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REPRESENTATION THEOREMS AND PRIMITIVE 

    PREDICATES FOR LOGIC PROGRAMS

      By 

Takashi YOKOMORI*

                     Abstract 

   We present several representation theorems for logic programs 
in terms of formal grammatical formulation. First, for a given logic 

program P the notion of the success language of P is introduced, and 
based on this language theoretic characterization of a logic program 
several types of representation theorems for logic programs are pro
vided. Main results include that there effectively exists a fixed logic 

program with the property that for any logic program one can find 
an equivalent logic program such that it can be expressed as a con

junctive formula of a simple program and the fixed program. Further, 
by introducing the concept of an extended reverse predicate, it is 
shown that for any logic program there effectivily exists an equiva
lent logic program which can be expressed as a conjunctive formula 
consisting of only extended reverse programs and append programs.

   1. Introduction 

   Since, needless to say the original work of Colmerauer and Kowalski ([1] and [9]) , 
a recent world-wide trend on FGCS conception has been one of the primary subjects, 

there are numerous work on logic programming languages and the theory of logic 

programs. It is well accepted that, among others, the research on a subset of first
order predicate logic called Horn clause logic has taken the central position in this 
area because of its importance of providing an interesting formal computation model 

for a programming language PROLOG. As is wellknown, PROLOG, based on the 

procedural interpretation to Horn clause logic, has an operational semantics determined 
by the resolution principle. In the context of the semantics of predicate logic as a 

programming language van Emden and Kowalski ([3]) have studied on modeltheoretic, 
operational and fixedpoint semantics of logic programs, while using a Turing machine 

formulation Shapiro ([11]) has defined and argued a kind of modeltheoretic semantics 

of logic programs. 

   In this paper we are concerned with establishing several representation theorems 

for "logic programs (Horn clause programs)" in terms of formal language theoretic 

formulation. In course of the formal grammatical treatment of logic programs we in

troduce the notion of the success language of a logic program over a finite alphabet,
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which turns out to be another way of providing a modeltheoretic semantics for logic 

programs. Here, by formal grammars we mean generative grammars of Chomsky, 
and it should be remarked that the theory of formal languages (e.g. [6], [8] and [10]) 

has been welldeveloped enough in itself to make a lot of contributions to other research 

areas such as the theory of logic programming. This view may be supported, for ex

ample, when we think of the similarity between the refutation process in logic pro

grams and the derivation steps in context-free grammars, and note that logic programs 
can be regarded as a kind of an extention of context-free grammars. In fact, Shapiro 
investigates the computational complexity of logic programs using the similarity of 

their operational behaviors to those of alternating Turing machines. ([11]) 

   With the help of an encoding technique it is shown that one can associate a logic 

program with a formal language (the success language mentioned above) over a finite 
alphabet. This leads to a semantic characterization of logic programs as previously 

mentioned, although that is not our primary concern in the current paper. This kind 

of semantic approach to logic programs has been already preceeded by the paper [13]. 

It has been shown that any recursively enumerable language can be specified as a 

conjunctive formula of two deterministic logic programs and one simple logic program 

that serves as a mapping on the set of words. The work in this paper is motivated 
by the result above and extends it to present a variety of the ways of representing 

logic programs. 

   In this paper we present several representation theorems for logic progams which 

assert that there effectively exists a fixed logic program (we may call it generator 

program) with the property that for any logic program one can find an equivalent 
logic program such that it can be expressed as a conjunctive formula of a simple pro

gram and the fixed program. 
   Further, by analysing components in the representation results, it is shown that 

the "filtering function" serving as a homomorphism mapping and the "merging func

tion" are sufficiently primitive in the sense that for any logic program there is an 

equivalent logic program which can be expressed within the use of combination of 

these two programs. By introducing the concept of "extended reverse", it is also 

proved that for any logic program one can find an equivalent logic program expressed 
as a conjunctive formula consisting of only "extended reverse" programs and "append" 

programs. 
   This paper is organized as follows. Section 2 is concerned with terminology, 

basic notions and results needed through the paper. In Section 3 several representation 

theorems for logic programs are established. Section 4 deals with the problem of what 
operations (predicate) is primitive for the representation formula obtained in Section 3. 

Concluding remarks and the future reseach direction are briefly given in Section 5. 

Appendix provides a proof for Lemma 3.4 which is used in the text to derive a repre

sentation result of logic programs.
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   2. Preliminaries 

   2.1 Formal grammars and their languages 

   We now introduce a generative device which plays the main role in all of subse

quent sections in this paper. 
   DEFINITION. A generative grammar is an ordered quadruple G=(N, T, P, S0) 

where N and T are disjoint finite alphabets,  So is in N, and P is a finite set of pro

duction rules of the form Q1-*Q2 such that Q2 is a word over the alphabet V=NUT 

and Q1 is a word over V containing at least one symbol of N. The elements of N are 

called nonterminals and those of T terminals ; So is called the initial symbol. 

   A word u generates directly a word v, in symbols, u=v, if and only if there 

are words u', u", Q1, Q2 such that u=u'Q1u", v=u'Q2u" and Q1-*Q2 belongs to P. 
Thus, = is a binary relation on the set V* (the set of all words over V including 

empty word e). We denotes V*{e} by T. Let be the reflexive, transitive 

closure of =. The language L(G) generated by G is defined by 

L(G)= {w in T* I So*w}. 

L(G) is called a language over T (or on T*). 

   Grammars are, in general, classified by the form of production rules, which yields 
a hierarchy of corresponding language families. 

