
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

INDUCTIVE INFERENCE OF FORMAL SYSTEMS FROM
POSITIVE DATA

Shinohara, Takeshi
Computer Center, Kyushu University

https://doi.org/10.5109/13373

出版情報：Bulletin of informatics and cybernetics. 22 (1/2), pp.9-18, 1986-03. Research
Association of Statistical Sciences
バージョン：
権利関係：

Bulletin of Informatics and Cybernetics Vol. 22, No. 1-.2, 1986

INDUCTIVE INFERENCE OF FORMAL SYSTEMS

 FROM POSITIVE DATA

 By

Takeshi SHINOHARA*

 Abstract

 A formal system, we deal with in this paper, is a set of formulas
of the form Pi (tl) 4—P2 (t2) & • • • & Pn (t„) , where Ply P21 • • •, Pn are predi
cate symbols and t1, t2, • • •, tn are strings of constant symbols and
variable symbols. The language defined by a formal system E is a
set of constant strings t such that P (t) is provable from E by using
rules of modus ponens and substitutions of constant strings for vari
able symbols.We restrict formal systems so as to contain only
two formulas of a predicate, and also restrict substitutions not to
map any variable to empty string. The class of languages defined
by our restricted formal systems is a natural extension of Angluin's

pattern languages. We show that the class is inferable from positive
data.

 1. Introduction

 Formal languages are mostly defined by using generation grammars and recognition

automata. We know another kind of systems, elementary formal systems introduced

by Smullyan [1], to define such formal languages. The concept of elementary formal
systems is based on the following type of axiom schema to define a set S which occurs

frequently in mathematical literature :

 (1) a is an element of S,

 (2) if x is an element of S, then so is f(x), and
 (3) only the elements that follow from (1) and (2) are in S.

 Smullyan developed his recursive function theory by using the elementary formal

systems with the rudimentary attributes. We can use the elementary formal systems

to define formal languages.

 Arikawa [2] studied languages defined by elementary formal systems and formal

properties of restricted systems, called simple formal systems. The class of languages
defined by simple formal systems is located exactly between the classes of context-free
languages and contextsensitive languages.

 In this paper, we introduce more restricted systems than Arikawa's simple formal

systems, which will be called primitive formal systems, and show that the class of

languages represented by them is inferable from positive data. Our restricted systems

* Computer Center , Kyushu University 91, Fukuoka 812, Japan.

 9

10T. SHINOHARA

have only one base step and one induction step. Angluin's pattern languages [3 , 4],
which the author has already studied from the viewpoint of practical applications of
inductive inference [5, 6, 7, 8], can be regarded as languages represented by the simplest

systems that have just one base step and have no induction step . Thus the class of
languages defined by our systems is a natural extension of pattern languages .

 2. Formal Systems and Languages

 First, we introduce the notion of the elementary formal systems and define their

languages.

 DEFINITION 1. Let be a finite set of symbols, and let X and D be countable

sets of symbols, where E, X and D are mutually disjoint. Elements in X, X and D are
called constants, variables and predicates, and denoted by a, b, c, • • • ; x, y, z, x1i x2, • • • ;
and P, Q, R, P1, P2, • • •, respectively.

 According to Smullyan [1], positive integers called degrees are assigned to predi
cates. Here we assume that degrees of predicates are all one , that is, the numbers
of arguments of our predicates are always 1.

 DEFINITION 2. For a set S of symbols, we denote a set of all finite string over

S byS*. Strings in (EuX)* are called terms. When term t1 is identical to t2 except

renaming of variables, we say t1 is equivalent to t2 and denote it by t1='t2 .
 Here we should remember that the terms are called patterns by Angluin [3] .

 DEFINITION 3. We define well-formed-formulas as follows :

 (1) If P is a predicate and t is a term, then P(t) is an (atomic) formula. If t is
a constant string, then P(t) is called a ground atom.

 (2) If P, P1, P2, • • •, P. are predicates, and t, t1, t2, • • -, t.n are terms, then P(t)<-
P1(t1) & P2(t2) & • • • & Pn(tn) is a formula. (We regard a formula whose right part is empty ,
i.e., n=0 as an atomic formula P(t).) Formula P(t) is called a conclusion and each
formula Pi(ti) on the right side of <— is called a premise .

