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INDUCTIVE INFERENCE OF FORMAL SYSTEMS 

        FROM POSITIVE DATA

       By 

Takeshi SHINOHARA*

                    Abstract 

   A formal system, we deal with in this paper, is a set of formulas 
of the form Pi (tl) 4—P2 (t2) & • • • & Pn (t„) , where Ply P21 • • •, Pn are predi
cate symbols and t1, t2, • • •, tn are strings of constant symbols and 
variable symbols. The language defined by a formal system E is a 
set of constant strings t such that P (t) is provable from E by using 
rules of modus ponens and substitutions of constant strings for vari
able symbols.We restrict formal systems so as to contain only 
two formulas of a predicate, and also restrict substitutions not to 
map any variable to empty string. The class of languages defined 
by our restricted formal systems is a natural extension of Angluin's 

pattern languages. We show that the class is inferable from positive 
data.

   1. Introduction 

   Formal languages are mostly defined by using generation grammars and recognition 

automata. We know another kind of systems, elementary formal systems introduced 

by Smullyan [1], to define such formal languages. The concept of elementary formal 
systems is based on the following type of axiom schema to define a set S which occurs 

frequently in mathematical literature : 

   (1) a is an element of S, 

   (2) if x is an element of S, then so is f(x), and 
   (3) only the elements that follow from (1) and (2) are in S. 

   Smullyan developed his recursive function theory by using the elementary formal 

systems with the rudimentary attributes. We can use the elementary formal systems 

to define formal languages. 

   Arikawa [2] studied languages defined by elementary formal systems and formal 

properties of restricted systems, called simple formal systems. The class of languages 
defined by simple formal systems is located exactly between the classes of context-free 
languages and contextsensitive languages. 

   In this paper, we introduce more restricted systems than Arikawa's simple formal 

systems, which will be called primitive formal systems, and show that the class of 

languages represented by them is inferable from positive data. Our restricted systems
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have only one base step and one induction step. Angluin's pattern languages [3 , 4], 
which the author has already studied from the viewpoint of practical applications of 
inductive inference [5, 6, 7, 8], can be regarded as languages represented by the simplest 

systems that have just one base step and have no induction step . Thus the class of 
languages defined by our systems is a natural extension of pattern languages . 

   2. Formal Systems and Languages 

   First, we introduce the notion of the elementary formal systems and define their 

languages. 

   DEFINITION 1. Let be a finite set of symbols, and let X and D be countable 

sets of symbols, where  E, X and D are mutually disjoint. Elements in X, X and D are 
called constants, variables and predicates, and denoted by a, b, c, • • • ; x, y, z, x1i x2, • • • ; 
and P, Q, R, P1, P2, • • •, respectively. 

   According to Smullyan [1], positive integers called degrees are assigned to predi
cates. Here we assume that degrees of predicates are all one , that is, the numbers 
of arguments of our predicates are always 1. 

   DEFINITION 2. For a set S of symbols, we denote a set of all finite string over 

S byS*. Strings in (EuX)* are called terms. When term t1 is identical to t2 except 

renaming of variables, we say t1 is equivalent to t2 and denote it by t1='t2 . 
   Here we should remember that the terms are called patterns by Angluin [3] . 

   DEFINITION 3. We define well-formed-formulas as follows : 

   (1) If P is a predicate and t is a term, then P(t) is an (atomic) formula. If t is 
a constant string, then P(t) is called a ground atom. 

   (2) If P, P1, P2, • • •, P. are predicates, and t, t1, t2, • • -, t.n are terms, then P(t)<- 
P1(t1) & P2(t2) & • • • & Pn(tn) is a formula. (We regard a formula whose right part is empty , 
i.e., n=0 as an atomic formula P(t).) Formula P(t) is called a conclusion and each 
formula Pi(ti) on the right side of <— is called a premise . 

   DEFINITION 4. An elementary formal system is a finite set of formulas . 
   DEFINITION 5. Let 0 be any homomorphism from terms to terms . We denote the 

image of a term t by to. If 0 maps any constant symbol a to itself , then 0 is called 
a substitution. For a formula F=P(t)<—P1(t1) & P2(t2) & ••• & Pn(tn), we define F0=P(t6)<-

P1(t19) & P2(t20) & ... & Pn(tn9). 

   DEFINITION 6. Let E_ { F1i F2, • • •, F.} be an elementary formal system. We say 
that a formula F=P(t)<-P1(t1)&P2(t2)&•••&Pn_1(t,i _1) is provable from E if F satisfies 
one of the following conditions : 

  (1) F is in E, 

   (2) F=F'9 for some formula F' provable from E and some substitution 0, and 
   (3) two formulas P(t)<—P1(t1) & P2(t2) & • • • & Pn_ 1(tn_ 1) & Pn(tn) and Pn(tn) are provable 

from E. 

   DEFINITION 7. A language L(E, P) defined by an elementary formal system E is 

the set {tjtEE* and P(t) is provable from E}. When E contains just one predicate , 
we simply write L(E) instead of L(E, P). 