   DEFINITION. A generative grammar is also called phrase structure grammar. Let 

G=(N, T, P, So) be a phrase structure grammar. Then, G is called 

   (i) context-free if each production rule is of the form X->Q, where X in N, 
and Q in V*, 

   (ii) regular if each production rule is one of the two forms X-*a or X->aY, 
where a in T and X, Y in N, with the possible exception on the production rule S0-4e 
whose occurrence in P implies that So does not occur on the right hand side of any 

rule in P. 

   DEFINITION. (1) Let G=(N, T, P, So) be a context-free grammar with the property 
that (i) every rule in P is of the form A->ax, where A in N , a in T, x in N*, and 
(ii) for all A in N, a in T, A--->ax and A-->ay in P implies x=y. Then, G is called 
simple deterministic. 

   (2) A context-free grammar G=(N, T, P, So) is called linear if P consists of the 
rules of the form : A->uBv, or A->w, where A, B in N, u, v, iv in T* . 

   DEFINITION. Let L be a subset of T* for some alphabet T, and let X be in 

{ phrase structure, context-free, simple deterministc, linear, regular }. Then, L is called 
an X language if L=L(G) for some X grammar G. Further, a language generated by 

a phrase structure grammar is also called recursively enumerable. 

   Let r>1 and Tr= { al, •, a}. Further, Let Gr= ({ So }, T, P, So) be a context-free 

grammar, where T=TrU{a a in Tr}, and P={So*SoaiSoaiSo li<r}U{So-*e}. Then, 
L(Gr) is called the Dyck language over Tr and denoted by Dr. 

   DEFINITION. Let T be an alphabet. For each a in T, let f(a) be a word (possibly 

over a different alphabet from T). Then, let f(e)=e, f (xy)= f (x)f (y) (x, y in T*). The 
mapping f is extended to the power set of T* as follows : for each L over T , f(L)=
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if (w)  I w in L} . The mapping f is called a homomorphism on T*. Let f be a homo
morphism on T*, and let K be the alphabet of the range of f. Then, a mapping [4 

defined by 
               for L over K, f1(L)=w in T* I f (w) in L }, 

is called the inverse homomorphism of f. 

   DEFINITION. A homomorphism f on T* is called 

   (1) a coding if for each a in T, f(a) is a symbol, 

   (2) a weak coding if for each a in T, f(a) is either a symbol or the empty word e, 

   (3) a weak identity if for each a in T, f(a) is either the symbol a itself or the 
empty word e. 

   DEFINITION. A deterministic generalized sequential machine (dgsm) with accepting 
states is a 6-tuple A=(Q, T, D, d, qo, F), where 

Q : a finite set of states, T: a finite set of input symbols, D: a finite set of 
   output symbols, d: transition function from Q>< T to Q x D*, qo : the initial state 

   in Q, and F: a subset of Q (a set of final states). 

The function d is extended to Q x T* as follows : for q in Q, x in T*, a in T, 

                             d(q, e)=(q, e), 

                            d(q, ax)=(r, y) 
where 

y=w1u'2 

         d(q, a)=(p, w1), d(p, x)=(r, w2) for some p in Q, w1, w2 in D*. 

Let f A be a mapping defined by 

               fA(x)=y iff d(qo, x)=(p, y) for some p in F. 

The mapping fA so defined is called a dgsm mapping of A. 

   NOTATION. Let T be a finite alphabet. For a word w=a1•••a,i(n>0) in T*, the 

(jversion w denotes al.  • • an. Further, wR denotes the reverse an • • •a1.

   2.2 Logic programs and their languages 

   This subsection introduces the concepts of a logic program and its associated lan

guage we shall deal with in the subsequent sections. We assume the reader to be 
familiar with the rudiments of mathematical logic. 

   DEFINITION. A logic program is a finite set of Horn clauses, which are universally 

quantified logical sentences of the form 

A—B1i •••, Bn (n>0)(C) 

where the A and the B's are atomic formulae. In the above clause (C) A is called 

the clause's head, while B's are called the clause's body. If n=0, then we simply 
donote it by A instead of AE—. 

   Atomic formulae occurring in a logic program are called goals. A program is 

said to be dominated by a goal if the predicate name of the goal occurs only once as 

the head of a clause in the program. 

   Notational Convention (i) We use upper-case letters such as X, Y, Z for variable
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symbols and lower-case letters such as x, y, z for ground terms. For terms, letters 
t, s, r are often used. The boldface versions like P, Q are used for logic programs, 
while normal upper-case letters like  P, Q are used for goals, and lower-case letters p, q 
for goal names. 

   (ii) For a logic program dominated by a goal, we sometimes refer to the program 
in terms of the name of the goal. In such a case it is assumed that the program name 
is the capital letter P of the goal name "p". 

   DEFINITION. 
   Let P be a logic program and Q a goal. If there is a refutation of a goal Q 

from P, then we say P succeeds on Q, or Q succeeds (in P). 
   In this paper we are concerned with logic programs whose data domains are finitely 

generated by a fixed set of symbols. 
   DEFINITION. Let P be a logic program. The Herbrand universe of P is the set 

of all ground terms constructable from the set of constants C and the set of function 
symbols F occuring in P, and we denote it by D(F, C). Then, a logic program P is 
called a logic program over C if F comprises only one function symbol, and its Herbrand 
universe is denoted by D(C). 

   As shown below, any Herbrand universe for a logic program can be coded in an 
appropriate manner into the domain D(T) constructed from some fixed finite set of 
symbols T. In other words, any ground term which possibly appears in a program can 
be taxen as a word over some finite alphabet T. 

   LEMMA 2.1 There exist a fixed finite set of symbols T and a one-to-one mapping f 
such that for any logic program P with the domain D(F, C) and for any goal p(X1i • • •, 
Xn) there exist a logic program P' with the domain D(T) and a goal P'(X) with the 
property that P succeeds on p(x1i • • •, xn) if P' succeeds on p'(x), where x= f (x1, • • •, xn), 
PROOF. Let g1i g2, • • • be an enumeration of all function symols occurring in D(F, C) 
of P. (Note that a constant k can be taken as a 0-ary function symbol as in k( ).) 

