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ORTHOGONALITY OF HYPOTHESES AND
IDENTIFIABILITY CONSTRAINTS IN THE
ANALYSIS OF VARIANCE MODEL

By
Vasutoshi WASHIO*

Abstract

We consider a sequence of hypotheses H;: 8;,=0, i=1,2, .-k,
in a liner statistical model y=Xg+e=X,8,+ XoB,+ -+ X Br+e. We
assume that X is not of full rank —in the analysis of variance model—
suitable identifiability constraints BS=0 are given in the model.

First, we give some results on the orthogonality of hypotheses
by introducing the null space representation for the hypotheses.
Then, we confine our model to the analysis of variance model and
discuss the relationship between orthogonality of hypotheses and
identifiability constraints. A method for finding the identifiability
constraints which make all the considerable hypotheses orthogonal is
proposed.

1. Introduction

Suppose we have a linear statistical model

y=XB-+e
B
—LX X X0 P e, (L.
B:

where y is an n X1 vector of observation, X is a known matrix of rank » (»<p) and
called a design matrix, B8 is a pX1 vector of unknown parameters, X and B are
expressed by partitioned matrices with appropriate sizes in the last formula in (1.1) and
e is an nx1 vector of errors distributed as N(0, ¢%[,), where ¢% is an unknown positive
constant and [, is the nXn identity matrix.

The concept of orthogonality of hypotheses is mainly associated with the analysis
of variance model. In the analysis of variance model, the design matrix X is not of
full rank and a set of linear constraints among parameters is usually introduced as a
set of identifiability constraints to identify the parameters. Then, when X is not of
full rank, we assume that suitable identifiability constraints

BB=0 (1.2)
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40 Y. WasHIO

are given in the model (1.1). A set of linear constraints BS=0 is called a set of
identifiability constraints if the matrix B satisfies the following conditions (i) and (ii):

(i) The composite matrix [ ------- } has rank p.

(ii) No linear combination of the rows of B is a linear combination of the rows of X
except the zero vector.

Let’s denote the expectation of y, E(y), by 8. For any matrix A, the range space
of A will be denoted by ®[A], i.e. RLAJ={v | v=Au, for some u} and the null space
of A will be denoted by N[A], i.e. M[A]={v | Av=0}. For a subspace o the orthog-
onal complement of w will be denoted by w*.

In the linear statistical model (1.1), we are interested in testing a sequence of

linear hypotheses
H;: g;=0, =12, -, k. (1.3)

The hypotheses H;, i=1, 2, ---, k, can be expressed as follows: The linear model (1.1)
states
e (1.4)

and the hypotheses H; further states
H,: 8cw,; (0,C9), (1.5)

i=1,2, -+, k, where Q=R[X], 0;=R[X,] when X is of full rank and w;,={v|v=
XwBay BwBiy=0} when X is not of full rank, where X;, is the matrix X with the
submatrix X; deleted, B;, and B, are similarly defined.

As to the orthogonality of hypotheses, there are two kinds of definitions: One is
given by Kempthorne [3] and the other is given by Darroch-Silvey [1]. Although both
of the definitions are given in a sense that all the considerable hypotheses H,, H,, ---, H;
are orthogonal, we shall give their definitions in a slight different form here.

DEeFINITION 1.1. (Kempthorne [3]) The two hypotheses H; and H; are said to be
orthogonal (H;1 H;) if ﬁz and ,éj are uncorrelated, i.e. if cov(éi, 1§,~)=0, where ﬁ,- and
ﬁ,- denote the least squares estimates of §; and 8; under the model (1.1). For hypotheses
of more than two, they are said to be orthogonal if any two hypotheses of them are
orthogonal.

DEFINITION 1.2 (Darroch-Silvey [1]) The two hypotheses H; and H; are said to be
orthogonal (H; | H,) if the subspaces 2, w;, w; satisfy the condition wiNQ LwiNQ, i e.
if the orthogonal complements of w; and w; with respect to £ are perpendicular. The
definition of orthogonality of more than two hypotheses is the same as that in Defini-
tion 1.1.

The equivalence between definitions 1.1 and 1.2 is proved by Seber [5].