 DEFINITION 4. An elementary formal system is a finite set of formulas .
 DEFINITION 5. Let 0 be any homomorphism from terms to terms . We denote the

image of a term t by to. If 0 maps any constant symbol a to itself , then 0 is called
a substitution. For a formula F=P(t)<—P1(t1) & P2(t2) & ••• & Pn(tn), we define F0=P(t6)<-

P1(t19) & P2(t20) & ... & Pn(tn9).

 DEFINITION 6. Let E_ { F1i F2, • • •, F.} be an elementary formal system. We say
that a formula F=P(t)<-P1(t1)&P2(t2)&•••&Pn_1(t,i _1) is provable from E if F satisfies
one of the following conditions :

 (1) F is in E,

 (2) F=F'9 for some formula F' provable from E and some substitution 0, and
 (3) two formulas P(t)<—P1(t1) & P2(t2) & • • • & Pn_ 1(tn_ 1) & Pn(tn) and Pn(tn) are provable

from E.

 DEFINITION 7. A language L(E, P) defined by an elementary formal system E is

the set {tjtEE* and P(t) is provable from E}. When E contains just one predicate ,
we simply write L(E) instead of L(E, P).

 DEFINITION 8. If an elementary formal system E is identical to E' except renam

Inductive inference of formal systems from positive data11

ing of variables and rearranging of premises, then we say that E is equivalent to E'
and denote it by E_E'.

 The following proposition is obvious from definitions.
PROPOSITION 1. If two elementary formal systems E and E' are equivalent, then

L(E, P)=L(E', P) for any predicate P.
 EXAMPLE 1.

 (1) Let E_ { P(axbx) } . Then L(E)_ { w l w =axbx, x X * } is the extended language
of a pattern axbx [6]. Clearly from this example, the class of languages defined by

elementary formal systems is a natural extension of pattern languages.
 (2) Let E={P(s), P(ax)<-P(x), Q(bxbxbx)—P(x)}. Then L(E, P)={anln>0} and

L(E, Q)= {banba"ba" I n>_0}.

 3. Inductive Inference from Positive Data

 In this section, we make a brief review of inductive inference from positive data,
according to Angluin [4].

 A class of languages L=L1, L2, is said to be an indexed family of recursive
languages if there exists a computable function f such that

1, if xLi;
 f(i, x)= 0

, otherwise .

 The index i of a language Li can be considered naturally as a grammar or an
autmaton which accepts Li. In our case, formal systems are used as the indexes of
languages.
 From here on, the classes of languages are assumed to be an indexed family of
recursive languages.

 DEFINITION 9. A complete presentation of a language L is an infinite sequence
(s1, t1), (s2, t2), • • • such that ti is 0 or 1, {s ! s=si and ti=1 for some i}—L, and is I s=si
and ti=---0 for some i} =X*—L.

 DEFINITION 10. A positive presentation of a nonempty language L is an infinite
sequence of strings si, s,••• such that {s j s=si for some i } =L.

 DEFINITION 11. Inductive inference machine M is an effective procedure that pro
duces an output from an input of finite sequence. M[C denotes an output produced
by an inference machine M from a finite sequence 0. The output M[0] is called a

guess. Let C =s1i s2, • • • be an infinite sequence, and denote by a<n> a finite subsequence
s1, •••, sn, of a. We say that M on input a converges to v if M[a<n>] is defined for
all n�1 and there exists an integer N such that M[a <n>] = v for all n> N.

DEFINITION 12. A class of languages L=L1i L2, ••• is said to be inferable from
complete (positive) data if there exists an inference machine M such that M on input a
converges to j with L; = Li for any index i and any complete (positive) presentation a
of Li.

 Gold [9] showed that any indexed family of recursive languages is inferable from
complete data but is not always inferable from positive data. He also showed that any
superfinite class is not inferable from positive data. From his result, we can easily

12T. SHINOHARA

show that even the class of regular languages is not inferable from positive data.

This facts sounds negative for approaches to find natural and interesting applications

of inductive inference. Angluin [4], however, showed a theorem characterizing classes

inferable from positive data and presented nontrivial and interesting classes including

the pattern languages [3]. After her publications, several studies on applications of

inductive inference have been made [5, 6, 7, 8, 10, 11].