   Introduce a mapping c from the set D(F, C) to the set of lists as follows : 
   for a term t=gi(s1i •••, s,n) (m>0), 

c(t)=[%, ®i, $, s, c(s1), ..., c(sn,), ] . 

   wherh "[" and "]" are the list notation, $, $, ®, % are 
   new symbols, and ®i denotes a sequence ®, • • •, ® of i ®s. 

Further, for an n-tuple of terms (t1, • • •, tn), let f be defined by 

f(t1, ••., tn)=flatten ([c(t1), #, •••, #, c(tn)]), 

   where "flatten" is a mapping of flattening lists, 
     is a new symbol (argument separator). 

Define p'(X) as follows : 

p'(X )E- flat(X1, ..., X,, X), p(X1, .•., X.)... (C0) 

   where flat(X1, • • •, X, , X) succeeds if X = f (X1, • • •, Xn). 
Further, let P' be PU { Co }. Then, it is easily seen that P' succeeds on p'(f (x1,  xn)) 
if P succeeds on p(x1f •••, xn) for xi in D(F, C). Let T={#, $, $, ®, %, NIL}, where
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NIL denotes empty list, then D(T) is the set of lists constructed from T and the 
unique function symbol of the list constructor. Obviously, this satisfies the desired 

conditions. ^ 

Thus, it is sufficient for general discussion to deal with only logic programs over some 

fixed finite set. 

   Conventions. (1) In what follows, it may be assumed that (i) a logic program 

over T has the domain of all lists constructed from a finite set of constants T, and (ii) 

otherwise specified, a goal is assumed to be a 1-ary predicate. 

   (2) As a notetion, given a finite set of symbols T and a word w=a1•••an on T*, 
the boldface w denotes the list version [a1, • • •, an]. 

   Logic programs together with goals are classified by the types of their associated 

languages. 

   DEFINITION. Let P be a logic program over a finite set of symbols T and Q(=q(X)) 

be a goal in P. 

   (i) A language over T defined by 

                L(P, Q, T)= { w in T*IP succeeds on q(w) } 

is called the success language of Q in P. In this case L(P, Q, T) is often denoted by 

L(P, q, T). If P is dominated by p(X) or a program "P" is named after the goal 

name "p" then we simply write L(P, T) and call it the success language of P. 

Futher, 

   (ii) a logic program P is called X if L(P, Q, T) is an X language for all goal Q 
in P. 

   (iii) Let p(X, Y) be a goal dominating P, and for x in T*, let fp(x)=y in T*IP 
succeeds in p(x, y)}. Then, a logic progam P is called 

   (1) homomorphism if fp is a homomorphism, 

   (2) (weak) coding if fp is a (weak) coding, 

   (3) weak identity  if fp is a weak identity, 
on T*. 

Finally, 

   (iv) let P and P' be two logic programs over T, and let p(x) and p'(X) be goals 
in P, P', respectively. Then P with p(x) and P' with p'(X) are equivalent if L(P, p, T) 
=L(P' , p', T). 

   We end this section with presenting a result showing the expressive capability of 

logic programs we are dealing with in this paper. 

   It has been shown in literature (e.g. [12], [13]) that for any recursively enumerable 

language L over T, there exist a logic program P over T and a goal Q such that L 

is the success language of Q in P. Conversely, it is shown that for any logic pro

gram P over T and a goal Q, the success language L(P, Q, T) is a recursively enu
merable language, which is proved by constructing a Turing machine simulating the 
resolution process for Q from P and accepting the success language of Q in P ([11]). 

(Note that a language is recursively enumerable if and only if it is accepted by a 
Turing machine.) 

Hence, we have the following :
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   THEOREM 2.1 The class of success languages of logic programs is equal to the class 
of recursively enomerable languages. 

   It may be possible to state that the success language of a logic program provides 

us a kind of modeltheoretic semantics (or denotional semantics) for logic programs.

   3. Representation Theorems 

   In this section several representation theorems for logic programs are presented. 

Most of them are easily obtained from the corresponding results in formal language 

theory

   3.1 Generator programs for logic programs 

   We shall show that there exists a fixed logic program from which for any logic 

program an equivalent logic program can be obtained in terms of the composition of 
simpler programs. Such a fixed logic program may be called generator program. 

 [1] Generator Program Ro 
   First we shall show that there exists a fixed simple program which plays a role 

of generator for the class of logic programs. Such a program can be obtained by 

making a slight modification to "reverse" program. 
   LEMMA 3.1 For any recursively enumerable language L over an alphabet T there 

N exists a simple deterministic language Sp on K+K+ (for some alphabet K including T), 
and a weak identity h such that L=h({wiORI w in K+}fSp), where Sp={x¢¢y"RJf(x)=y}, 
f is a dgsm mapping of A=(Q, K, D, d, qo, F) depending L, h onpreserves the alphabet 
of L and erases other symbolds. 
(See Theorem 11 in [4]) 

