
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

REPRESENTATION THEOREMS AND PRIMITIVE
PREDICATES FOR LOGIC PROGRAMS

Yokomori, Takashi
International Institute for Advanced Study of Social Information Science, Fujitsu Limited

https://doi.org/10.5109/13374

出版情報：Bulletin of informatics and cybernetics. 22 (1/2), pp.19-37, 1986-03. Research
Association of Statistical Sciences
バージョン：
権利関係：

Bulletin of Informatics and Cybernetics Vol. 22, No. 1--2, 1986

REPRESENTATION THEOREMS AND PRIMITIVE

 PREDICATES FOR LOGIC PROGRAMS

 By

Takashi YOKOMORI*

 Abstract

 We present several representation theorems for logic programs
in terms of formal grammatical formulation. First, for a given logic

program P the notion of the success language of P is introduced, and
based on this language theoretic characterization of a logic program
several types of representation theorems for logic programs are pro
vided. Main results include that there effectively exists a fixed logic

program with the property that for any logic program one can find
an equivalent logic program such that it can be expressed as a con

junctive formula of a simple program and the fixed program. Further,
by introducing the concept of an extended reverse predicate, it is
shown that for any logic program there effectivily exists an equiva
lent logic program which can be expressed as a conjunctive formula
consisting of only extended reverse programs and append programs.

 1. Introduction

 Since, needless to say the original work of Colmerauer and Kowalski ([1] and [9]) ,
a recent world-wide trend on FGCS conception has been one of the primary subjects,

there are numerous work on logic programming languages and the theory of logic

programs. It is well accepted that, among others, the research on a subset of first
order predicate logic called Horn clause logic has taken the central position in this
area because of its importance of providing an interesting formal computation model

for a programming language PROLOG. As is wellknown, PROLOG, based on the

procedural interpretation to Horn clause logic, has an operational semantics determined
by the resolution principle. In the context of the semantics of predicate logic as a

programming language van Emden and Kowalski ([3]) have studied on modeltheoretic,
operational and fixedpoint semantics of logic programs, while using a Turing machine

formulation Shapiro ([11]) has defined and argued a kind of modeltheoretic semantics

of logic programs.

 In this paper we are concerned with establishing several representation theorems

for "logic programs (Horn clause programs)" in terms of formal language theoretic

formulation. In course of the formal grammatical treatment of logic programs we in

troduce the notion of the success language of a logic program over a finite alphabet,

* International Institute for Advanced Study of Social Information Science , Fujitsu Limited
 150 Miyamoto, Numazu, Shizuoka 410-03 JAPAN

 19

20T. Yoxon-ioRt

which turns out to be another way of providing a modeltheoretic semantics for logic

programs. Here, by formal grammars we mean generative grammars of Chomsky,
and it should be remarked that the theory of formal languages (e.g. [6], [8] and [10])

has been welldeveloped enough in itself to make a lot of contributions to other research

areas such as the theory of logic programming. This view may be supported, for ex

ample, when we think of the similarity between the refutation process in logic pro

grams and the derivation steps in context-free grammars, and note that logic programs
can be regarded as a kind of an extention of context-free grammars. In fact, Shapiro
investigates the computational complexity of logic programs using the similarity of

their operational behaviors to those of alternating Turing machines. ([11])

 With the help of an encoding technique it is shown that one can associate a logic

program with a formal language (the success language mentioned above) over a finite
alphabet. This leads to a semantic characterization of logic programs as previously

mentioned, although that is not our primary concern in the current paper. This kind

of semantic approach to logic programs has been already preceeded by the paper [13].

It has been shown that any recursively enumerable language can be specified as a

conjunctive formula of two deterministic logic programs and one simple logic program

that serves as a mapping on the set of words. The work in this paper is motivated
by the result above and extends it to present a variety of the ways of representing

logic programs.

 In this paper we present several representation theorems for logic progams which

assert that there effectively exists a fixed logic program (we may call it generator

program) with the property that for any logic program one can find an equivalent
logic program such that it can be expressed as a conjunctive formula of a simple pro

gram and the fixed program.
 Further, by analysing components in the representation results, it is shown that

the "filtering function" serving as a homomorphism mapping and the "merging func

tion" are sufficiently primitive in the sense that for any logic program there is an

equivalent logic program which can be expressed within the use of combination of

these two programs. By introducing the concept of "extended reverse", it is also

proved that for any logic program one can find an equivalent logic program expressed
as a conjunctive formula consisting of only "extended reverse" programs and "append"

programs.
 This paper is organized as follows. Section 2 is concerned with terminology,

basic notions and results needed through the paper. In Section 3 several representation

theorems for logic programs are established. Section 4 deals with the problem of what
operations (predicate) is primitive for the representation formula obtained in Section 3.

Concluding remarks and the future reseach direction are briefly given in Section 5.

Appendix provides a proof for Lemma 3.4 which is used in the text to derive a repre

sentation result of logic programs.

Representation theorems and primitive predicates for logic programs21

 2. Preliminaries

 2.1 Formal grammars and their languages

 We now introduce a generative device which plays the main role in all of subse

quent sections in this paper.
 DEFINITION. A generative grammar is an ordered quadruple G=(N, T, P, S0)

where N and T are disjoint finite alphabets, So is in N, and P is a finite set of pro

duction rules of the form Q1-*Q2 such that Q2 is a word over the alphabet V=NUT

and Q1 is a word over V containing at least one symbol of N. The elements of N are

called nonterminals and those of T terminals ; So is called the initial symbol.

 A word u generates directly a word v, in symbols, u=v, if and only if there

are words u', u", Q1, Q2 such that u=u'Q1u", v=u'Q2u" and Q1-*Q2 belongs to P.
Thus, = is a binary relation on the set V* (the set of all words over V including

empty word e). We denotes V*{e} by T. Let be the reflexive, transitive

closure of =. The language L(G) generated by G is defined by

L(G)= {w in T* I So*w}.

L(G) is called a language over T (or on T*).