 DEFINITION 13. Let L= Li, L2, • • • be a class of languages. The set Ti is called
a finite tell-tale of Li if

 (1) Ti is finite,

 (2) Ti c Li, and

 (3) Tic_L;~--1(L; Li) for all j.
DEFINITION 14. We say that a class of languages L=L1i L2, satisfies Condition

1 if there exists an effective procedure that enumerates all elements in a finite tell-tale

of Li for any i.

 THEOREM 2. (Angluin) A class L=L1, L2, •• of nonempty languages is inferable

from positive data if and only if L satisfies Condition 1.
 DEFINITION 15. We say that a class L=L1i L2•.. satisfies Condition 2 if

 C(S) = { L I S S L and L = Li for some i }

is of finite cardinality, for any nonempty finite language S.
 COROLLARY 3. (Angluin) If a class L=L1, L2, satisfies Condition 2, then L is

inferable from positive data.

 Although Condition 2 is not necessary for inferability from positive data, it is

convenient because it is independent of the indexing. In fact, many classes, including

the class of pattern languages of Angluin [3], are shown to be inferable from positive
data by using Corollary 3.

 4. Restriction of Formal Systems

 It is well-known that any recursively enumerable language is representable in an

elementary formal system. Therefore we should put some restrictions on elementary
formal systems to discuss inferability of languages from positive data. Arikawa dis

cussed restricted formal systems, called simple formal systems [2].

 DEFINITION 16. An elementary formal system E is called to be simple if each

formula in E is of the form

P(t(x1, x2,xn)) f P1(x1) & P2(x2) & ... & Pn(xn)

where P, P1, P2, • • •, P. are predicates, x1, x2, • • •, xn are distinct variables, and t(x1, x2,
• • •, xn) is a term containing at least n variables x1, x2, , xn.

 In a simple formal system, the arguments of the premises are distinct variables

occurring in the conclusion. Arikawa showed that any context-free language is repre
sented by a simple formal system [2]. Since the class of context-free languages is

superfinite and it is not inferable from positive data, we should pay attention to more

restricted systems.

Inductive inference of formal systems from positive data13

 DEFINITION 17. A simple formal system E is called to be primitive if it contains

exactly two formulas of the forms

 P(t1) and P(t2(xl, x2, • • •, x..)) E P(x1) & P(x2) & ••• & p(xn) .

P(t1) is called a base step of E and P(t2(x1, x2, • •-, x,,.))F-P(x1) & P(x2) & • • • & P(xn) is called
a induction step of E.

 Primitive formal systems contain only one predicate. From here on, we always
use P to denote the predicate in our primitive formal systems.

 DEFINITION 18. Let X={x1i x2, ••}. We define canonical terms and formulas as

follows :

 (1) A term t is canonical if t contains exactly n variables x1, , x,, and the
leftmost occurrence of xi is to the left of the leftmost occurrence of xi, for all i=1, • • •, n.

 (2) If t is a canonical term, then an atomic formula P(t) is canonical.

 (3) If t(xi1, x~2, • •, xi.) is a canonical term and 1 <_ i 1<i 2<• • • <i n, then a formula
P(t(xi1, x~2, • • •, x))<-P(x11) & P(xi2) & • • • & P(xi .) is canonical

 We say that a primitive formal system E is canonical if each formula in E is

canonical. The following proposition is obvious.

 PROPOSITION 4. For any primitive formal system E, there exists a unique canonical

primitive formal system E' such that E' E.
 We also restrict substitutions not to erase variables. Hereafter we assume that

substitutions map each variable to a nonempty term.

 EXAMPLE 2. Let the constant alphabet be X= { a, b} and let the variable alphabet

be X={x, y, •-•}. The following formal systems are primitive.

 (1) E1= {P(axbx), P(yx)<-P(x) & P(y) }.

 (2) E2= { P(a), P(xx)<--P(x) } .

 (3) E3= { P(axby), P(xx)<-P(x) } .
E1 is not canonical. E1' = { P(axbx), P (xy)E-P(x) & P(y) } E1 is canonical. L(E1) contains

strings aaba, abbb, aabaaaba, aabaabbb, abbbaaba, abbbabbb, • • -. The string ab is not in

L(E1) because erasing substitutions are prohibited. E2 and E3 are canonical. L(E2)=

{a2" 1 n> 0 } . L(E2) is not context-free and not a pattern languages. L(E3) = L({ P(axby) })
is the language of a pattern axby [3]. In E3, the induction step P(xx)4-P(x) is easily

shown to be redundant.
 If a formula P(x)<-P(x) is contained in a primitive formal system E then it is

always redundant in the sense that the language L(E) is equal to that represented by

only the base step of E. If the induction step of E is redundant, then L(E) is a pattern
language. Thus the class of languages defined by primitive formal systems is a proper

superclass of the class of pattern languages.