   DEFINITION 8. If an elementary formal system E is identical to E' except renam
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ing of variables and rearranging of premises, then we say that E is equivalent to E' 
and denote it by  E_E'. 

   The following proposition is obvious from definitions. 
PROPOSITION 1. If two elementary formal systems E and E' are equivalent, then 

L(E, P)=L(E', P) for any predicate P. 
    EXAMPLE 1. 

   (1) Let E_ { P(axbx) } . Then L(E)_ { w l w =axbx, x X * } is the extended language 
of a pattern axbx [6]. Clearly from this example, the class of languages defined by 

elementary formal systems is a natural extension of pattern languages. 
   (2) Let E={P(s), P(ax)<-P(x), Q(bxbxbx)—P(x)}. Then L(E, P)={anln>0} and 

L(E, Q)= {banba"ba" I n>_0}. 

   3. Inductive Inference from Positive Data 

   In this section, we make a brief review of inductive inference from positive data, 
according to Angluin [4]. 

   A class of languages L=L1, L2, is said to be an indexed family of recursive 
languages if there exists a computable function f such that 

1, if xLi; 
                       f(i, x)= 0

, otherwise . 

   The index i of a language Li can be considered naturally as a grammar or an 
autmaton which accepts Li. In our case, formal systems are used as the indexes of 
languages. 
   From here on, the classes of languages are assumed to be an indexed family of 
recursive languages. 

   DEFINITION 9. A complete presentation of a language L is an infinite sequence 
(s1, t1), (s2, t2), • • • such that ti is 0 or 1, {s ! s=si and ti=1 for some i}—L, and is I s=si 
and ti=---0 for some i} =X*—L. 

   DEFINITION 10. A positive presentation of a nonempty language L is an infinite 
sequence of strings si, s,••• such that {s j s=si for some i } =L. 

   DEFINITION 11. Inductive inference machine M is an effective procedure that pro
duces an output from an input of finite sequence. M[C denotes an output produced 
by an inference machine M from a finite sequence 0. The output M[0] is called a 

guess. Let C =s1i s2, • • • be an infinite sequence, and denote by a<n> a finite subsequence 
s1, •••, sn, of a. We say that M on input a converges to v if M[a<n>] is defined for 
all n�1 and there exists an integer N such that M[ a <n>] = v for all n> N. 

DEFINITION 12. A class of languages L=L1i L2, ••• is said to be inferable from 
complete (positive) data if there exists an inference machine M such that M on input a 
converges to j with L; = Li for any index i and any complete (positive) presentation a 
of Li. 

   Gold [9] showed that any indexed family of recursive languages is inferable from 
complete data but is not always inferable from positive data. He also showed that any 
superfinite class is not inferable from positive data. From his result, we can easily
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show that even the class of regular languages is not inferable from positive data. 

This facts sounds negative for approaches to find natural and interesting applications 

of inductive inference. Angluin [4], however, showed a theorem characterizing classes 

inferable from positive data and presented nontrivial and interesting classes including 

the pattern languages [3]. After her publications, several studies on applications of 

inductive inference have been made [5, 6, 7, 8, 10,  11]. 

   DEFINITION 13. Let L= Li, L2, • • • be a class of languages. The set Ti is called 
a finite tell-tale of Li if 

   (1) Ti is finite, 

   (2) Ti c Li, and 

   (3) Tic_L;~--1(L; Li) for all j. 
DEFINITION 14. We say that a class of languages L=L1i L2, satisfies Condition 

1 if there exists an effective procedure that enumerates all elements in a finite tell-tale 

of Li for any i. 

   THEOREM 2. (Angluin) A class L=L1, L2, •• of nonempty languages is inferable 

from positive data if and only if L satisfies Condition 1. 
   DEFINITION 15. We say that a class L=L1i L2•.. satisfies Condition 2 if 

                C(S) = { L I S S L and L = Li for some i } 

is of finite cardinality, for any nonempty finite language S. 
   COROLLARY 3. (Angluin) If a class L=L1, L2, satisfies Condition 2, then L is 

inferable from positive data. 

   Although Condition 2 is not necessary for inferability from positive data, it is 

convenient because it is independent of the indexing. In fact, many classes, including 

the class of pattern languages of Angluin [3], are shown to be inferable from positive 
data by using Corollary 3. 

   4. Restriction of Formal Systems 

   It is well-known that any recursively enumerable language is representable in an 

elementary formal system. Therefore we should put some restrictions on elementary 
formal systems to discuss inferability of languages from positive data. Arikawa dis

cussed restricted formal systems, called simple formal systems [2]. 

   DEFINITION 16. An elementary formal system E is called to be simple if each 

formula in E is of the form 

P(t(x1, x2,xn)) f P1(x1) & P2(x2) & ... & Pn(xn) 

where P, P1, P2, • • •, P. are predicates, x1, x2, • • •, xn are distinct variables, and t(x1, x2, 
• • •, xn) is a term containing at least n variables x1, x2, , xn. 