 Grammars are, in general, classified by the form of production rules, which yields
a hierarchy of corresponding language families.

 DEFINITION. A generative grammar is also called phrase structure grammar. Let

G=(N, T, P, So) be a phrase structure grammar. Then, G is called

 (i) context-free if each production rule is of the form X->Q, where X in N,
and Q in V*,

 (ii) regular if each production rule is one of the two forms X-*a or X->aY,
where a in T and X, Y in N, with the possible exception on the production rule S0-4e
whose occurrence in P implies that So does not occur on the right hand side of any

rule in P.

 DEFINITION. (1) Let G=(N, T, P, So) be a context-free grammar with the property
that (i) every rule in P is of the form A->ax, where A in N , a in T, x in N*, and
(ii) for all A in N, a in T, A--->ax and A-->ay in P implies x=y. Then, G is called
simple deterministic.

 (2) A context-free grammar G=(N, T, P, So) is called linear if P consists of the
rules of the form : A->uBv, or A->w, where A, B in N, u, v, iv in T* .

 DEFINITION. Let L be a subset of T* for some alphabet T, and let X be in

{ phrase structure, context-free, simple deterministc, linear, regular }. Then, L is called
an X language if L=L(G) for some X grammar G. Further, a language generated by

a phrase structure grammar is also called recursively enumerable.

 Let r>1 and Tr= { al, •, a}. Further, Let Gr= ({ So }, T, P, So) be a context-free

grammar, where T=TrU{a a in Tr}, and P={So*SoaiSoaiSo li<r}U{So-*e}. Then,
L(Gr) is called the Dyck language over Tr and denoted by Dr.

 DEFINITION. Let T be an alphabet. For each a in T, let f(a) be a word (possibly

over a different alphabet from T). Then, let f(e)=e, f (xy)= f (x)f (y) (x, y in T*). The
mapping f is extended to the power set of T* as follows : for each L over T , f(L)=

22T. Yoxo\loR!

if (w) I w in L} . The mapping f is called a homomorphism on T*. Let f be a homo
morphism on T*, and let K be the alphabet of the range of f. Then, a mapping [4

defined by
 for L over K, f1(L)=w in T* I f (w) in L },

is called the inverse homomorphism of f.

 DEFINITION. A homomorphism f on T* is called

 (1) a coding if for each a in T, f(a) is a symbol,

 (2) a weak coding if for each a in T, f(a) is either a symbol or the empty word e,

 (3) a weak identity if for each a in T, f(a) is either the symbol a itself or the
empty word e.

 DEFINITION. A deterministic generalized sequential machine (dgsm) with accepting
states is a 6-tuple A=(Q, T, D, d, qo, F), where

Q : a finite set of states, T: a finite set of input symbols, D: a finite set of
 output symbols, d: transition function from Q>< T to Q x D*, qo : the initial state

 in Q, and F: a subset of Q (a set of final states).

The function d is extended to Q x T* as follows : for q in Q, x in T*, a in T,

 d(q, e)=(q, e),

 d(q, ax)=(r, y)
where

y=w1u'2

 d(q, a)=(p, w1), d(p, x)=(r, w2) for some p in Q, w1, w2 in D*.

Let f A be a mapping defined by

 fA(x)=y iff d(qo, x)=(p, y) for some p in F.

The mapping fA so defined is called a dgsm mapping of A.

 NOTATION. Let T be a finite alphabet. For a word w=a1•••a,i(n>0) in T*, the

(jversion w denotes al. • • an. Further, wR denotes the reverse an • • •a1.

 2.2 Logic programs and their languages

 This subsection introduces the concepts of a logic program and its associated lan

guage we shall deal with in the subsequent sections. We assume the reader to be
familiar with the rudiments of mathematical logic.

 DEFINITION. A logic program is a finite set of Horn clauses, which are universally

quantified logical sentences of the form

A—B1i •••, Bn (n>0)(C)

where the A and the B's are atomic formulae. In the above clause (C) A is called

the clause's head, while B's are called the clause's body. If n=0, then we simply
donote it by A instead of AE—.

 Atomic formulae occurring in a logic program are called goals. A program is

said to be dominated by a goal if the predicate name of the goal occurs only once as

the head of a clause in the program.

 Notational Convention (i) We use upper-case letters such as X, Y, Z for variable

Representation theorems and primitive predicates for logic programs 23

symbols and lower-case letters such as x, y, z for ground terms. For terms, letters
t, s, r are often used. The boldface versions like P, Q are used for logic programs,
while normal upper-case letters like P, Q are used for goals, and lower-case letters p, q
for goal names.

 (ii) For a logic program dominated by a goal, we sometimes refer to the program
in terms of the name of the goal. In such a case it is assumed that the program name
is the capital letter P of the goal name "p".

 DEFINITION.
 Let P be a logic program and Q a goal. If there is a refutation of a goal Q

from P, then we say P succeeds on Q, or Q succeeds (in P).
 In this paper we are concerned with logic programs whose data domains are finitely

generated by a fixed set of symbols.
 DEFINITION. Let P be a logic program. The Herbrand universe of P is the set

of all ground terms constructable from the set of constants C and the set of function
symbols F occuring in P, and we denote it by D(F, C). Then, a logic program P is
called a logic program over C if F comprises only one function symbol, and its Herbrand
universe is denoted by D(C).

 As shown below, any Herbrand universe for a logic program can be coded in an
appropriate manner into the domain D(T) constructed from some fixed finite set of
symbols T. In other words, any ground term which possibly appears in a program can
be taxen as a word over some finite alphabet T.

 LEMMA 2.1 There exist a fixed finite set of symbols T and a one-to-one mapping f
such that for any logic program P with the domain D(F, C) and for any goal p(X1i • • •,
Xn) there exist a logic program P' with the domain D(T) and a goal P'(X) with the
property that P succeeds on p(x1i • • •, xn) if P' succeeds on p'(x), where x= f (x1, • • •, xn),
PROOF. Let g1i g2, • • • be an enumeration of all function symols occurring in D(F, C)
of P. (Note that a constant k can be taken as a 0-ary function symbol as in k().)