Although the matrix B in identifiability constraints (1.2) must satisfy some conditions,
there still exist so many choices for B and we may choose any of them in the theoretical
point of view (see Scheffé [4]). In testing hypotheses, however, the choice for B will
alter orthogonality property of hypotheses. It is desirable to choose the matrix B so
that the number of hypotheses which are orthogonal is as many as possible, because
the orthogonality of hypotheses makes the computation of the sums of squares for H;,
=1, 2, .-+, kb, easier (See Section 3).
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Seber [5] gave a necessary and sufficient condition on B for all considerable
hypotheses in two-way layouts with and without replications to be orthogonal by the
different methods under some further restrictions on B.

It seems to the author that there still needs a slight general and simple method to
check orthogonality of hypotheses under the given identifiability constraints and to
select suitable identifiability constraints for orthogonality property. This paper is
motivated by this question.

In Section 2, first, the null space representation for the hypotheses are introduced
and some properties of matrices being used in the representation are given as lemmas.
Then, we shall give some theorems on orthogonality of hypotheses, which will be used
in Section 3. Lastly, we shall give simpler proofs of two well known results on
orthogonality of hypotheses.

In Section 3, we shall confine our model to the analysis of variance model, and the
relationship between identifiability constraints and orthogonality of hypotheses will be
considered. A theorem which proposes a method for finding the identifiability con-
straints which make all the hypotheses orthogonal is given. The method is illustrated
by some examples.

2. Some Theorems on Orthogonality of Linear Hypotheses in the Linear Model

First, we shall give the null space representation for the hypotheses H,, H,, ---, H;.
The linear model (1.1) states the expected value of y, @, belongs to £2.
When X is of full rank, 8 can be expressed as

B=X'X)"'X'8 (2.1)
by using 8 since #=XpB, where the prime denotes the transpose of a matrix. If we
A
put A=(X'X)'X’ and if we partition A into 2 submatrices such as A:['EJ} corre-

sponding to the partition of B8, (2.1) turns out to be

B A,0
=40 or [H] 22)
B Al

It is clear from the definition of A, A,, -+, Ay that

RLA]CQ, R[A]CR, -, R[A]CL. (2.3)
By making use of matrices A,, -+, A, the hypotheses H,, ---, H, can be written as
H;: 02 and A;0=0, (2.4)

i=1,2, -, k.

When X is not of full rank, as mentioned in Section 1, suitable identifiability con-
straints BA=0 are given to identify the parameters, where B is a (p—r)X p matrix of
rank p—r. From the property of the matrix B, the equation

[]e-13]
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has a unique solution in 8 for every #=£. Since [;{]EG has rank p, from (2.5), we
have

ﬁz(G’G)'lG’[g-]:(G’G)"X'a . 2.6)
For this case, if we put A=(G’G)'X’ and if A is partitioned into % submatrices as
before, then B can again be expressed as (2.2). Furthermore, the property (2.3) also

holds true, and the hypotheses H,, H,, ---, H, can be expressed as (2.4).
Therefore, in general, in the linear model (1.1) we can express 8 as

B A,0
B=40 or {st } .1
B A0

and the hypotheses H;, i=1, 2, ---, k, can be expressed as
H;: 62 and A,0=0, 2.8)
where A, A,, -+, A, have the property such that
RA']ICR, HR[AJCQ2, i=1,2, -, k. 2.9)

Let C be a matrix such that 2=N[C] and the rows of C are linearly independent.
The linear model (1.1) says

8 Q=R[C] (2.10)
and the hypothesis H, states
C
H: 0€wi~m['ﬂ;~}. @.11)
Here we note that
RLAJLR[C], i=1,2, -, k (2.12)

from (2.9) and the definition of C. (2.10) and (2.11) are the null space representations
for the model (1.1) and the hypothesis H;. The properties of (2.9) and (2.12) for the
matrices A, A;, C in the null space representation are important and will often be used
later on.

LEMMA 2.1. In the null space representation for the linear model and the hypothesis
H;, we have
wiNQ=R[A]].
PROOF.

arer-mao( )
=RLCINR[C"| A{]. (2.13)
We show (2.13) is equal to R[Aj]. It is clear from (2.9) that
RLCINR[C A]1DRLAL].

If x belongs to (2.13), then Cx=0 and x=C’a+ A}y for some & and 7. Thus
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Since CC’ has the inverse matrix, we have a=0 from the above equation.