   THEOREM 3.1 (Representation Theorem 1) Let T be a fixed alphabet. Then, there 
exists a fixed logic program Ro with the property that for any logic program P over T 
with a goal p(X) one can find an equivalent logic program P' with a goal p'(X) such 
that it can be expressed by 

p'(X)-ro(X, Y), sp(Y)(3-1) 

for some simple deterministic program Sp. 
   PROOF. From Theorem 2.1 and Lemma 3.1, for any logic program P over T with 

a goal p(X) there is a simple deterministic language Sp on K+K and a weak identity 
h such that L(P, p, T)=h({wivRIw in K+}fSp), where Sp={x¢¢y"RIf(x)=y}, f is a dgsm 
mapping of A=(Q, K, D, d, qo, F) depending on L(P, p, T), and h(a)=a (for all a in T), 
h(a)=e (otherwise). 
Construct three logic programs so that MT, IT and Sp may determine the language 
M0(= { wiuR j w in K±}), h, and Sp, respectively. 
(1) MT is defined as follows : 

mT(X)<ml(s1i X, [ ]) 

ml(s1i [al X], Y)Fml(s1, X, [a l Y]) (for all a in K) 

ml(s1, [a I X ], Y)<-ml(s2i [a I X ], Y) (for all a in K) 

ml(s2, [ ], [ ])
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            ml(s2,  [a  I  X], [a I Y])<-ml(s2, X, Y) (for all a in K) 

Clearly MT determines the mirror image language, i.e., L(MT, KUK)={wzVRI w in K+}. 
(2) IT is defined as follows : 

Zr([1,C]) 

iT([a I X], Cal Y])<-iT(X, Y) (for all a in T) 

iT(X, [al Y]) —iT(X, Y)(for all a not in T) 

IT is a simple projection mapping which preserves symbols from T and erases 
others. 
(3) Sp is defined as follows : 

sp(X)<sl(g1, X, C ]) 

sl(g1, [a ] X], Y)<—sl(g1, X, Cal Y])(for all a in KU { ¢ } ) 

sl(q 1, COI Xi, COI Y])<-s1(q f, X, Y) (for all q f in F) 

sl(g0,C],C]) 

        sl(q, [wR I X], [a I Y])—sl(p, X, Y)(for all d(p, a)=(q, w)) 

where A=(Q, K, D, d, qo, F) is a dgsm A given in Lemma 3.1. Then, L(Sp, KUKU 
{0, ¢})={x¢¢yR]f(x)=y, x in K*}. 

   Let P' be a logic program defined by p'(X)<—iT(X, Y), mT(Y), sp(Y). It is easily 
seen that for x in T*, x is in L(P, p, T) 

iff there exists y such that x=h(y) and 
                   y is in MonSp 

iff there exists y such that 
IT succeeds on ir(x, y), 
Sp succeeds on sp(y), and 

                     MT succeeds on mT(Y) 
iff P' succeeds on p'(x) . 

Let R. be defined by ro(X, Y)<—iT(X, Y), mT(Y). (Since T is fixed, R. is a fixed 
program.) Thus, p'(X) can be expressed as the desired form (3-1). ^ 

   [2] Generator Program Mo 
   We show that a kind of "merge" program can also play a role of generator as 

well as the program Ro. 
   LEMMA 3.2 For any recursively enumerable language L over an alphabet T there 

exist a weak identity h and a regular language R such that L=h (shuffle(K)nR), where 
K is some alphabet including T, shuffle (K)={xlyl•••xny"nl xl•••xn=y1•••yn in K*}, R= 
f(K*), f is a mapping induced by a dgsm B=(Q, K, KUD, d', qo, F) defined by a dgsm 
A=(Q, K, D, d, q0, F) depending on L, d'(q, a)=(p, aiu) if d(q, a)=(p, w), h preserves 
the alphabet T and erases other symbols. 
(See Theorem 13 in [4]) 

   THEOREM 3.2 (Representation Theorem 2) Let T be a fixed alphabet. Then, there
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exists a fixed program  Mo with the property that for any logic program P over T with 

a goal p(X) one can find an equivalent logic program P' with p'(X) such that it can be 

expressed by 

p'(X )E—mo(X, Y), rp(Y)(3-2) 

for some regular program Rp. 
PROOF • Analogous to the proof of Therem 3.1, it suffices to show that the follow

ing three logic programs satisfy the condition stated in Lemma 3.2. 

(1) MET is defined by 

meT(X)—mel(X, [ ], [ ]) 

          mel([ ], X, X) 

mel ([a I X] Y, Z)E-mel(X, Y, [a I Z]) (for all a in K) 

mel([a I X], Y, Z)+—mel(X, [a I Y], Z) (for all a in K) . 

MET determines what is called the twin shuffle language, i.e., 

                L(MET, TUT)={xlyl...xnyn 1 xl...xn=yl...yn in K*}. 

(2) IT is the same as the one defined above in the proof for Theorem 3.1. 

(3) Rp is defined : 

   Let A=(Q, K, D, d, Po, F) be a given dgsm in Lemma 3.2. 

rp(X)F—rl(p0, X, [ ]) 

r1(p, [al X], Y)-rl(Pa ., X, [aI Y]) (for all d(p, a)=(q, w)) 

rl(Pa, [iv], [aI Y])+—rl(q, X, Y) (for all d(p, a)=(q, w)) 

rl(p f, [ ], [ ]) (for all p f in F) 

L(Rp, KUK)= {alwl...anwn I d(po, al...an)=(q, wl...u,n), q in F} =f(K*). 

   Let Mo be defined by 

m0(X, Y)<-iT(X, Y), meT(Y)• 

(Again since T is fixed, Mo is a fixed program.) Further, let P' be defined by p/(X) 
E—m0(X, Y) , rp(Y). To complete the proof it suffices to check if the following relation 
holds : for x in T*, P' succeeds on p'(x) iff x is in L(P, p, T). ^ 

   [3] Generator Program Do 
   It is demonstrated that a program which behaves as a checker for wellpairedness 

can be a generator for the class of logic programs. 

   LEMMA 3.3 For any recursively enumerable language L over T, there exist a linear 

                         N grammar GL=({S}, T'UT', PL, S) and a weak coding h satisfying the following pro

perties that 
(i) L=h(Drf1L(GL)), 

   (ii) T is a subset of T', and h(a)=a (for all a in T),
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                   h(a)=e (for all a in T'UT'-T), 

   (iii) PL={S->uiSvIIl<i<n}f{S--*w}, where w, ui, vi(1<i<n) are in (T'UT')*, DT 
is the Dyck language over T' (r: the cardinality of T'), T'= { a la in T'}. 