 Introduce a mapping c from the set D(F, C) to the set of lists as follows :
 for a term t=gi(s1i •••, s,n) (m>0),

c(t)=[%, ®i, $, s, c(s1), ..., c(sn,),] .

 wherh "[" and "]" are the list notation, $, $, ®, % are
 new symbols, and ®i denotes a sequence ®, • • •, ® of i ®s.

Further, for an n-tuple of terms (t1, • • •, tn), let f be defined by

f(t1, ••., tn)=flatten ([c(t1), #, •••, #, c(tn)]),

 where "flatten" is a mapping of flattening lists,
 is a new symbol (argument separator).

Define p'(X) as follows :

p'(X)E- flat(X1, ..., X,, X), p(X1, .•., X.)... (C0)

 where flat(X1, • • •, X, , X) succeeds if X = f (X1, • • •, Xn).
Further, let P' be PU { Co }. Then, it is easily seen that P' succeeds on p'(f (x1, xn))
if P succeeds on p(x1f •••, xn) for xi in D(F, C). Let T={#, $, $, ®, %, NIL}, where

24T. YoxoN1oxi

NIL denotes empty list, then D(T) is the set of lists constructed from T and the
unique function symbol of the list constructor. Obviously, this satisfies the desired

conditions. ^

Thus, it is sufficient for general discussion to deal with only logic programs over some

fixed finite set.

 Conventions. (1) In what follows, it may be assumed that (i) a logic program

over T has the domain of all lists constructed from a finite set of constants T, and (ii)

otherwise specified, a goal is assumed to be a 1-ary predicate.

 (2) As a notetion, given a finite set of symbols T and a word w=a1•••an on T*,
the boldface w denotes the list version [a1, • • •, an].

 Logic programs together with goals are classified by the types of their associated

languages.

 DEFINITION. Let P be a logic program over a finite set of symbols T and Q(=q(X))

be a goal in P.

 (i) A language over T defined by

 L(P, Q, T)= { w in T*IP succeeds on q(w) }

is called the success language of Q in P. In this case L(P, Q, T) is often denoted by

L(P, q, T). If P is dominated by p(X) or a program "P" is named after the goal

name "p" then we simply write L(P, T) and call it the success language of P.

Futher,

 (ii) a logic program P is called X if L(P, Q, T) is an X language for all goal Q
in P.

 (iii) Let p(X, Y) be a goal dominating P, and for x in T*, let fp(x)=y in T*IP
succeeds in p(x, y)}. Then, a logic progam P is called

 (1) homomorphism if fp is a homomorphism,

 (2) (weak) coding if fp is a (weak) coding,

 (3) weak identity if fp is a weak identity,
on T*.

Finally,

 (iv) let P and P' be two logic programs over T, and let p(x) and p'(X) be goals
in P, P', respectively. Then P with p(x) and P' with p'(X) are equivalent if L(P, p, T)
=L(P' , p', T).

 We end this section with presenting a result showing the expressive capability of

logic programs we are dealing with in this paper.

 It has been shown in literature (e.g. [12], [13]) that for any recursively enumerable

language L over T, there exist a logic program P over T and a goal Q such that L

is the success language of Q in P. Conversely, it is shown that for any logic pro

gram P over T and a goal Q, the success language L(P, Q, T) is a recursively enu
merable language, which is proved by constructing a Turing machine simulating the
resolution process for Q from P and accepting the success language of Q in P ([11]).

(Note that a language is recursively enumerable if and only if it is accepted by a
Turing machine.)

Hence, we have the following :

Representation theorems and primitive predicates for logic programs 25

 THEOREM 2.1 The class of success languages of logic programs is equal to the class
of recursively enomerable languages.

 It may be possible to state that the success language of a logic program provides

us a kind of modeltheoretic semantics (or denotional semantics) for logic programs.

 3. Representation Theorems

 In this section several representation theorems for logic programs are presented.

Most of them are easily obtained from the corresponding results in formal language

theory

 3.1 Generator programs for logic programs

 We shall show that there exists a fixed logic program from which for any logic

program an equivalent logic program can be obtained in terms of the composition of
simpler programs. Such a fixed logic program may be called generator program.

 [1] Generator Program Ro
 First we shall show that there exists a fixed simple program which plays a role

of generator for the class of logic programs. Such a program can be obtained by

making a slight modification to "reverse" program.
 LEMMA 3.1 For any recursively enumerable language L over an alphabet T there

N exists a simple deterministic language Sp on K+K+ (for some alphabet K including T),
and a weak identity h such that L=h({wiORI w in K+}fSp), where Sp={x¢¢y"RJf(x)=y},
f is a dgsm mapping of A=(Q, K, D, d, qo, F) depending L, h onpreserves the alphabet
of L and erases other symbolds.
(See Theorem 11 in [4])

 THEOREM 3.1 (Representation Theorem 1) Let T be a fixed alphabet. Then, there
exists a fixed logic program Ro with the property that for any logic program P over T
with a goal p(X) one can find an equivalent logic program P' with a goal p'(X) such
that it can be expressed by

p'(X)-ro(X, Y), sp(Y)(3-1)

for some simple deterministic program Sp.
 PROOF. From Theorem 2.1 and Lemma 3.1, for any logic program P over T with

a goal p(X) there is a simple deterministic language Sp on K+K and a weak identity
h such that L(P, p, T)=h({wivRIw in K+}fSp), where Sp={x¢¢y"RIf(x)=y}, f is a dgsm
mapping of A=(Q, K, D, d, qo, F) depending on L(P, p, T), and h(a)=a (for all a in T),
h(a)=e (otherwise).
Construct three logic programs so that MT, IT and Sp may determine the language
M0(= { wiuR j w in K±}), h, and Sp, respectively.
(1) MT is defined as follows :

mT(X)<ml(s1i X, [])

ml(s1i [al X], Y)Fml(s1, X, [a l Y]) (for all a in K)

ml(s1, [a I X], Y)<-ml(s2i [a I X], Y) (for all a in K)

ml(s2, [], [])

