and 9; can be expressed as 

9=Py(2.19) 
and 

                                                       (2.20) 

where P and P; are the orthogonal projections of Rn—ndimensional Euclidean space— 
on Q and on co; respectively. Then 

Ni=fi, H;(2.21) 

AiP=AiP;(2.22) 

             Ai=P;Ai .(2.23) 

(2.23) follows from ai[A2cf2. (2.23) is equivalent to 

9t[Ai]Co); .(2.24) 

Since w; _ 91 [ A ] and 01 [Ai] 13 [C'], (2.24) is equivalent to 
NA;] •(2.25) 

Then the theorem follows from Lemma 2.2. It is clear that the subscripts i and j are 
interchangeable in the proof.q. e. d. 

            AAAA 

   We can see from the proof of Theorem 2.1 thatfii=ili, H; is equivalent to/f;=fi;, Hi• 
The same property as Theorem 2.1 has been proved by John [2] for a special situation 
where there are only two factors (hypotheses) in connection with the orthogonality of 
two factors in the design of experiments. 

   Theorem 2.1 gives a general result. 
   THEOREM 2.2. The equation 

                      A A 

H;inHJ2n•••nHjq 

holds true if and only if
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 Hi1H11, HiIH52, • • , Hi1H;q 
   PROOF. If we put 

co;1...;q={0 I BED, A,1B=0, • • , A;gO=O}   

                                C 

                                    =`J2       An(2 .26) 

                                       -A~q 

then iHJ1n•••nH;q is the least squares estimate of 9, under 8Ew;1...;g. Since 1i=AiB, 
we have 

H71n...nH;g=Aie;1...;q ,(2.27) 

where 8;1...4 is the least squares estimate of B under B E w, 1...;g. Since B;l...;g can be 
expressed by 8;1...;g=P;l...;qy (2.27) turns out to be 

                                B~                          • i, H71n...nH;g—AiP;l...jgy ,(2.28) 

where is the orthogonal projection of Rn on con...;g. 
   Since ai=AiPy, similarly to the proof of Theorem 2.1, we havethe following 

equivalence relations : 

                                        jai =i,Hjin•••nH;q 

AiP=AiP;1...;q 

(2.29) 

                 CAi]Cw;l...;q .(2.30) 
(2.30) is equivalent to 

{,[A2] 1 s,R[A;1], • • • , [Ai] 1 JR.[A;g] ,(2.31) 

because NAi]1NC']. Then, the theorem follows from Lemma 2.2.q. e. d. 
   From Theorem 2.1 and Theorem 2.2, we have the following corollary. 

   COROLLARY. H21, H22, • • • , H;q are orthogonal if and only if the least squares esti
mates of piiunder the model (1.1), under H52, , under H;q, under H;211H;3, , and 
under H;2n • • • nH;q are the same and this property also holds true for other parameter 
vectors 13;2, ••• , fi;g. 

   THEOREM 2.3. Suppose that Hl 1 H;1, • • • , Hl 1 H;q. Then 

                                                    pp~                               Hi1Hl4i ,H71n...nufg=Ni,H71n...nHieHl • 

   PROOF. Let w;l...;q and con...;gl be two subspaces such that 

w11...;q={0 1 BEQ, A;18=0, ••• , A;qO=O} 
-C

                            =~A.1 

-Ajq



46Y.  WASHIO

wj1...jgI={6 OEQ, A;19=0, ••• , A48=0 and A/0 =-1)) 

C^ 

_ .  

Ajq 
Al _ 

and let Pj...; and Pj1...j9i be the orthogonal projections of Rh on wj1...jg and on wj1...;gt 
respectively. 