43

C(C'a+Air)=CC'a+CAjr
=CC'a+0=0.

x=Aly=R[A;] and the lemma is proved.
LEMMA 2.2. In the null space representation for the linear model and the hypotheses

H;, =12, -, &k,

Proor. The lemma follows from Definition 1.2 and Lemma 2.1.

Therefore,
g.e.d.

Hyl HysR[A;]LRLAL].

g.e.d.

LeEMMA 2.3. In the null space representation for the linear model and the hypotheses
H,, i=1,2, ---, k, the equation

C C N\
,,,,, - 0
N A:“ N R| || =RLA7 (2.14)
As Asy
A
holds true if and only if
H[_LHj Hl_Lsz, "‘,H[_Lqu. (215)
PRrROOF. Since the left hand side of the equation (2.14) is
C C \* C
w2 ) | | = A2 e 4 45, A
Ajq ‘?41;1 Aj]
C 1 AN AT
- [— ARIC AL AL, 2.16)
A |

— Ail
where A; is the matrix consisting of linearly independent rows of [}, it is clear by

Lemma 2.2 that (2.14) implies (2.15).
Conversely suppose that (2.15) is true.

It is clear from (2.16) and Lemma 2.2 that

C O\
""" N A;

x| 2 A ) 2| omrag.
A Ajq
A

xeg}[_c] and x=C'a+Ajr+A;d

for some @, 7 and 8. From Cx=0, we have a=0 by using the property of matrices

C, A}, Aj. Similarly, from A;x=0, we have =0 by using the assumption. Thus

x=A}3, which means xeA[A;]. Then (2.14) holds true. g.e.d.
In this paper, the least squares estimates of B; under various situations will be
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considered. The least squares estimate of B8; under the general model (1.1) will be
denoted by B;. The least squares estimate of 8; under §8;=0, that is, under H,, will
be denoted by ,§,~‘ Hje Similarly, we shall use the notations ﬁi,H JAH ﬁz HjnH|nHp ©tC.
For example, ﬁi, HynH, denotes the least squares estimate of B; under 8,=0 and B,=0.
THEOREM 2.1.
HiLHyof=Bin;, Bi=Hin).

In words, H; and H; are orthogonal if and only if the least squares estimate of 8;
(B, is the same whether or not we put 8;=0 (8;=0).
PROOF. Since §,=A,8 from (2.7), we have

Bi=Ab 2.17)
and
B, Hj:Aiéj ) (2.18)

where 6 and @, are the least squares estimates of g under #=2 and under fcw,
respectively. @ and 5,- can be expressed as

6=ry (2.19)
and

6,=Py, 2.20)
where P and P; are the orthogonal projections of R™—n-dimensional Euclidean space—
on 2 and on w; respectively. Then

Bi=Bux, 2.21)
g

AP= AP (2.22)
i)

Al=P,A;. (2.23)

(2.23) follows from R[A;JC Q. (2.23) is equivalent to

R ACa,. 2.24)
Since wjzsrz[%] and R[A{]LR[C'], (2.24) is equivalent to
J
RLATLRLAL]. (2.25)

Then the theorem follows from Lemma 2.2. It is clear that the subscripts ; and ; are
interchangeable in the proof. q.e. d.

We can see from the proof of Theorem 2.1 that ﬁi:,éi,,,j is equivalent to ,éj:,éj, Hy
The same property as Theorem 2.1 has been proved by John [2] for a special situation
where there are only two factors (hypotheses) in connection with the orthogonality of
two factors in the design of experiments.

Theorem 2.1 gives a general result.

THEOREM 2.2. The equation

A A
lgi —191', Hjlr\IIer\-unqu

holds true if and only if
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Hi_J_Hj H«;J_szy R Hi—Lqu'

1’

PrOOF. If we put

(Ujl...qu{a | 069, Aj10:0, ey, AJQ0:0}

=g “, (2.26)

then ﬁi,Hjlﬁ...ﬁqu is the least squares estimate of B8, under 060)}-1,.%. Since B;=A.0,
we have

ﬁi,llhr\nﬁl{jq:Aiéjl...jq , (227)
where 5,»14..,4'1 is the least squares estimate of # under 6=, ., Since éh.._jq can be
expressed by éjl..‘,-q: 1y-igY» (2.27) turns out to be