26T. YOKOMORI

 ml(s2, [a I X], [a I Y])<-ml(s2, X, Y) (for all a in K)

Clearly MT determines the mirror image language, i.e., L(MT, KUK)={wzVRI w in K+}.
(2) IT is defined as follows :

Zr([1,C])

iT([a I X], Cal Y])<-iT(X, Y) (for all a in T)

iT(X, [al Y]) —iT(X, Y)(for all a not in T)

IT is a simple projection mapping which preserves symbols from T and erases
others.
(3) Sp is defined as follows :

sp(X)<sl(g1, X, C])

sl(g1, [a] X], Y)<—sl(g1, X, Cal Y])(for all a in KU { ¢ })

sl(q 1, COI Xi, COI Y])<-s1(q f, X, Y) (for all q f in F)

sl(g0,C],C])

 sl(q, [wR I X], [a I Y])—sl(p, X, Y)(for all d(p, a)=(q, w))

where A=(Q, K, D, d, qo, F) is a dgsm A given in Lemma 3.1. Then, L(Sp, KUKU
{0, ¢})={x¢¢yR]f(x)=y, x in K*}.

 Let P' be a logic program defined by p'(X)<—iT(X, Y), mT(Y), sp(Y). It is easily
seen that for x in T*, x is in L(P, p, T)

iff there exists y such that x=h(y) and
 y is in MonSp

iff there exists y such that
IT succeeds on ir(x, y),
Sp succeeds on sp(y), and

 MT succeeds on mT(Y)
iff P' succeeds on p'(x) .

Let R. be defined by ro(X, Y)<—iT(X, Y), mT(Y). (Since T is fixed, R. is a fixed
program.) Thus, p'(X) can be expressed as the desired form (3-1). ^

 [2] Generator Program Mo
 We show that a kind of "merge" program can also play a role of generator as

well as the program Ro.
 LEMMA 3.2 For any recursively enumerable language L over an alphabet T there

exist a weak identity h and a regular language R such that L=h (shuffle(K)nR), where
K is some alphabet including T, shuffle (K)={xlyl•••xny"nl xl•••xn=y1•••yn in K*}, R=
f(K*), f is a mapping induced by a dgsm B=(Q, K, KUD, d', qo, F) defined by a dgsm
A=(Q, K, D, d, q0, F) depending on L, d'(q, a)=(p, aiu) if d(q, a)=(p, w), h preserves
the alphabet T and erases other symbols.
(See Theorem 13 in [4])

 THEOREM 3.2 (Representation Theorem 2) Let T be a fixed alphabet. Then, there

Representation theorems and primitive predicates for logic programs 27

exists a fixed program Mo with the property that for any logic program P over T with

a goal p(X) one can find an equivalent logic program P' with p'(X) such that it can be

expressed by

p'(X)E—mo(X, Y), rp(Y)(3-2)

for some regular program Rp.
PROOF • Analogous to the proof of Therem 3.1, it suffices to show that the follow

ing three logic programs satisfy the condition stated in Lemma 3.2.

(1) MET is defined by

meT(X)—mel(X, [], [])

 mel([], X, X)

mel ([a I X] Y, Z)E-mel(X, Y, [a I Z]) (for all a in K)

mel([a I X], Y, Z)+—mel(X, [a I Y], Z) (for all a in K) .

MET determines what is called the twin shuffle language, i.e.,

 L(MET, TUT)={xlyl...xnyn 1 xl...xn=yl...yn in K*}.

(2) IT is the same as the one defined above in the proof for Theorem 3.1.

(3) Rp is defined :

 Let A=(Q, K, D, d, Po, F) be a given dgsm in Lemma 3.2.

rp(X)F—rl(p0, X, [])

r1(p, [al X], Y)-rl(Pa ., X, [aI Y]) (for all d(p, a)=(q, w))

rl(Pa, [iv], [aI Y])+—rl(q, X, Y) (for all d(p, a)=(q, w))

rl(p f, [], []) (for all p f in F)

L(Rp, KUK)= {alwl...anwn I d(po, al...an)=(q, wl...u,n), q in F} =f(K*).

 Let Mo be defined by

m0(X, Y)<-iT(X, Y), meT(Y)•

(Again since T is fixed, Mo is a fixed program.) Further, let P' be defined by p/(X)
E—m0(X, Y) , rp(Y). To complete the proof it suffices to check if the following relation
holds : for x in T*, P' succeeds on p'(x) iff x is in L(P, p, T). ^

 [3] Generator Program Do
 It is demonstrated that a program which behaves as a checker for wellpairedness

can be a generator for the class of logic programs.

 LEMMA 3.3 For any recursively enumerable language L over T, there exist a linear

 N grammar GL=({S}, T'UT', PL, S) and a weak coding h satisfying the following pro

perties that
(i) L=h(Drf1L(GL)),

 (ii) T is a subset of T', and h(a)=a (for all a in T),

28T. YOKONIORI

 h(a)=e (for all a in T'UT'-T),

 (iii) PL={S->uiSvIIl<i<n}f{S--*w}, where w, ui, vi(1<i<n) are in (T'UT')*, DT
is the Dyck language over T' (r: the cardinality of T'), T'= { a la in T'}.

(See [7] for the proof.)

 Important Remarks.

 (1) A linear grammar GL, which is called a minimal linear grammar ([2]), depends
on L, while h depends on only T.

 (2) A careful and patient observation of the proof for Lemma 3.3 in [7] leads to
the fact that by making a slight modification one can obtain another GL with its addi
tional property, that is,

 (iv) none of the two among w, u1, vi(1 <i <n) is identical, each of them is nonempty
and w does not depend on L.