 5. Inductive Inference of Formal Systems from Positive Data

 In this section we show that the class of languages representable in the primitive

formal systems is inferable from positive data.

 First, we show, as an exercise, the inferability from positive data in case the

base cases are ground atoms. We slightly modify Condition 2 in Definition 15 and

14T. SHINOHARA

show that modified condition is still sufficient for inferability from positive data.

 DEFINITION 19. We say that a class L=L„ L2, • • • satisfies Condition 2' if

C(w1i w2) = { L l w1 E L, w2 E L, L=-Li for some i }

is of finite cardinality, for any distinct strings w1 and w2.

 LEMMA 5. If a class L=L1f L2, ••• of nonempty languages satisfies Condition 2',

then L is inferable from positive data

PROOF : We show that Condition 1 follows from Condition 2'. Let L be any class

of nonempty languages satisfying Condition 2'. For simplicity, we first assume that

L. F Li is computable from j and i. We define procedure Q as follows. Let i be the
input to Q. Start at Stage 0.

 Stage 0: If Li contains only one element s1, then output si. Otherwise, output s1
 and another element s1' in Li, set T1= { s1, s1'1, and go to Stage 1.

 Stage n: (n�1) Find an integer j such that Tn c_ L; Z Li. If such an integer j is

 found, then output any element sn in Li—L;, set Tn+1=TnU Is. }, and go
 to Stage n+1.

 We show Q enumerates all elements in a finite tell-tale of Li. Assume that Li
contains only one element. Then Li itself is a finite tell-tale and Q outputs the ele

ment of Li. Assume that Li contains two or more elements. In this case, Q outputs

two elements si and s2 in Li and go to Stage N, Q fails to find j, and never go to

Stage N4-1, because the class L satisfies Condition 2', that is, the number of languages
si containing si and s2 is finite. Therefore, TN is a finite tell-tale of Li.

 We can remove our assumption that LF Li is computable from j and i, by modi

fying Stage n(n>-1) as follows. Let w1, w2, • • • be an effective enumeration of E* and

Li(m)=Lin{w1i ..., w,,, }.
 Stage n: (n>_1) Find a pair (j, m) of integers such that T,,CL; and L;(m'=Li(m)

 If such a pair is found, then output any element sn in Li(m)—L,(m), set

Tn+1=TnU{sn}, and go to Stage n+1.

Li(n1) is a computable finite set, and hence decision L., (m) Li (m) is computable.
We can effectively enumerate all pairs of integers. Therefore Q effectively enumerates

elements in a finite tell-tale of Li. ^

 THEOREM 6. The class of languages defined by primitive formal systems base steps

of which are ground atoms is inferable from positive data.

PROOF : Let E= { P(w), P(t(x1i x2, • • •, xn))-P(x1) & P(x2) & • • • & P(xn) } . be a primitive

formal system and w be a nonempty constant string. Assume that distinct strings s1

and s2 are contained in L(E). Clearly,

Iwlclsll and Iwl—<_Is21,(1)

Since the base step P(w) is a ground atom and only one formula P(w) is provable

from the base step, the induction step of E is used by at least one of the proofs of

P(s1) and P(s2). We may assume, without loss of generality, that P(s1) is proved by

using the induction step P(t(x1, x2, • • •, x.))4---P(x1) & P(x2) & • • • &'P(xn). Then, there exists
a nonerasing substitution that maps t(x1, x2, • • •, xn) to sl. Therefore,

Inductive inference of formal systems from positive data15

I t(xl, x2, ..., xn) I < 1 s11,(2)

From Proposition 1 and Proposition 4, we have

C(s1i s2)= { L(E) I s1 E L(E), s2 E L(E),

 E is a primitive formal system and

 the base step of E is a ground atom}

={L(E)Is, E L(E) , s2 L(E) ,
 E is a canonical primitive formal system, and

 the base step of E is a ground atom}.