(See [7] for the proof.)

   Important Remarks. 

   (1) A linear grammar GL, which is called a minimal linear grammar ([2]), depends 
on L, while h depends on only T. 

   (2) A careful and patient observation of the proof for Lemma 3.3 in [7] leads to 
the fact that by making a slight modification one can obtain another GL with its addi
tional property, that is, 

   (iv) none of the two among w, u1, vi(1 <i <n) is identical, each of them is nonempty 
and w does not depend on L. 

   THEOREM 3.3 (Representation Theorem 3) Let T be a fixed alphabet. Then, there 
exists a fixed program Da with the property that for any logic program P over T with 
a goal p(X) one can find an equivalent logic program P' with a goal p'(X) such that it 
can be expressed by 

p'(X)—do(X, Y), linz,(Y)(3-3) 

for some linear program LINE. 
   PROOF. From Theorem 2.1 and Lemma 3.3 for any logic program P over T and a 

goal p(X) there exist a homomorphism h from (T'UT')* to T* and a linear grammar 
GL with the property described above, and that x is in L(P, p, T) if there is y such 
that h(y)=x and y is in DrnL(GL), where r is the cardinality of T'. 

   Construct two logic programs DT, LINE so that it may hold that (i) L(DT, T'ut') 
                             N =Dr, and (ii) L(LINp,T'UT')=L(GL) : 

(1) dT(X )+--dyck(X, [ ]) 

  dyck([ ], [ ]) 

dyck([a l X ], Y )Fdyck(X, [a I Y]) (for all a in T') 

dyck([a IX], [al Y])Edyck(X, Y) (for all a in T') 

(2) linp(X)lin(p1, X, [ ]) 

lin(p1i [w j X], Y)Elin(p2i X, Y) (w is the word such that S-->w in PL) 

lin(p2, [ ], [ ]) 

lin(p1i [ui IX], Y)<lin(p1, X, [ui 1 Y]) (for all S>uiSvi in PL of GL) 

lin(p2i [vi X], [ui I Y])Elin(p2i X, Y) (for all S>uiSvi in PL of GL). 

                                                N 

   Since it is almost obvious that L(DT, T'~JT')=Dr, we shall check that L(LINE, 

     N T'UT')=L(GL). For any x in L(GL), there is a sequence of production rules r1, •••, 

r k, ro such that 

x=ui1 uikwvik vil, r; : S*ui,Svi;(1<j<k) and ro : S-*w.
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Let  x=x1ux2, where x1=ui1•••uik, x2=Vik*••• vi1, then we have that linp(x) succeeds if lin(p1i 
x, [ ]) succeeds, and that lin(p1i x1wx2, [ ]) succeeds if lin(p1i wx2, f(x1)) succeeds, if 
lin(p2i x2, f(x1)) succeeds, if lin(p2i [ ], [ ]) succeeds, where f is defined by f(e)=e , 
f(u;x)=f(x)f(u;) for u; in {u1, x in {u1, , /JO*. 
Thus, we eventually have linp(x) succeeds. The converse relation is straightforwardly 

proved. Hence, it is obtained that L(LINP, T'UT')=L(GL). 
   Now, let Do be defined by do(X, Y)<-iT(X, Y), dT(Y), where iT(X, Y) is a pre

dicate already appeared in Theorem 3.1 and Theorem 3.2. (Since T is fixed, so is Do.) 
Further let p'(X)E—do(X, Y), linp(Y). To complete the proof, we have only to show 
that p'(x) succeeds iff x is in L(P, p, T), and this is easily checked in the following 
way : 

p'(x) succeeds if there is y such that iT(x, y), dT(y), and 
linp(y) succeed 

if there is y such that h(y)=x, y in L(DT, 
            and y in L(GL) 

if x is in L(P, p, T). ^ 
   REMARK (i) A program DT whose success language is a Dyck language works 

for checking "wellpairedness" of an input string in Do. 

   (ii) A program structure of LINE is quite similar to that of Sp in Theorem 3.1. 
   Later we will discuss the close relationships among these generator programs and 

what operations are really primitive for expressing logic programs.

   3.2 Decomposing logic programs 

   As we have seen in the previous subsection, a logic program can be expressed as 

a conjunctive formula comprising a simpler program consisting of two components. 

Further, one of the two is quite simpler than the other in that it just works as a 

simple homomorphism (actually, a weak identity mapping). 

   We shall show a representation theorem for logic programs in which for any logic 

program one can find an equivalent logic program expressed as a conjuntive formula of 
two fixed programs and three simple homomorphism programs. Exactly, one of the 

three can be fixed. 

   LEMMA 3.4 For any simple deterministic (context free) language L, there exist a 

coding f and a homomorphism h such that L=f(12-1(¢D2)), where D2 is a Dyck language, 

¢ is a (new) symbol. 
   (The way of the proof for Lemma 3.4 is similar to that of the proof for the main 

theorem in [5]. See Appendix for the proof.) 
   This lemma leads to another representation for logic programs which may be 

called "decomposition theorem" for logic programs. 