 THEOREM 3.3 (Representation Theorem 3) Let T be a fixed alphabet. Then, there
exists a fixed program Da with the property that for any logic program P over T with
a goal p(X) one can find an equivalent logic program P' with a goal p'(X) such that it
can be expressed by

p'(X)—do(X, Y), linz,(Y)(3-3)

for some linear program LINE.
 PROOF. From Theorem 2.1 and Lemma 3.3 for any logic program P over T and a

goal p(X) there exist a homomorphism h from (T'UT')* to T* and a linear grammar
GL with the property described above, and that x is in L(P, p, T) if there is y such
that h(y)=x and y is in DrnL(GL), where r is the cardinality of T'.

 Construct two logic programs DT, LINE so that it may hold that (i) L(DT, T'ut')
 N =Dr, and (ii) L(LINp,T'UT')=L(GL) :

(1) dT(X)+--dyck(X, [])

 dyck([], [])

dyck([a l X], Y)Fdyck(X, [a I Y]) (for all a in T')

dyck([a IX], [al Y])Edyck(X, Y) (for all a in T')

(2) linp(X)lin(p1, X, [])

lin(p1i [w j X], Y)Elin(p2i X, Y) (w is the word such that S-->w in PL)

lin(p2, [], [])

lin(p1i [ui IX], Y)<lin(p1, X, [ui 1 Y]) (for all S>uiSvi in PL of GL)

lin(p2i [vi X], [ui I Y])Elin(p2i X, Y) (for all S>uiSvi in PL of GL).

 N

 Since it is almost obvious that L(DT, T'~JT')=Dr, we shall check that L(LINE,

 N T'UT')=L(GL). For any x in L(GL), there is a sequence of production rules r1, •••,

r k, ro such that

x=ui1 uikwvik vil, r; : S*ui,Svi;(1<j<k) and ro : S-*w.

Representation theorems and primitive predicates for logic programs 29

Let x=x1ux2, where x1=ui1•••uik, x2=Vik*••• vi1, then we have that linp(x) succeeds if lin(p1i
x, []) succeeds, and that lin(p1i x1wx2, []) succeeds if lin(p1i wx2, f(x1)) succeeds, if
lin(p2i x2, f(x1)) succeeds, if lin(p2i [], []) succeeds, where f is defined by f(e)=e ,
f(u;x)=f(x)f(u;) for u; in {u1, x in {u1, , /JO*.
Thus, we eventually have linp(x) succeeds. The converse relation is straightforwardly

proved. Hence, it is obtained that L(LINP, T'UT')=L(GL).
 Now, let Do be defined by do(X, Y)<-iT(X, Y), dT(Y), where iT(X, Y) is a pre

dicate already appeared in Theorem 3.1 and Theorem 3.2. (Since T is fixed, so is Do.)
Further let p'(X)E—do(X, Y), linp(Y). To complete the proof, we have only to show
that p'(x) succeeds iff x is in L(P, p, T), and this is easily checked in the following
way :

p'(x) succeeds if there is y such that iT(x, y), dT(y), and
linp(y) succeed

if there is y such that h(y)=x, y in L(DT,
 and y in L(GL)

if x is in L(P, p, T). ^
 REMARK (i) A program DT whose success language is a Dyck language works

for checking "wellpairedness" of an input string in Do.

 (ii) A program structure of LINE is quite similar to that of Sp in Theorem 3.1.
 Later we will discuss the close relationships among these generator programs and

what operations are really primitive for expressing logic programs.

 3.2 Decomposing logic programs

 As we have seen in the previous subsection, a logic program can be expressed as

a conjunctive formula comprising a simpler program consisting of two components.

Further, one of the two is quite simpler than the other in that it just works as a

simple homomorphism (actually, a weak identity mapping).

 We shall show a representation theorem for logic programs in which for any logic

program one can find an equivalent logic program expressed as a conjuntive formula of
two fixed programs and three simple homomorphism programs. Exactly, one of the

three can be fixed.

 LEMMA 3.4 For any simple deterministic (context free) language L, there exist a

coding f and a homomorphism h such that L=f(12-1(¢D2)), where D2 is a Dyck language,

¢ is a (new) symbol.
 (The way of the proof for Lemma 3.4 is similar to that of the proof for the main

theorem in [5]. See Appendix for the proof.)
 This lemma leads to another representation for logic programs which may be

called "decomposition theorem" for logic programs.

 THEOREM 3.4 (Representation Theorem 4) Let T be a fixed alphabet. Then, there

exist fixed logic programs I, D and M with the property that for any logic program P

over T with a goal p(X) one can find an equivalent logic program P' with a goal p'(X)

such that it can be expressed by

 Y), m(Y), f p(Y, V), hp(V, Z), d(Z) (3-4)

30T. YOKOMORI

for some coding program Fp and a homomorphism program Hp.
 PROOF. From the proof of Theorem 3.1 there exist fixed programs MT and IT

such that for a given logic program P with a goal p(X) one can have an equivalent
logic program P' with a goal p'(X) such that it is expressed by p'(X)<—iT(X, Y),
sp(Y), for some simple deterministic program Sp. Further, Lemma 3.4 tells that there
exist a coding fL and a homomorphism hL such that L(=L(Sp, KUK))=fL(hi.1(¢D2)).
Let I be IT and M be MT. Then, it suffices to show that one can construct a coding

program Fp, a homomorphism program Hp and a fixed program D such that (i) D
determines the Dyck language ¢D2 and (ii) sp(Y) can be expressed as a conjunctive
formula of f p(Y, V), h p(V, Z) and d(Z).

 Define Fp, Hp and D as follows :

fp([], [])

fp([a I X], [b I Y])<—f p(X, Y) (for all f L(b)=a)

hp([], [])

hp([b I X], [x1, •.., x . I Y]<—h p(X, Y) (for all hL(b)=xl...xm.) .

d(X)—unif(X, [01 Y]), dyck(Y, [])

 dyck([], [])

dyck([a11 X], Y)-dyck(X, [a11 Y])

cyck(Ca2I X], Y)4—dyck(X, [(12137])

dyck([al I X], [ail Y])<—dyck(X, Y)

dyck(Ca21 X], Ca2 1 Y])<—dyck(X, Y)

 where unif(X, (X, Y) succeeds if X and Y are unifiable.