From (1) and (2), the number of canonical primitive formal systems E such that L(E)

contains both sl and s2 is finite. Therefore, the class of languages defined by primitive

formal systems, base steps of which are ground atoms, satisfies Condition 2' , and hence
by Lemma 5, it is inferable from positive data. ^

 LEMMA 7. Let E be a primitive formal systems and So(E) be the set of the shortest
strings in L(E). Then

So(E)=L({P(t)})nEIt!,

where P(t) is the base step of E.

PROOF : Let s be one of the shortest strings in L(E). Since P(s) can be proved

by the base step P(t), we have So(E) c L({ P(t)1). The length of the shortest strings in
L({ P(t) }) is equal to 1 t I , because substitution for variables are restricted to nonempty

terms. Thus we have So(E)= L({ P(t) })nX Itl. ^

 Here we should remember that the set of the shortest strings in a pattern language

is a finite tell-tale [3].

 LEMMA 8. Let El and E2 be any primitive formal systems, and let P(t1) and P(t2)

be the base steps of E1 and E2, respectively. Then

So(E1) C L(E2) C L(E1) = tl='t2 ,

PROOF : So(E1) c L(E2) implies I t1 I > I t2 I . L(E2) c L(E1) implies I t2 I > I t1 I . There
fore I t1 I = I t2 I and So(E1)=So(E2). Thus, t1 and t2 are equivalent. ^

 Now we state and prove our main theorem. The proof closely resembles that of

the main theorem on unions of two pattern languages [7].

 THEOREM 9. The class of languages defined by primitive formal systems is inferable

from positive data.
PROOF : We give a proof by showing that the class of languages defined by

primitive formal systems satisfies Condition 1. Here it should be noticed that both Condi
tion 2 and Condition 2' are violated.

 Consider the following procedure Q. The input to Q is a primitive formal system
E, instead of an index of a language. Let P(t) be the base step of E and let w1, w2•••
be an effective enumeration of all nonempty constant strings.

16T. SHINOHARA

procedure Q(E)
 begin

 output all elements in So(E)

 T :=S0(E)

i :=1

 while wi L(E)—L({P(t)}) do i :=i+1

 output wi
T :=Tu{wi}

 B :_ {FI F=P(t'(xi, x2, •••, xn))E—P(xi) & P(x2) & ••• & P(xn),
 F is a canonical formula,

t'(xi, x2, • • , xn) I < I wi I, and

TcL({P(t), F})}

for j :=1 to co do

 if w2 E L(E) then
 begin

 B' :={FEBI w;OL({P(t), F})}

 if B'#QS then

 begin
 output w2

T :=Tu{w;}

 B :=B—B'

 end
 end

 end

 Since So(E) is computable from E by Lemma 7, the effectiveness of Q is obvious.

We show that Q enumerates a finite tell-tale of L(E). Note that the while loop checks

the redundancy of the induction step. We consider two cases depending on whether

the induction step of E is redundant or not.
 Case 1. If the induction step is redundant, then the while loop never terminates.

The set enumerated by Q is So(E). Since the induction step of E is redundant

L(E)=L({ P(t) }) .

Assume that there exists another primitive formal system E' such that So(E) c L(E').

By Lemma 8, the base step of E' is equivalent to P(t) and clearly

L({P(t)})cL(E').

Therefore L(E') is not properly contained in L(E), that is, So(E) is a finite tell-tale of

L(E).

 Case 2. If the induction step is not redundant, then the while loop eventually

terminates and a string wi in L(E)— L({ P(t) }) is found. Assume that there exists
another canonical primitive formal system E' such that So(E)U { wi } c L(E') L(E). By

Lemma 8, the base step of E' is equivalent to P(t). Let F=P(t' (xi, x2, • • •, x.))+—P(x1)8z

P(x2) & •-• & P(x,,) be the induction step of E'. Since wi is not in L({ P(t) }), F is not

redundant, that is, P(wi) is proved by using F from E', and hence there exists a non

erasing substitution that maps t' (x,, x2, • • •, x,) to wi. Therefore

Inductive inference of formal systems from positive data17

 t'(xi, x2, •.., x.)1 < I wi I ,

and any canonical formula F' such that

So(E)U { wi } c L({ P(t), F }) L(E)

is always contained in B calculated before the for loop. The number of formulas in
B is finite because the number of premises of any formula in B is bounded by I wi I .
For each formula in B such that L({ P(t), F}) L(E), the for loop will find a string w;

in L(E)—L({P(t), F}), output w;, and remove F from B. Since B is finite, Q outputs

finitely many strings. From our observation, it is clear that the set enumerated by Q

is a finite tell-tale of L(E).