   THEOREM 3.4 (Representation Theorem 4) Let T be a fixed alphabet. Then, there 

exist fixed logic programs I, D and M with the property that for any logic program P 

over T with a goal p(X) one can find an equivalent logic program P' with a goal p'(X) 

such that it can be expressed by 

                       Y), m(Y), f p(Y, V), hp(V, Z), d(Z) (3-4)
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for some coding program Fp and a homomorphism program Hp. 
   PROOF. From the proof of Theorem 3.1 there exist fixed programs MT and IT 

such that for a given logic program P with a goal p(X) one can have an equivalent 
logic program P' with a goal p'(X) such that it is expressed by p'(X )<—iT(X, Y), 
sp(Y), for some simple deterministic program Sp. Further, Lemma 3.4 tells that there 
exist a coding fL and a homomorphism hL such that L(=L(Sp, KUK))=fL(hi.1(¢D2)). 
Let I be IT and M be MT. Then, it suffices to show that one can construct a coding 

program Fp, a homomorphism program Hp and a fixed program D such that (i) D 
determines the Dyck language ¢D2 and (ii) sp(Y) can be expressed as a conjunctive 
formula of f p(Y, V), h p(V, Z) and d(Z). 

        Define Fp, Hp and D as follows : 

fp([ ], [ ]) 

fp([a I X ], [b I Y])<—f p(X, Y) (for all f L(b)=a) 

hp([ ], [ ]) 

hp([b I X ], [x1, •.., x . I Y]<—h p(X, Y) (for all hL(b)=xl...xm.) . 

d(X)—unif(X, [01 Y]), dyck(Y, [ ]) 

      dyck([ ], [ ]) 

dyck([a11 X], Y)-dyck(X, [a11 Y]) 

cyck(Ca2I X ], Y)4—dyck(X, [(12137]) 

dyck([al I X], [ail Y])<—dyck(X, Y) 

dyck(Ca21 X ], Ca2 1 Y])<—dyck(X, Y) 

       where unif(X, (X, Y) succeeds if X and Y are unifiable. 

Clearly, L(D, {a1, a2, a,, a2, ¢})=¢D2, and it is easily seen that Sp succeeds on sp(y) 

                     N ify is in L(Sp,KUK) 

if there exist v and z such that fL(v)=y, hL(v)=z 

if there exist v and z such that 

Fp succeeds on f p(y, v) , 

Hp succeeds on h p(v, z), and 

                      D succeeds on d(z). 

This implies that sp(Y)<—f p(Y, V), h p(V, Z), d(Z). ,Thus, eventually, we have that 

p'(X)E—(X, Y), m(Y), fp(Y, V), hp(V, Z), d(Z). This completes the proof. ^ 
   REMARK. The teaching of Theorem 3.4 is that using two fixed logic programs 

M (a modified "reverse" program) and D (a "checking wellpairedness" program) any 
logic program P can be reducible into three homomorphism I, Fp and Hp that have a 

very simple structure.
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   4. What are Primitives? 

   We have seen in Section 3 that several specific types of logic programs can play 

a significant role as a generator in expressing logic programs . In this section we 
shall discuss this issue on generator in more detail.

   4.1 Primitives for generators 
   Getting back to the representation theorems , a generator program  Ro in (3-1) of 

Theorem 3.1 was constructed from a weak identity program IT and a logic program 

MT, i.e., 

ro(X)-iT(X, Y), mT(Y) 
where 

[0] zr([ ], C ]) 

ir(Ca I X ), Ca I Y])E—iT(X, Y) (for all a in T) 

iT(X, [aI Y])<-iT(X, Y) (for all a not in T), and 

we observe that mT(X) can be redefined as follows : 

[1] mr(X)Eappend(Y, Z, X), copy(Y, Y'), reverse(Y', Z) 

copy([ ], C ]) 

copy([a I X], [a I Y])Ecopy(X, Y) (for all a in K) 

   reverse([ ], [ ]) 

reverse([X I Y], Z)+-reverse(Y, T), append(T, [X], Z) . 

Similarly, from an observrtion of a generator program Mo in (3-2) of Theorem 3.2 we 

have: 

mo(X)E-ir(X, Y), mer(Y) 

where 

[2] meT(X)  merge(Y, Z, X), copy(Y, Z) 

   merge(X, [ ], X) 

   merge([ ], X, X) 

merge([a I X ], Y, [a I Z])<merge(X, Y, Z) (for all a in K) 

merge(X, [a I Y], [a I Z])Emerge(X, Y, Z) (for all a in K) 

Further, a generator program Do in (3-3) of Theorem 3.3 is analysed as follows : 

do(X )E-iT(X, Y), dT(Y) 

where 

[3] dr(X )E-dyck(X, [ ]) 

   dyck([ ], [ ])
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 dyck([a  ^  X  )<-dyck(X, [a ^ Y]) (for all a in T') 

dyck([a ^ X], [a ^ Y])<-dyck(X, Y) (for all a in T') . 

It is easily seen that each generator contains a common homomorphism (exactly weak

identity) program IT which serves as a kind of "filter". That means the essentially 

unique parts of generator programs are mr(X), mer(X) and dT(X). 

   Thus, it is possible to say that "append", "copy", "merge", "dyck" are all primitives 

for a generator program in the representation theorem. However, noting that "copy" 
is a special type of a homomorphism program and "append" and "dyck" are restricted 

versions of "merge", we may conclude that the filtering function ("homomorphism") and 

the merging function ("merge") are fully primitive for expressing logic programs.

   4.2 Extended reverse programs 

   We shall show there exists a type of logic program which can take the place of 

various basic programs appearing in the representation results. 
   Let f be a mapping from T* to K*. Then, consider a logic program dominated 

by a predicate "(f)reverse(X, Y)", which is defined by (f)-reverse(x, y) succeeds iff so 

does reverse(f(x), y). We call this extended reverse program. (Notice that if f is an 

identity, then (f)reverse(X, Y) is an ordinary "reverse" predicate.) 
   EXAMPLE 1. Let f be defined by f (a) = a, f (b) =6, f(c)=-E'.  Then, (f)-reverse (X, Y) 

may be, for example, defined as follows : 

                     (f)reverse(X, Y)<—rev(X, [ ], Y) 

                   rev([ ], X, X) 

rev([a ^ X], Y, Z)<—rev(X, [a ^ Y], Z) 

rev([bI X], Y, Z)<—rev(X, [6^ Y[, Z) 

rev([c ^ X], Y, Z)<—rev(X, [c ^ Y], Z) . 