Clearly, L(D, {a1, a2, a,, a2, ¢})=¢D2, and it is easily seen that Sp succeeds on sp(y)

 N ify is in L(Sp,KUK)

if there exist v and z such that fL(v)=y, hL(v)=z

if there exist v and z such that

Fp succeeds on f p(y, v) ,

Hp succeeds on h p(v, z), and

 D succeeds on d(z).

This implies that sp(Y)<—f p(Y, V), h p(V, Z), d(Z). ,Thus, eventually, we have that

p'(X)E—(X, Y), m(Y), fp(Y, V), hp(V, Z), d(Z). This completes the proof. ^
 REMARK. The teaching of Theorem 3.4 is that using two fixed logic programs

M (a modified "reverse" program) and D (a "checking wellpairedness" program) any
logic program P can be reducible into three homomorphism I, Fp and Hp that have a

very simple structure.

Representation theorems and primitive predicates for logic programs31

 4. What are Primitives?

 We have seen in Section 3 that several specific types of logic programs can play

a significant role as a generator in expressing logic programs . In this section we
shall discuss this issue on generator in more detail.

 4.1 Primitives for generators
 Getting back to the representation theorems , a generator program Ro in (3-1) of

Theorem 3.1 was constructed from a weak identity program IT and a logic program

MT, i.e.,

ro(X)-iT(X, Y), mT(Y)
where

[0] zr([], C])

ir(Ca I X), Ca I Y])E—iT(X, Y) (for all a in T)

iT(X, [aI Y])<-iT(X, Y) (for all a not in T), and

we observe that mT(X) can be redefined as follows :

[1] mr(X)Eappend(Y, Z, X), copy(Y, Y'), reverse(Y', Z)

copy([], C])

copy([a I X], [a I Y])Ecopy(X, Y) (for all a in K)

 reverse([], [])

reverse([X I Y], Z)+-reverse(Y, T), append(T, [X], Z) .

Similarly, from an observrtion of a generator program Mo in (3-2) of Theorem 3.2 we

have:

mo(X)E-ir(X, Y), mer(Y)

where

[2] meT(X) merge(Y, Z, X), copy(Y, Z)

 merge(X, [], X)

 merge([], X, X)

merge([a I X], Y, [a I Z])<merge(X, Y, Z) (for all a in K)

merge(X, [a I Y], [a I Z])Emerge(X, Y, Z) (for all a in K)

Further, a generator program Do in (3-3) of Theorem 3.3 is analysed as follows :

do(X)E-iT(X, Y), dT(Y)

where

[3] dr(X)E-dyck(X, [])

 dyck([], [])

32T. YOKOMORI

 dyck([a ^ X)<-dyck(X, [a ^ Y]) (for all a in T')

dyck([a ^ X], [a ^ Y])<-dyck(X, Y) (for all a in T') .

It is easily seen that each generator contains a common homomorphism (exactly weak

identity) program IT which serves as a kind of "filter". That means the essentially

unique parts of generator programs are mr(X), mer(X) and dT(X).

 Thus, it is possible to say that "append", "copy", "merge", "dyck" are all primitives

for a generator program in the representation theorem. However, noting that "copy"
is a special type of a homomorphism program and "append" and "dyck" are restricted

versions of "merge", we may conclude that the filtering function ("homomorphism") and

the merging function ("merge") are fully primitive for expressing logic programs.

 4.2 Extended reverse programs

 We shall show there exists a type of logic program which can take the place of

various basic programs appearing in the representation results.
 Let f be a mapping from T* to K*. Then, consider a logic program dominated

by a predicate "(f)reverse(X, Y)", which is defined by (f)-reverse(x, y) succeeds iff so

does reverse(f(x), y). We call this extended reverse program. (Notice that if f is an

identity, then (f)reverse(X, Y) is an ordinary "reverse" predicate.)
 EXAMPLE 1. Let f be defined by f (a) = a, f (b) =6, f(c)=-E'. Then, (f)-reverse (X, Y)

may be, for example, defined as follows :

 (f)reverse(X, Y)<—rev(X, [], Y)

 rev([], X, X)

rev([a ^ X], Y, Z)<—rev(X, [a ^ Y], Z)

rev([bI X], Y, Z)<—rev(X, [6^ Y[, Z)

rev([c ^ X], Y, Z)<—rev(X, [c ^ Y], Z) .

Let p(X)-append(Y, Z, X), (f)reverse(Y, Z), then the success language of this pro

gram { wibR ̂ w in { a, b, c}*} is context-free.
 Now, let us see the next one.

 EXAMPLE 2. Let f be a mapping defined by f(x)=V, for all x in T*. Then, it

is seen that

(f)reverse(x, y) succeeds iff reverse(f(x), y) succeeds
iff reverse(.xR, y) succeeds

iff

Let P be a program dominated by p(X)-append(Y, Z, X), (f)reverse(Y , Z). Then,
the success language L(P, TU) is {ww^w in T*} which is contextsensitive .

 Thus, (f)reverse can define a number of different classes of logic programs by

varing a mapping f.
 Now we wish to call back one's attention to the representation theorems . In the

representation formula (3-1) of Theorem 3.1 a logic program can be expressed by

Representation theorems and primitive predicates for logic programs 33

 p(X)<-ro(X, Y), sp(Y), where

(0) ro(X, YE)iT(X, Y), mT(Y)

(1) sp(X -sl(Q1f X, [])

sl(gl, [al X], Y)s1(Q1, X, Cal Y]) (for all a in KU { ¢ })

sl(Q1, C¢ I X], CO I Y])<—sl((q f, X, Y) (for all q f in F)

sl(go, C], C])

(2) sl(q, [i2R I X], [a I 17])~-sl(p, X, Y) (for all d(p, a)=(q, w))

 where A=(Q, K, D, d, go, F) is a dgsm.