   As in the proof of Theorem 2.2, we have 

Qp~ H
j1^•••nHjg=AiPji.•.jgY 

and 

                                     fit, t, HJn...~H;gnH1—ij...yell • 
Then 

H;1n•••nHjq=fli, H71n•••fHjgnH1(2.32) 

            .(2.33) 

It is easily shown that P;1...jg—Pj1...jgl is the orthogonal projection ofR" on 
GIj1...jgn(wj1...jgl)1• Therefore, (2.33) means that all the column vectors of the matrix Ai 
belong to the orthogonal complement of wji...;gn(wj1...;gl)1• Thus (2.33) is equivalent to 

                         [Ai]C(w;1...;gn(w;1...;g~)1)1.(2.34) 

By the assumption of the theorem and Lemma 2.3, (2.34) turns out to be 

[Ai]C([AD-`,(2.35) 
which is equivalent to 

91[A21.[Ai] •(2.36) 

Thus the theorem follows by Lemma 2.2.q. e. d. 
   Before concluding this section, we shall give simple proofs of two well-known and 

important results about the orthogonality property by using the null space representation 
for the hypotheses. 

   (1) Definitions 1.1 and 1.2 on the orthogonality of hypotheses are equivalent. 
   PROOF. 

cov(fii, Aj)=cov(Ai9, A;9) 
=cov(AiPy, A;Py)=AiA;a2. 

Hence 
cov(i3i, fij)=0a 1[Ai]191[A;] . 

Then the result follows from Lemma 2.1.q. e. d. 

   (2) The sum of squares for the hypothesis H1, Q1, is the same as the one, 

Qi;1,2,..,i_1, calculated under H1nH2n•••nHi_1 if and only if 

Hi1H1i Hi1H2, ••• , Hi _l_ •
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   PROOF. 

                              Qi=y'(P-Pi)y 
and 

 Qi;  1,  2,  •••, i1y                                   ='(P                                                                    12•••i1P12•••i)y 

where P, P.,P12...i-1, P12...i are the orthogonal projections of Rh on f2, on wi, on m12...i-1 and 

on w12•••i respectively, 0)12...i-1 and co12...i being defined as in the proof of Theorem 2.2. 

   Since P—Pi and P12...i1—P12...i are the orthogonal projections of Rn on S2nwi and 
on (012...i_1n(a)12...i)l, Qi—Q1; 12•••1-1 is equivalent to 

w12..41n(w12.21=S2nwi . (2.37) 

From Lemma 2.1 and Lemma 2.3, (2.37) is equivalent to 

Hi1H1, Hi1H2, • • , Hi1Hi_1, 

and the result is proved.q. e. d.

   3. Identifiability Constraints and the Orthogonality of Hypotheses in the 
Analysis of Variance Model 

   The sum of squares for the hypothesis Hi, Qi, is given by 

Qi=11'(P—Pi)11=(e—ai)'(9—ai) .(3.1) 

Since 6=4=J X.,k, we can see from Theorem 2.1 that if Hi is orthogonal to every 

other hypotheses 111, • • • , Hi-1,111+1, • • • , Hk then Q i can be calculated by 

                 Qi(Xifii)'(Xifii) (3.2) 
or 

Qi=fri,(Xiy) , (3.3) 

using the least squares estimate fii of /3i under O E Q without calculating the least 
squares estimates of pi, j-=1, 2, • • , i-1, i+1, • • • , k, under OE wi. 

   Therefore, in order to make the calculation of the sums of squares for hypotheses 
simpler, it is needed that each of the hypotheses of interest is orthogonal to every 
other hypotheses. 

   Unfortunately, since orthogonality property of hypotheses depends on identifiability 
constraints chosen in the analysis of variance model, it is desirable to choose suitable 
ones for orthogonality property. 

   In discussing the relationship between identifiability constraints and orthogonality 
of hypotheses, we put the following assumptions on the design matrix and identifiability 
constraints according to the analysis of variance model. 

   ASSUMPTIONS (i) X1 is an n X 1 vector consisting solely of 1. Then al is a scalar 
called general mean. 

   (ii) Identifiability constraints have the form such that 

B2/32=0, ... , Bk13k=O,(3.4) 

where Bi, i =2, 3, • • • , k, are ti x pi matrices, i. e. identifiability constraints are given
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within each of the parameter groups pi, i=2, 3, • • • , k except /31. 
   The normal equations for obtaining the least squares estimates t31, g2, , ilk of 

i31i /92, • • , aak are given by

which are arranged in a table as (3.6).