Let p(X )-append(Y, Z, X), (f)reverse(Y, Z), then the success language of this pro

gram { wibR ̂  w in { a, b, c}*} is context-free. 
   Now, let us see the next one. 

   EXAMPLE 2. Let f be a mapping defined by f(x)=V, for all x in T*. Then, it 

is seen that 

(f)reverse(x, y) succeeds iff reverse(f(x), y) succeeds 
iff reverse(.xR, y) succeeds 

iff 

Let P be a program dominated by p(X )-append(Y, Z, X), (f)reverse(Y , Z). Then, 
the success language L(P, TU) is {ww^w in T*} which is contextsensitive . 

   Thus, (f)reverse can define a number of different classes of logic programs by 

varing a mapping f. 
   Now we wish to call back one's attention to the representation theorems . In the 

representation formula (3-1) of Theorem 3.1 a logic program can be expressed by
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 p(X)<-ro(X, Y), sp(Y), where 

(0) ro(X, YE)iT(X, Y), mT(Y) 

(1) sp(X -sl(Q1f X, [ ]) 

sl(gl, [al X], Y)s1(Q1, X, Cal Y]) (for all a in KU { ¢ } ) 

sl(Q1, C¢ I X ], CO I Y])<—sl((q f, X, Y) (for all q f in F) 

sl(go, C ], C ]) 

(2) sl(q, [i2R I X], [a I 17])~-sl(p, X, Y) (for all d(p, a)=(q, w)) 

   where A=(Q, K, D, d, go, F) is a dgsm. 

Let fT be defined by f r(a) = a (for all a in T). Then, it is easily seen that 

niT(X )<--append(Y, Z, X), (f r)reverse(Y, Z) • • • (F1) . 

Further, letting f p be a mapping defined by f p(x) =f (x), where f is a dgsm mapping 
induced by A, then we have 

sp(X)Eappend(Y, Z, X), (fp)reverse(Y, Z)•••(F2). 

   Recall the representation formula (3-3) of Theorem 3.3 in which a logic program 
can be expressed by 

p(X )E-do(X, Y), linp(Y) 
where 

(3) linp(X)÷---lin(p1i X, [ ]) 

   for each rule S->uSv in PL of GL, 

lin(p1i Cu l X], Y)~lin(p1, X, Cu l Y]) 

lin(p1, [w I X], Y)lin(p2i X, Y) (S-*w in PL) 

lin(p2, C ], C ]) 

lin(p2, Cv I X ], Cu l Y])E-lin(p2, X, Y) . 

GL=({S}, T', PL, S), •••, 

Let f be defined as follows : 

f(u)=vR for all S-*uSv in PL 

                 f(uu')=f(u)f(u') for all u, u' in {u1i •••, un}* 
Here we claim that 

   linp(x) succeeds if append(y, wz, x) and (f)reverse(y, z) succeed for some y, z. 
Since L(LINp, TUI')=L(GL), which is proved in the proof of Theorem 3.3, for the 

purpose of verifying the claim it suffices to show that x is in L(GL) iff append(y, wz, x) 
and (f)reverse(y, z) succeed for some y, z in T'*. For any x in L(GL), there is a 
sequence of rules r1, • • •, r k, ro such that
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x=uil"'uikwvik"'vi1, r: S->ui;Svi;(1<j<k) and ra : S—>w. 

Hence, let x=x1wx2i where x1=u11 uik, x2=vik•••vii, then we have that append(x1i 

wx2, x) succeeds and (f)reverse(x1, x2) is invoked. By the definition of f, f(x1)= 
{{ J (uil"'uik)=vi1R"'vikR=(vik"'vi1) =x2 Since (f 2)reverse(x1i x2) succeeds if reverse 
(f (x 1), x2) succeeds, we have that (f)reverse(x 1i x2) succeeds. The converse relation 
is proved in a similar manner. Thus, we eventually have 

linT(X)<—append(Y, [w I Z], X), (f)reverse(Y, Z)•••(F3) 

   It should be noted that for a homomorphism h, if one define a mapping f h by 

f h(x)=h(x)R, then (f h)reverse(x, y) succeeds if h(x)=y. Hence, a weak identity pro
gram IT dominated by iT(X, Y) and involved in all representation results is expressed 
by 

                      iT(X, Y)<—(f h)reverse(Y, X)•••(F4) 

   Summarizing our argument on the use of extended reverse programs for express
ing various types of basic elements in the representation results, from (F1), (F2), (F4) 

and (3-1) we obtain another representation theorem for logic programs. 

   THEOREM 4.1 (Representation Theorem 5) Let T be a fixed alphabet. Then, there 

exist mappings fn, fT with the property that for any logic program P over T with a 

goal p(X) one can find an equivalent logic program P' with a goal p'(X) such that it is 
expressed by 

p'(X)'—(f h)reverse(Y, y), append(Z1, Z2, Y), (f T)reverse(Zl, Z2) , 

append(W1i W2, Y), (f p)reverse(W1, W2) 

for some mapping f P.

   5. Concluding Remarks 

   Through the formal language theoretic formulation, we have shown several repre

sentation theorems for logic programs. First, we introduced the concept of the success 

language of a logic program, and associating a logic program with its success language 

we gave a formal language theoretic semantics of logic programs. 