Let fT be defined by f r(a) = a (for all a in T). Then, it is easily seen that

niT(X)<--append(Y, Z, X), (f r)reverse(Y, Z) • • • (F1) .

Further, letting f p be a mapping defined by f p(x) =f (x), where f is a dgsm mapping
induced by A, then we have

sp(X)Eappend(Y, Z, X), (fp)reverse(Y, Z)•••(F2).

 Recall the representation formula (3-3) of Theorem 3.3 in which a logic program
can be expressed by

p(X)E-do(X, Y), linp(Y)
where

(3) linp(X)÷---lin(p1i X, [])

 for each rule S->uSv in PL of GL,

lin(p1i Cu l X], Y)~lin(p1, X, Cu l Y])

lin(p1, [w I X], Y)lin(p2i X, Y) (S-*w in PL)

lin(p2, C], C])

lin(p2, Cv I X], Cu l Y])E-lin(p2, X, Y) .

GL=({S}, T', PL, S), •••,

Let f be defined as follows :

f(u)=vR for all S-*uSv in PL

 f(uu')=f(u)f(u') for all u, u' in {u1i •••, un}*
Here we claim that

 linp(x) succeeds if append(y, wz, x) and (f)reverse(y, z) succeed for some y, z.
Since L(LINp, TUI')=L(GL), which is proved in the proof of Theorem 3.3, for the

purpose of verifying the claim it suffices to show that x is in L(GL) iff append(y, wz, x)
and (f)reverse(y, z) succeed for some y, z in T'*. For any x in L(GL), there is a
sequence of rules r1, • • •, r k, ro such that

34T. YOKOti1oRI

x=uil"'uikwvik"'vi1, r: S->ui;Svi;(1<j<k) and ra : S—>w.

Hence, let x=x1wx2i where x1=u11 uik, x2=vik•••vii, then we have that append(x1i

wx2, x) succeeds and (f)reverse(x1, x2) is invoked. By the definition of f, f(x1)=
{{ J (uil"'uik)=vi1R"'vikR=(vik"'vi1) =x2 Since (f 2)reverse(x1i x2) succeeds if reverse
(f (x 1), x2) succeeds, we have that (f)reverse(x 1i x2) succeeds. The converse relation
is proved in a similar manner. Thus, we eventually have

linT(X)<—append(Y, [w I Z], X), (f)reverse(Y, Z)•••(F3)

 It should be noted that for a homomorphism h, if one define a mapping f h by

f h(x)=h(x)R, then (f h)reverse(x, y) succeeds if h(x)=y. Hence, a weak identity pro
gram IT dominated by iT(X, Y) and involved in all representation results is expressed
by

 iT(X, Y)<—(f h)reverse(Y, X)•••(F4)

 Summarizing our argument on the use of extended reverse programs for express
ing various types of basic elements in the representation results, from (F1), (F2), (F4)

and (3-1) we obtain another representation theorem for logic programs.

 THEOREM 4.1 (Representation Theorem 5) Let T be a fixed alphabet. Then, there

exist mappings fn, fT with the property that for any logic program P over T with a

goal p(X) one can find an equivalent logic program P' with a goal p'(X) such that it is
expressed by

p'(X)'—(f h)reverse(Y, y), append(Z1, Z2, Y), (f T)reverse(Zl, Z2) ,

append(W1i W2, Y), (f p)reverse(W1, W2)

for some mapping f P.

 5. Concluding Remarks

 Through the formal language theoretic formulation, we have shown several repre

sentation theorems for logic programs. First, we introduced the concept of the success

language of a logic program, and associating a logic program with its success language

we gave a formal language theoretic semantics of logic programs.

 Further, using the language theoretic semantics several representation theorems

for logic programs were provided in which some types of fixed logic programs called

generator programs play central roles in the representation.
 Then, it has been considered the problem of what operation is primitive for the

representation of logic programs. It was shown that the filtering function by a homo

morphism and the merging function are sufficiently primitive in the sense that for any

logic program one can find an equivalent logic program which is expressed within the

use of combination of these two programs.

 Finally, by introducing the concept of an extended reverse predicate, it has been

proved that one need only "append" and "extended reverse" functions in representing
logic programs.

 For the future research in this direction, using a modeltheoretic semantics in

Representation theorems and primitive predicates for logic programs 35

terms of the success language one may discuss many issues on the properties of a

logic program such as program transformation, program classification, program synthesis,

and so forth, some of those which we are about to work on.

 Acknowledgements

 The author is indebted to Dr. Tosio Kitagawa, the president of IIAS-SIS, Dr.

Hajime Enomoto, the director of IIAS-SIS, for their useful suggestion and warm encou

ragement.

 He is also grateful to his colleagues, Toshiro Minami, Taishin Nishida who worked

through an earlier draft of the paper and suggested the present improved formulation.
 This is a part of the work in the major R & D of the Fifth Generation Computer

Project, conducted under program set up by MITI.

 References

[1] COLMERAURER, A., Les systemes-Q ou un formalisme pour analyser et synthetiser des
 ordinateur, Internal publication no. 43, Dept. d'Informatigue, University de Montreal, Ca
 nada, September, (1970).

[2] CHOMSKY, N. and SCHUTZENBERGER, M. P.: The algebraic Theory of context free langua
 ges, in "Computer Programming and Formal Systems (Braffort and Hirschberg, eds.),

 NorthHolland, Amsterdam, (1962), 118-161.
[3] VAN EMDEN, M. H. and KOWALSKI, R. A., The Semantics of Predicate Logic as a Pro

 gramming Language, JACM 23, (1976), 733-742.
[4] ENGELFRIET, J. and ROZENBERG, G., Fixed Point Languages, Equality Language, and

 Representation of Recursively Enumerable Languages, JACM 27, (1980), 299-518.

[5] GREIBACH, S. A., The Hardest Context-free Language, SIAM J. Computing 2, (1973), 304
 310.