ﬁi, Hjlr\-nnqu:Ainl...qu , (228)

where P;..;, is the orthogonal projection of R™ on O jg
Since ‘éi:AiPy, similarly to the proof of Theorem 2.1, we have the following
equivalence relations:

a a
ﬂi:.’gi. Hjlr\---nqu

3
AiP:Ainlqu
T
A§:le...qu§ (2‘29)
kX
RLAIC ;.- (2.30)
(2.30) is equivalent to
RLATLRLALTD, -, RLATTLRLAL]D, (2.31)
because R[A;1 1L R[C’]. Then, the theorem follows from Lemma 2.2. q.e. d.

From Theorem 2.1 and Theorem 2.2, we have the following corollary.

COROLLARY. Hj, Hj, -+, H;, are orthogonal if and only if the least squares esti-
mates of B;, under the model (1.1), under H,, ---, under H;,, under H;,NHj, -, and
under Hj;,M---MHj, are the same and this property also holds true for other parameter

vectors Bj,, -+, Big
THEOREM 2.3. Suppose that H, 1 H;, -, Hy L H;. Then

H; 1 H, <:>19i,Hjlm--nﬁjqzﬁi,Iljp»-.mﬂjqrxyl .
PROOF. Let @;,.;, and ;,.;, be two subspaces such that

wjl...jq={0 l OEQ, Aj10=0, rery, A1q0=0}
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Wjysg=1010<2, A,8=0, -, A, 0=0 and A,0=0}

and let le"'jq and Pj
respectively.
As in the proof of Theorem 2.2, we have

gl D€ the orthogonal projections of R™ on wj,.,;, and on ®j.;u

A

ﬁi, Hj{\“‘”qu: Ainl"'qu

and
ﬁi,Hjlr\---f\qur\Hl:Ainlquly .
Then
Aéi, Hjln-nr\qu:.éi, Hjn-nHjnH| (2-32)
i3
(le.‘.jq—“le...qu)A;;———O . (2.33)

It is easily shown that P;.;—P;.;u is the orthogonal projection of R™ on
Oj1 g Wy 1) Therefore, (2.33) means that all the column vectors of the matrix A}
belong to the orthogonal complement of wj,.;,N\(@;j,..;)*. Thus (2.33) is equivalent to

«Sﬁ[A;;]C((Ojl...qu(wh...qu)J')'L. (234)
By the assumption of the theorem and Lemma 2.3, (2.34) turns out to be
RLATJC@RLADS, (2.35)
which is equivalent to
RLATJLRLALD. (2.36)
Thus the theorem follows by Lemma 2.2. g.e. d.

Before concluding this section, we shall give simple proofs of two well-known and
important results about the orthogonality property by using the null space representation
for the hypotheses.

(1) Definitions 1.1 and 1.2 on the orthogonality of hypotheses are equivalent.

PROOF.
cov(By, B)=cov(Ab, A,6)
=cov(A;Py, A;Py)=A; A0
Hence
cov(B;, B)=0=RLATTLRLA]].
Then the result follows from Lemma 2.1. qg.e.d.

(2) The sum of squares for the hypothesis H;, (; is the same as the one,
Qi.12,..i-1, calculated under HyNH,N\---NH,;-, if and only if

Hi-LHl; Hi_Lsz ey, Hi-]—Hi—l-
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PROOF.
Qi=y'(P—P)y
and
Qi; 1o i-1=Y (Pigici—Pio.)Y

where P, P,, P,.;-1, Pi,.; are the orthogonal projections of R™ on £, on @;, 0n @;,..;-; and
on w,,.; respectively, ®;..;-; and @,.; being defined as in the proof of Theorem 2.2.

Since P—P; and Py,..;-;—Py,.; are the orthogonal projections of R™ on 2Nwt and
on Wyp.i— ;N Wy2..5)Y, Qi=Q4;12..4-1 IS equivalent to

Wzi N (Gra.) ' =2 Nwt. (2.37)
From Lemma 2.1 and Lemma 2.3, (2.37) is equivalent to

H,1H, H 1 Hy, ---, Hi 1 H;-y,
and the result is proved. q.e. d.