It is known that all the Lagrange multipliers corresponding to the identifiability con

straints can be ignored in the normal equations (See, for example, Washio [6]). It is 

also known that the normal equations (3.6) have a unique solution for every y. 
   THEOREM 3.1. Suppose that the design matrix and identifiability constraints satisfy 

the assumptions given just before. Suppose further that the identifiability constraints 

satisfy the following additional assumption: In a model 

                                       131  

                   y=[x1'X2••• Xi-1]-2 ±e(3.7) 

which is the model that Hk, Hk-1, ••• , Hi are assumed to be true, the constraints 

B2192=0, ••• , Bi1fii-i=0(3.8) 

are still identifiability constraints for the new model (3.7) and this property holds true 

for i=k, k-1, ••• , 3. 
   Then, all the hypotheses H1i H2, ••• , Hk are orthogonal if and only if all the elements 

above the diagonal blocks in the left-hand side in the normal equations (3.6) are crossed
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off by using identifiability constraints,  i.  e. the normal equations (3.6) turn out to be of 

the form: 

   PROOF. Suppose the normal equations are of the form in (3.9). The normal 
equations for obtaining the least squares estimates of ~1,~2,••• , when Hk is true 

(under Hk) are given by

since the Lagrange multipliers corresponding to B2/32,Hk=0, • •, Bk1fik1,Hk=0 can be 
ignored by the assumption of the theorem. By comparing (3.9) with (3.10), we get 

QQA QA /31=~1, Hk, ..• 
which show 

Hk1H1, HkIH2, ••• , Hk1Hk-1 
by Theorem 2.1. 

   Similarly, for the least squares estimates of 3;11 ~2i , 13k_2 under Hk and under 
HknHk_1i we can see 

                QA A                           P1, Hk-131, HknHk-1, ••• ,k-2, Hk=46k-2, HknHk-1 
which show 

Hk-11H1, Hk H2, ••• , Hk11Hk-2
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by Theorem 2.3. Similarly, for the least squares estimates of 81, ~2, , Pk-3 under 
HknHk-1 and under HknHk_1nHk-2, we can see 

HknHk_1—NI, HknHklnHk-2 

11 ,QQA k-3, HknHk-i= k-3, HknHklnHk-2 , 
which show 

Hk-21HI, Hk-21H2i ••• , Hk-2I Hk-3 

by Theorem 2.3. 
   By repeating the same procedure, we can show all the hypotheses are orthogonal. 

   Conversely, suppose H1, H2, • • • , Hk are orthogonal. From the corollary in Section 
2, the least squares estimates of ft's under the model (1.1), under Hk, under HknHk-1, ••• , 
under Hk n • • • nH2 are all the same. Thus by considering normal equations for obtain
ing the least squares estimates of fii's under the various models just mentioned above, 
we have 

     AAA 

                     x1X2j2=0 xX3j3=0 •.• xiXk/3k=0 

XX31§3_0 ... XXk~k=O (3.11) 

                  .
A 

Xk1Xk~k=O 

for every y, where hi'sare the least squares estimates under the model (1.1). 
   Since and 142 are the unique solution to the equations 

xixl xiX2 xiy 
/31 X2x1 XX2  = X2y , (3.12) 

                    0 B2P2 _0_ 

we can show that the equations xiX2g2=0 should be generated by the equation (3.12), 
and therefore, should be generated by B42=0. Thus the cell of xiX2 can be crossed 
off by the identifiability constraints. 

   Similarly, since -1i 162 and fi3 are also the unique solution to the equations 

x1x1 x1X 2 x1X3 ^x1y ^ 

X2x1 X2X2 X2X3 -SiXy 

X3x1 X3X2 X3X3 j2 = X3y , (3.13) 

0 B20 _f3_0 
          0 0 B30 _ 

then xiX3g3=0 and XX3g3=0 should be generated by the equations (3.13), and then 
should be generated by B3A~3=0. Thus the cells of x;X3 and X2X3 can be crossed off 
by the identifiability constraints. 

   By repeating the same procedure, all the cells above the diagonal ones can be 
crossed off. Thus the theorem is proved.q. e. d. 