 6. Concluding Remarks

 We have discussed inductive inference of formal systems from positive data. Since

recursively enumerable languages are definable by Smullyan's elementary formal sys

tems [1], we have paid attention to restricted formal systems. The class of languages

represented by Arikawa's simple formal systems [2] is a indexed family of recursive
languages, and is located between the classes of context-free languages and context

sensitive languages. Clearly from Gold's theorem [9], his class is not inferable from

positive data.
 The most important class inferable from positive data should be the class of

pattern languages introduced by Angluin [3]. The main purpose of the present work
is to find a class of languages inferable from positive data that is a natural extension

of Angluin's class. As we have seen, we have succeeded to define a superclass of

Angluin's pattern languages by using restricted formal systems, named primitive formal

systems, and to show their inferability from positive data. It should be an important

and interesting problem to find more general formal systems that are still inferable

from positive data.

 The author studied Angluin's pattern languages from the viewpoint of practical

applications of inductive inference [5, 6, 7, 8]. The main subject was computational

complexity of inductive inference rather than inferability from positive data. It should

be another important problem to consider practical application of inductive inference of
formal systems.

 We can regard formulas in elementary formal systems as Horn formulas in logic

programming [12] over strings in which only the concatenation is used as a function.
Shapiro [13] studied inductive inference of theories and showed that his result is ap

plicable to Prolog program synthesis and debugging. Another discussion will be needed
to apply Shapiro's result to inductive inference of formal systems, because the unifications

in formal systems are quite different from those in the usual logic programming.
For example, two terms f(a, f(X, b)) and f (f (a, X), b) are not unifiable in the usual

sense, but they are equivalent to each other when f is a concatenation, and therefore

they must be unified in our formal systems.

18T. SHINOHARA

 Acknowledgement

 The motivation of the present work is due to Prof. Setsuo Arikawa. The author is

grateful to him for his constant support and encouragement.

 References

[1] SMULLYAN, R. M.: Theory of Formal Systems, Princeton University Press, Princeton, New
 Jersey, (1961) .

[2] ARIKAWA, S.: Elementary Formal Systems and Formal LanguagesSimple Formal Systems,
 Memoirs of the Faculty of Science, Kyushu University, Series A, Mathematics, 24, (1970),

 47-75.

[3] ANGLUIN, D.: Finding Common Patterns to a Set of Strings, In "Proceedings of the 11 th
 Annual Symposium on Theory of Computing," (1979), 130-141.

[4] ANGLUIN. D.: Inductive Inference of Formal Languages from Positive Data, Information
 and Control 45, (1980), 117-135.

[5] SHINOHARA, T.: Polynomial Time Inference of Pattern Languages and Its Application,
 in "Proceedings of the 7 th IBM Symposium on Mathematical Foundations of Computer

 Science," (1982), 191-209.

[6] SHINOHARA, T.: Polynomial Time Inference of Extended Regular Pattern Languages, in
 "Proceedings of RIMS Symposia on Software Science and Engineering

, Kyoto, 1982," Lecture
 Notes in Computer Science 147, SpingerVerlag, (1983), 115-127.

[7] SHINOHARA, T.: Inferring Unions of Two Pattern Languages, Bulletin of Informatios and
 Cybernetics, 20, (1983), 83-88.

[8] SHINOHARA, T. and ARIKAWA, S.: Learning Data Entry System: An Application of In
 ductive Inference of Pattern Languages, Research Report 102, Research Institute of Funda

 mental Information Science, Kyushu University, (1983) .

[9] GOLD, E. M.: Language Identification in the Limt, Information and Control 10, (1967),
 447-474.

[10] Nix, R. P.: Editing By Example, Research Report 280, Department of Computer Science,
 Yale University, (1983) .

[11] JANTKE, K. P.: Polynomial Time Inference of General Pattean Languages, in "Proceed
 ings of STACS '84, Paris," Lecture Notes in Computer Science 166, SpringerVerlag, (1984),

 314-325.

[12] LLOYD, J. W.: Foundations of Logic Programming, SpringerVerlag, (1984).
[13] SHAPIRO, E.: Inductive Inference of Theories from Facts, Technical Report 194, Depart

 ment of Computer Science, Yale University, (1981).

Communicated by S. Arikawa

Received August 27, 1985