3. Identifiability Constraints and the Orthogonality of Hypotheses in the
Analysis of Variance Model

The sum of squares for the hypothesis H;, @; is given by
Qi=y'(P—P)y=(0—6,6-6,. (3.1)
Since ézX,é:Z} X j,§,-, we can see from Theorem 2.1 that if H; is orthogonal to every
J

other hypotheses H,, ---, H;-y, Hiy1, -+, H, then Q; can be calculated by
Qi=(X:B.(X:By) (3.2)

or
Q=B Xy, (3.3)

using the least squares estimate ,é, of B; under 8= without calculating the least
squares estimates of 8, j=1, 2, .-, i—1, 741, -+, k, under f<w,.

Therefore, in order to make the calculation of the sums of squares for hypotheses
simpler, it is needed that each of the hypotheses of interest is orthogonal to every
other hypotheses.

Unfortunately, since orthogonality property of hypotheses depends on identifiability
constraints chosen in the analysis of variance model, it is desirable to choose suitable
ones for orthogonality property.

In discussing the relationship between identifiability constraints and orthogonality
of hypotheses, we put the following assumptions on the design matrix and identifiability
constraints according to the analysis of variance model.

ASSUMPTIONS (i) X, is an nX1 vector consisting solely of 1. Then §, is a scalar
called general mean.

(i1) Identifiability constraints have the form such that

BZﬂZiO: R Bkﬂk:()) (34)

where B,, i=2, 3, ---, k, are {;X p; matrices, i.e. identifiability constraints are given
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within each of the parameter groups B, i=2, 3, ---, k except B,
The normal equations for obtaining the least squares estimates ﬁl, Bz -, Br of

B Be -+, Bx are given by

[ xix, XX, - X1 A [ xiy ]
Xix, XX, - XiXe || B Xy
Xix,  XiXp - XiX. LB, Xw!| ' (3.5)
B, 0
L B, Lo

which are arranged in a table as (3.6).

g B - B =1

xix;, xiX, - x1 X, 1 Xy

Xix, XX, - XoX, | Xiy

: : N
Xix, XX - XiXe J X, (3.6)

B Lo

"B, f 0

It is known that all the Lagrange multipliers corresponding to the identifiability con-
straints can be ignored in the normal equations (See, for example, Washio [6]). It is
also known that the normal equations (3.6) have a unique solution for every y.

THEOREM 3.1. Suppose that the design matrix and identifiability constraints satisfy
the assumptions given just before. Suppose further that the identifiability constraints
satisfy the following additional assumption: In a model

N
y=lx;/ Xo Xi-{] ﬂ2 _I+e (3.7
B
which is the model that Hy, Hy-,, -+, H; are assumed to be true, the constraints
B.g,=0, -+, B;-1f;-1=0 (3.8)

are still identifiability constraints for the new model (3.7) and this property holds true
for i=k, k—1, ---, 3.

Then, all the hypotheses H,, H,, ---, H, are orthogonal if and only if all the elements
above the diagonal blocks in the left-hand side in the normal equations (3.6) are crossed
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off by using identifiability constraints, i.e. the normal equations (3.6) turn out to be of
the form:

N A B =1
bxixg xiy
Feomeneee- dommmeaey
Xix, | XiX, | 0 Xiy
| L___T__-J\ :
i ; 5 (3.9)
| \ Mo m H
X, XXy -m---- P XX Xy
B, ._ 0
. g, .

PROOF. Suppose the normal equations are of the form in (3.9). The normal
equations for obtaining the least squares estimates of §;, B,, -*-, Bx-1 When H, is true
(under H,) are given by

5 -~ A
‘Bn,uk ﬁé,uk """""" .Bk—x Hy =1
| ettt 5
i ’ ! ’
PXLX Xy
e XX 0 ¢
X2x1 : 2432 i 2y
' L H
1 H S i
| N i (3.10)
1 + N L ;
i
X;.»—xxx XI’?"IXZ ...... .:X;C‘IXkE Xl,z-ly
B, 0
\\\ )
t
\\\\ i
Bk—‘ 0

since the Lagrange multipliers corresponding to B,B: x,=0, -+, Bs-18¢-1,2,=0 can be
ignored by the assumption of the theorem. By comparing (3.9) with (3.10), we get