[6] HARRISON, M. A., Introduction to Formal Language Theory, AddisonWesley, (1978).
[7] HIROSE, S., OKAWA, S. and YONEDA, M., A Homomorphic Characterization of Recurable

 Languages, Theoretical Computer Science 35, (1985), 261-269.

[8] HOPCROFT, J. E. and ULLMAN, J. D., Introduction to Autroduction to Automata Theory,
 Languages, and Computation, AddisonWesley, (1979).

[9] KOWALSKI, R., Predicate logic as a programming language, In Proceedings of IFIP-74,
 (1974), 569-574.

[10] SALOMAA, A., Formal Languages, Academic Press, 1973.
[11] SHAPIRO, E. Y., Alternation and the Computational Complexity of Logic Programs, J.

 Logic Programming 1, (1984), 19-33.

[12] TARNLUND, S. A., Horn Clause Computability, BIT 17, (1977), 215-226.
[13] YOKOMORI, T., A Logic Program Schema and Its Applications, In Proceedings of 9 th

 IJCAI, UCLA, CA, (1985), 723-725.

 Appendix [The proof of Lemma 3.4]

 We show the following : for any simple deterministic grammar G, there exist a

simple deterministic grammar Go, a coding f and a homomorphism h such that L(G)=

f(L(G0)) and L(G0)=h-1(¢D2). This immediately completes the proof.
 Let G=(N, T, P, So) be a simple deterministic grammar such that L=L(G), where

N= { A1(= S0), • • •, An l. We may assume that So does not appear in the right-hand side

36T. YOKOtiloR1

of any rule in P.

 Construct a simple deterministic grammar Go=(1Nr, T', P', So) as follows : T'= { [A,

a] j A—*ax in P}, P'= { a]x I A--ax in P}. Define f by

f ([A, a])=a for [A, a] in T'.

Then, it is obvious that Go is simple deterministic and L(G)= f (L(Go)) holds.

 Now, since G is simple deterministic, one can define a homomorphism h from T'*

into {a1, a2, a1, a2, ¢}* by

h(CAi, a])=ala2ialala2imal...ala2'lai,

 if Ai—÷aA;l•••A;,r. in P and i#1,

h(CA1, a])=¢ala2imal.•.ala2'lal,

 if Al*aAj1•••Ajm in P,

h([Ai, a])= ala2ial if Ai—*a in P and

h([A1i a])=¢ if Al—*a in P.

It suffices to show that L(G0)=h1(¢D2) holds.

We claim the following: for b1, , bk in T', Ail, •••, Air in N— All, we have

Al----)1b1...bkAi1...Air(r>-0) in Go iff

 (1) h(bl•••bk)=¢yl•••yk is a prefix of a word in ¢D2,
and

 (2) red(¢y1•••yk)=¢ala2fa1•••ala2i1a1, where "red" is a mapping defined by

red(e)=e ,

red(¢)=¢ ,
for i=1, 2

red(xai)=red(x)ai ,

red(xai)=red(x)ai if red(x) not in {al, a2i al, a2}*{ai},

red(xai)=x' if red(x)=x'ai .

(Note that indicates the k step left-most derivation, i.e., k consecutive rewriting
steps in which the left-most nonterminal is always rewritten, and it is well-known that

any word generated by a simple deterministic grammar has the unique left-most deriva

tion for it. Further, from the property of a simple deterministic grammar, the length

of a word generated exactly equals to the number of derivation steps used. A mapp
ing image red(w), the reduced word, is the final resultant obtained by repeatedly

cancelling all pairs aiai.)

 It should be noted that the claim suffices to prove the lemma. We shall prove

the claim by induction on the length of dervation steps.

[k=1] Suppose that Al=b1 or Air. There exists A1—>b1 or A1-~b1Ai1•••
Air in P'. Then, h(b1)=¢ or h(bl)=¢ala2ira1...ala2ilal. Clearly condition (2) holds for

Representation theorems and primitive predicates for logic programs 37

either case. Conversely assuming (1) and (2) for k=1 gives us that h(b1)=¢y1 is a

prefix of a word in ¢D2 and red(¢y1)=¢ala2iral ••• ala2ilal. From the way of constructing
h, if red(01)=¢(r=0), i.e., yi isin D2, then we have A1—>b1 is in P' , leading to
A1=bl.Otherwise, h(b1)=¢y1—y-a1a2Zra1•••ala2ilal implies that A1—>b1Ai1 Air is in P'.
This verifies the case k=1.

[Induction step] Suppose that ••bkAil•••Air(r>_1) and Ail—>bk+lA;l•••A;„L(m>0)
is used at the (k+1)-th step. Let h(bk+l)=yk+1• By the induction hypothesis ,

red(¢y1•••yk)=¢aia2irai.••ala2ilal. Then, we have

red(h(b1•••bk+l))=red(¢y1.• k+l)

=¢ala2iral...aia222alaia2Jma1.. •a1a2J1a1

(Note that yk+l=ala2ila1a1a2;mal...ala2'lal•)
This also implies that h(bl•••bk+l) is a prefix of a word in ¢D2. Since •

bk+lA;l•••A;mAi2•••Air, the `only if' part of the proof is proved.
 Conversely, suppose that we have h(b1•••bk+1)=¢y1•••.Yk+1 is a prefix of a word in

¢D2 and red(¢y1•••yk+1)=¢ala2iral•••ala2ilal. From the construction of h, we have a parti
tion .

red(¢y1... yk)=¢ala2ira1.. •a1a21pa1,

 red(yk+l)=h(bk+l)= ala2talala22Sal...a1a221a1

 where there exists At—+bk+lAil•••Ais in P'.

But, since red(¢y1• • yk+l)is a word of the form ¢ala2iral• • •a1a2i1a1 there must be some
cancellation between the two, which implies that ip=t. By the induction hypothesis ,

 Al-----)11)1...bkAt...Air,

and applying At->bk+lAil•••Ais, we have ---

 Al-----)1+1b1.--bk+1Ai1...Ais...Air•

This completes the proof. ^

Communicated by T. Kitagawa

Received September 9, 1985