   Although the additional assumption on identifiability constraints in Theorem 3.1
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seems tight, it will be satisfied by most of analysis of variance models by arranging 
the parameters in proper order. Therefore, Theorem 3.1 will provide us with an easy 
and simple method for finding the identifiability constraints which make all the hypoth
eses orthogonal. 

   The method proposed by Theorem 3.1 is illustrated with two models. 
   EXAMPLE 1. The two-way layout with one observation per cell. 

   Consider a two-way layout with I levels of factor A, J levels of factor B and one 
observation per cell. Let  yo be the observation in the (Ai, B,) cell, and assume the 
model 

               yis=f~-~ai~ ~;~ , i=1, 2, ... , I; j=1, 2, ••• , J, (3.14) 

where ,u represents the general mean, ai the main effect of factor A, 16; main effect 
of factor B and ei; the random error. 

   As the identifiability constraints are given within each of the parameter groups, 
the class of identifiability constraints is given by 

E uiai=0,E v4S,=0 ,(3.15) 

; where E u1=1  and E v; =1. It is easy to see that the assumptions in Theorem 3.1 are 
       i; 

all satisfied by this model having identifiability constraints (3.15). 

   Since the left-hand side in the normal equations for obtaining the least squares 

estimates of parameters is given by Table 1,

we can conclude from Theorem 3.1 that H1 ("1=O), H2 (a1=•••=a1=0) and H3 (g1=••• 
_ i, =0) are orthogonal if and only if
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1 
u1=u2= ••• =u1= —I 

            1(3.16) 
                                      V1=V2= ••• =VJ= . 

This result coincides with that of Seber [5]. 
   EXAMPLE 2. The two-way layout with unequal numbers of observations in the 

cells. 
   Consider a two-way layout with I levels of factor A, J levels of factor B and n i; 
observations in the (Ai, B;) cell. If yip, denotes the k-th observation in the (Ai, B;) 
cell, then Yip, can be written as 

yijk=p+ai+Pj+rij+eijk , 

                      i=1, 2, ••• , I; j=1, 2, ••• , J; k=1, 2, ••• , no, (3.17) 

where p, ai and le; are as in Example 1, ri; the interaction between A and B and eijk 
the random error. 

   As a class of identifiability constraints, we shall consider 

E uiai=0,E v;(3;=0 , 
       i; 

E uiri; =0, for all j,(3.18) 

E v;ri;=0 , for all i , 

where E u1=1 and E v;=1. 

   It is easy to see that the assumptions in Theorem 3.1 are all satisfied by this 
model having identifiability constraints (3.18). In this example, the left-hand side in 
the normal equations is given by Table 2. 

   In order to cross off all the cells above the diagonal ones by using identifiability 
constraints, it is necessary that 

( i ) ni.=Qui, for all i 

                      (ii) n.;=Rv; , for all j 
                                                        (3.19)                       (iii) 

ni;=Siv; , for all i, j 

                       (iv) ni;=T;ui , for all i, j, 

where Q, R, Si and T; are some constants. From (i), (ii) and (iii) in (3.19), we have 

n..=Q, n..=R, ni.=Si 

because of E u1=1 and E v;=1. Then, again from (i), (ii) and (iii), we have 

                         

n-----t' 
ui=for all i 

                                                                     , 

                                                               n.. 

n.' f
or all           vj 

n..'j(3.20) 

                            ni;=n~.n.' for all i, j 
n..
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   We can easily check that if  ui's, v2's and ni;'s are as in (3.20) then all the cells 

above the diagonal ones are crossed off by using identifiability constraints (3.18). Then, 

(3.20) is the necessary and sufficient condition for the four hypotheses H1, H2, H3, H4 
(r11=r12=•••=rz,=0) to be orthogonal. 

   Seber [5] obtained the condition (3.20) under the further assumption of u1>_0 and v;>_0. 
   Although even if we relax the class of identifiability constraints to 

E uiai=0 , E v>Ni=O 

E liri;=0 , for all j (3.21) 

E m;ri;=0, for all i ,
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where  E u=1, E v. =1, E 1 i=1. and E m; =1, we can get the similar necessary and 

sufficient condition, we have not checked if (3.21) is identifiability constraint.
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