51:51,11,,, Tty ék—lzﬁk—l,Hk ’
which show
H,1H, H, L H,y -, Hi L Hypy
by Theorem 2.1.
Similarly, for the least squares estimates of §,, B, -+, Bx-» under H, and under
H,NH,-,, we can see

ﬁl,Hk:BI,Hank_l’ T ék-z.Hk:ék—z,Hank_ly
which show
Hk—1_LH1, Hk—x-LHz, Tty Hk-l_LHk—z
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by Theorem 2.3. Similarly, for the least squares estimates of B;, Bs -, Br-; under
Hy"N\H,-, and under H,"\H,.,N\H;_,, we can see

.31, Hank_IZABLHkr\Hk_Ir\Hk_g

ék—a,H,,nHk_lz.ék—a,H,,nHk_lnHk_z,
which show
Hy oL H,, Hy-o L Hy, -+, Hy s LHj s
by Theorem 2.3.
By repeating the same procedure, we can show all the hypotheses are orthogonal.
Conversely, suppose H,, H,, ---, H, are orthogonal. From the corollary in Section
2, the least squares estimates of 8,’s under the model (1.1), under H,, under H;N\H-,, -+,
under H,N\---NH, are all the same. Thus by considering normal equations for obtain-
ing the least squares estimates of B8;’s under the various models just mentioned above,
we have
X[ X,8:=0  x[X.f:=0 - x|X:B:=0

X;X&és:(). X;kakzo 3.11)

X1 XBr=0

for every y, where ﬁi’s are the least squares estimates under the model (1.1).
Since ﬁl and ,§2 are the unique solution to the equations

xix,  xi X, x1y

X, XX || = x|, (3.12)
0 B,

2

we can show that the equations x{Xgﬁgzo should be generated by the equation (3.12),
and therefore, should be generated by Bzﬁgz(). Thus the cell of x/X, can be crossed
off by the identifiability constraints.

Similarly, since j3,, ,ég and ,és are also the unique solution to the equations

(xix, x1X, xiX: xiy )

Xox, XX, XX, |[B.] | Xiy

Xix, XiX, XiX,| B.|=| Xy |, (3.13)
0 B 0 |4 0
0 0 B, | Lo |

then x;X,8,=0 and X;X,8,=0 should be generated by the equations (3.13), and then
should be generated by B3,§3=0. Thus the cells of x/X,; and X;X; can be crossed off
by the identifiability constraints.
By repeating the same procedure, all the cells above the diagonal ones can be
crossed off. Thus the theorem is proved. q.e. d.
Although the additional assumption on identifiability constraints in Theorem 3.1
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seems tight, it will be satisfied by most of analysis of variance models by arranging
the parameters in proper order. Therefore, Theorem 3.1 will provide us with an easy
and simple method for finding the identifiability constraints which make all the hypoth-
eses orthogonal.

The method proposed by Theorem 3.1 is illustrated with two models.

ExaMpLE 1. The two-way layout with one observation per cell.

Consider a two-way layout with I levels of factor A, J levels of factor B and one
observation per cell. Let y;; be the observation in the (A4;, B;) cell, and assume the
model

yi=pta+Bite;, i=1,2,-,1; j=1,2,-,], (3.14)

where p represents the general mean, a; the main effect of factor A, §; main effect
of factor B and e;; the random error.

As the identifiability constraints are given within each of the parameter groups,
the class of identifiability constraints is given by

Z uiai=0, E L’jﬁj:(), (315)
B F]

where X u;=1 and ¥ v;=1. It is easy to see that the assumptions in Theorem 3.1 are
i 7

all satisfied by this model having identifiability constraints (3.15).
Since the left-hand side in the normal equations for obtaining the least squares
estimates of parameters is given by Table 1,

Table 1
A E Ay ----ee- ay i Bn """" BJ
R Bt i
J 7 5 Q- 1
s, 0 :
T o Pt !
o0 b :
AN 1] '
L U R !
I A 140
o v, 0
P b .
o L0
S R 1! I
! 1
:' Uy —————— Hr E )
E R Vs
we can conclude from Theorem 3.1 that H, (p=0), H, (a,=--=a;=0) and H; (8,=-

=f;=0) are orthogonal if and only if
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(3.16)

This result coincides with that of Seber [5].

ExampLE 2. The two-way layout with unequal numbers of observations in the
cells.