   Further, using the language theoretic semantics several representation theorems 

for logic programs were provided in which some types of fixed logic programs called 

generator programs play central roles in the representation. 
   Then, it has been considered the problem of what operation is primitive for the 

representation of logic programs. It was shown that the filtering function by a homo

morphism and the merging function are sufficiently primitive in the sense that for any 

logic program one can find an equivalent logic program which is expressed within the 

use of combination of these two programs. 

   Finally, by introducing the concept of an extended reverse predicate, it has been 

proved that one need only "append" and "extended reverse" functions in representing 
logic programs. 

   For the future research in this direction, using a modeltheoretic semantics in



Representation theorems and primitive predicates for logic programs 35

terms of the success language one may discuss many issues on the properties of a 

logic program such as program transformation, program classification, program synthesis, 

and so forth, some of those which we are about to work on.
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   Appendix [The proof of Lemma 3.4] 

   We show the following : for any simple deterministic grammar G, there exist a 

simple deterministic grammar Go, a coding f and a homomorphism h such that L(G)= 

f(L(G0)) and L(G0)=h-1(¢D2). This immediately completes the proof. 
   Let G=(N, T, P, So) be a simple deterministic grammar such that L=L(G), where 

N= { A1(= S0), • • •, An l. We may assume that So does not appear in the right-hand side
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of any rule in P. 

   Construct a simple deterministic grammar Go=(1Nr, T', P', So) as follows : T'= { [A, 

a] j A—*ax in P}, P'= { a]x I A--ax in P}. Define f by 

f ([A, a])=a for [A, a] in T'. 

Then, it is obvious that Go is simple deterministic and L(G)= f (L(Go)) holds. 

   Now, since G is simple deterministic, one can define a homomorphism h from T'* 

into {a1, a2, a1, a2, ¢}* by 

h(CAi, a])=ala2ialala2imal...ala2'lai, 

                            if Ai—÷aA;l•••A;,r. in P and i#1, 

h(CA1, a])=¢ala2imal.•.ala2'lal, 

                             if Al*aAj1•••Ajm in P, 

h([Ai, a])= ala2ial if Ai—*a in P and 

h([A1i a])=¢ if Al—*a in P. 

It suffices to show that L(G0)=h1(¢D2) holds. 

We claim the following: for b1, , bk in T', Ail, •••, Air in N— All, we have 

Al----)1b1...bkAi1...Air(r>-0) in Go iff 

   (1) h(bl•••bk)=¢yl•••yk is a prefix of a word in ¢D2, 
and 

   (2) red(¢y1•••yk)=¢ala2fa1•••ala2i1a1, where "red" is a mapping defined by 

red(e)=e , 

red(¢)=¢ , 
for i=1, 2 

red(xai)=red(x)ai , 

red(xai)=red(x)ai if red(x) not in {al, a2i al, a2}*{ai}, 

red(xai)=x' if red(x)=x'ai . 

(Note that indicates the k step left-most derivation, i.e., k consecutive rewriting 
steps in which the left-most nonterminal is always rewritten, and it is well-known that 

any word generated by a simple deterministic grammar has the unique left-most deriva

tion for it. Further, from the property of a simple deterministic grammar, the length 

of a word generated exactly equals to the number of derivation steps used. A mapp
ing image red(w), the reduced word, is the final resultant obtained by repeatedly 

cancelling all pairs aiai.) 

   It should be noted that the claim suffices to prove the lemma. We shall prove 

the claim by induction on the length of dervation steps. 

[k=1] Suppose that Al=b1 or Air. There exists A1—>b1 or A1-~b1Ai1••• 
Air in P'. Then, h(b1)=¢ or h(bl)=¢ala2ira1...ala2ilal. Clearly condition (2) holds for
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either case. Conversely assuming (1) and (2) for k=1 gives us that  h(b1)=¢y1 is a 

prefix of a word in ¢D2 and red(¢y1)=¢ala2iral ••• ala2ilal. From the way of constructing 
h, if red(01)=¢(r=0), i.e., yi isin D2, then we have A1—>b1 is in P' , leading to 
A1=bl.Otherwise, h(b1)=¢y1—y-a1a2Zra1•••ala2ilal implies that A1—>b1Ai1 Air is in P'. 
This verifies the case k=1. 

[Induction step] Suppose that ••bkAil•••Air(r>_1) and Ail—>bk+lA;l•••A;„L(m>0) 
is used at the (k+1)-th step. Let h(bk+l)=yk+1• By the induction hypothesis , 

red(¢y1•••yk)=¢aia2irai.••ala2ilal. Then, we have 

red(h(b1•••bk+l))=red(¢y1.• k+l) 

=¢ala2iral...aia222alaia2Jma1.. •a1a2J1a1 

(Note that yk+l=ala2ila1a1a2;mal...ala2'lal•) 
This also implies that h(bl•••bk+l) is a prefix of a word in ¢D2. Since • 

bk+lA;l•••A;mAi2•••Air, the `only if' part of the proof is proved. 
   Conversely, suppose that we have h(b1•••bk+1)=¢y1•••.Yk+1 is a prefix of a word in 

¢D2 and red(¢y1•••yk+1)=¢ala2iral•••ala2ilal. From the construction of h, we have a parti
tion . 

red(¢y1... yk)=¢ala2ira1.. •a1a21pa1, 

                    red(yk+l)=h(bk+l)= ala2talala22Sal...a1a221a1 

                   where there exists At—+bk+lAil•••Ais in P'. 

But, since red(¢y1• • yk+l)is a word of the form ¢ala2iral• • •a1a2i1a1 there must be some 
cancellation between the two, which implies that ip=t. By the induction hypothesis , 

                                 Al-----)11)1...bkAt...Air, 

and applying At->bk+lAil•••Ais, we have ---  

                               Al-----)1+1b1.--bk+1Ai1...Ais...Air• 

This completes the proof. ^ 
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