Consider a two-way layout with [ levels of factor A, J levels of factor B and n;;
observations in the (4;, B;) cell. If v,;, denotes the k-th observation in the (A, Bj)
cell, then y;;, can be written as

Yijgp=pt+a;+Bi+ri+eis,
i=1,2,,1I; j=L.2,-,]; k=12, -, ny, (3.17)

where g, a; and 8; are as in Example 1, 7;; the interaction between A and B and e,
the random error.

As a class of identifiability constraints, we shall consider
Zi} u;a;=0, %‘,v,ﬂ,:O,
Zi) u:;=0, for all j, (3.18)
%}vjri,:O, for all 7,
where Ef: u;=—1 and é)v,:l.

It is easy to see that the assumptions in Theorem 3.1 are all satisfied by this
model having identifiability constraints (3.18). In this example, the left-hand side in
the normal equations is given by Table 2.

In order to cross off all the cells above the diagonal ones by using identifiability
constraints, it is necessary that

(i) n.=Qu,, for all ¢
(ii) n.;=Rv;, for all
(3.19)
(iii) n;;=Swvy, for all 4,7
(iv) ng =Tu;, forall 4,7,
where Q, R, S; and T; are some constants. From (i), (ii) and (iii) in (3.19), we have
n.=Q, n.=R, n,.=S;

because of 3 u;=1 and 3 v,=1. Then, again from (i), (ii) and (iii), we have
i J

uy= for all i
n..

v;= Z'j , for all ; (3.20
ngn.;

for all i, ;.
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Table 2
T T A PR D T (R Y
e ap | By——--- BrTn-——-—- i) —=----— :Tu ————— 1825
[ H ) ! 1
Moy My —==== Nyl -~~~ Moy iy ====-= Mgl —— ===~ y Mg ===~ My
O frmm————————— T —— : __________________
1, iy ————— Mg iny, -—~-—— Mygis !
i AN O [ y o 1 \\ '
| AN 1y ot } N ! O
s | N (] P ! N !
[ AN [ ) O : N :
i
! O N : ! ! ! t \\ 1
: n,ln,, ..... n”: ! NIHp ——me—— Ny
|
i e to—— e ———— R Dulatntte bttt Ro==— " " Tmmmooeos
: : n.y 11y AN 1 N
1 N
| | \\\ O | N O : \\ ] AN O
x| * i ~ i \\ ] \ | N
1 | \\ : N | \\ | N
! RN N (N W0
| | n.y Nyg o AN Ny
e L S tmmmmm e p S,
| 1 |
] } nll
1 | >
1 S~
i | i N
! | ] N
| | I AN O
! | | N
l I ~
1 ! ~
X 4 k § * I o
| | : N
i ] ~
[ i i 0 AN
| | ! ~
~
[ ! ! S o
I ! 1 ~
I ! | S
I { { NI ¥s
: t t . ;
;ul ------ Uy : : ! |
! 1V - e vy ! !
| 1 | I |
! l 1y === vyl !
! ! 1 1T~ !
] . X 1 ~<_!
: ; ' T
1 ]
" i TR i Ty,
I ! t N | ! N
1 ! ! N | ! \\
! ! ' N 1 ! N
| ] t AN h | AN
! 1 ! N | N
| ] 1 \ | | N
H ) | ~ | 1 ~
i i | Uy | h Uy
' ] i ! 1

np.= 3 nij, n=2ny, =330
J T i j

We can easily check that if u;’s, v/’s and n,;;’s are as in (3.20) then all the cells
above the diagonal ones are crossed off by using identifiability constraints (3.18). Then,
(3.20) is the necessary and sufficient condition for the four hypotheses H,, H, H, H,
(y11=712="--=71s=0) to be orthogonal.

Seber [5] obtained the condition (3.20) under the further assumption of %,=0 and v;=0.

Although even if we relax the class of identifiability constraints to

2ue=0, 3v;B;=0
g J
Z lszJZO s fOr all ] (3.21)

2 mﬂ’ij:O ) for all ¢ ,
7
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where > u;=1, 2 v;=1, 3 /;=1 and X m;=1, we can get the similar necessary and
1 J 1 J

sufficient condition, we have not checked if (3.21) is identifiability constraint.

(1]

£z2]
[3]
[4]
[5]
L6l
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