   In a simple formal system, the arguments of the premises are distinct variables 

occurring in the conclusion. Arikawa showed that any context-free language is repre
sented by a simple formal system [2]. Since the class of context-free languages is 

superfinite and it is not inferable from positive data, we should pay attention to more 

restricted systems.
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   DEFINITION 17. A simple formal system E is called to be primitive if it contains 

exactly two formulas of the forms 

 P(t1) and P(t2(xl, x2, • • •, x..)) E P(x1) & P(x2) & ••• & p(xn) . 

P(t1) is called a base step of E and P(t2(x1, x2, • •-, x,,.))F-P(x1) & P(x2) & • • • & P(xn) is called 
a induction step of E. 

   Primitive formal systems contain only one predicate. From here on, we always 
use P to denote the predicate in our primitive formal systems. 

   DEFINITION 18. Let X={x1i x2, ••}. We define canonical terms and formulas as 

follows : 

   (1) A term t is canonical if t contains exactly n variables x1, , x,, and the 
leftmost occurrence of xi is to the left of the leftmost occurrence of xi, for all i=1, • • •, n. 

   (2) If t is a canonical term, then an atomic formula P(t) is canonical. 

   (3) If t(xi1, x~2, •  •, xi.) is a canonical term and 1 <_ i 1<i 2<• • • <i n, then a formula 
P(t(xi1, x~2, • • •, x))<-P(x11) & P(xi2) & • • • & P(xi .) is canonical 

   We say that a primitive formal system E is canonical if each formula in E is 

canonical. The following proposition is obvious. 

   PROPOSITION 4. For any primitive formal system E, there exists a unique canonical 

primitive formal system E' such that E' E. 
   We also restrict substitutions not to erase variables. Hereafter we assume that 

substitutions map each variable to a nonempty term. 

   EXAMPLE 2. Let the constant alphabet be X= { a, b} and let the variable alphabet 

be X={x, y, •-•}. The following formal systems are primitive. 

   (1) E1= {P(axbx), P(yx)<-P(x) & P(y) }. 

   (2) E2= { P(a), P(xx)<--P(x) } . 

   (3) E3= { P(axby), P(xx)<-P(x) } . 
E1 is not canonical. E1' = { P(axbx), P (xy)E-P(x) & P(y) } E1 is canonical. L(E1) contains 

strings aaba, abbb, aabaaaba, aabaabbb, abbbaaba, abbbabbb, • • -. The string ab is not in 

L(E1) because erasing substitutions are prohibited. E2 and E3 are canonical. L(E2)= 

{a2" 1 n> 0 } . L(E2) is not context-free and not a pattern languages. L(E3) = L({ P(axby) } ) 
is the language of a pattern axby [3]. In E3, the induction step P(xx)4-P(x) is easily 

shown to be redundant. 
   If a formula P(x)<-P(x) is contained in a primitive formal system E then it is 

always redundant in the sense that the language L(E) is equal to that represented by 

only the base step of E. If the induction step of E is redundant, then L(E) is a pattern 
language. Thus the class of languages defined by primitive formal systems is a proper 

superclass of the class of pattern languages. 

   5. Inductive Inference of Formal Systems from Positive Data 

   In this section we show that the class of languages representable in the primitive 

formal systems is inferable from positive data. 

   First, we show, as an exercise, the inferability from positive data in case the 

base cases are ground atoms. We slightly modify Condition 2 in Definition 15 and
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show that modified condition is still  sufficient for inferability from positive data. 

    DEFINITION 19. We say that a class L=L„  L2, • • • satisfies Condition 2' if 

C(w1i w2) = { L l w1 E L, w2 E L, L=-Li for some i } 

is of finite cardinality, for any distinct strings w1 and w2. 

    LEMMA 5. If a class L=L1f L2, ••• of nonempty languages satisfies Condition 2', 

then L is inferable from positive data 

PROOF : We show that Condition 1 follows from Condition 2'. Let L be any class 

of nonempty languages satisfying Condition 2'. For simplicity, we first assume that 

L. F Li is computable from j and i. We define procedure Q as follows. Let i be the 
input to Q. Start at Stage 0. 

    Stage 0: If Li contains only one element s1, then output si. Otherwise, output s1 
            and another element s1' in Li, set T1= { s1, s1'1, and go to Stage 1. 

   Stage n: (n�1) Find an integer j such that Tn c_ L; Z Li. If such an integer j is 

            found, then output any element sn in Li—L;, set Tn+1=TnU Is. }, and go 
           to Stage n+1. 

   We show Q enumerates all elements in a finite tell-tale of Li. Assume that Li 
contains only one element. Then Li itself is a finite tell-tale and Q outputs the ele

ment of Li. Assume that Li contains two or more elements. In this case, Q outputs 

two elements si and s2 in Li and go to Stage N, Q fails to find j, and never go to 

Stage N4-1, because the class L satisfies Condition 2', that is, the number of languages 
si containing si and s2 is finite. Therefore, TN is a finite tell-tale of Li. 

   We can remove our assumption that LF Li is computable from j and i, by modi

fying Stage n(n>-1) as follows. Let w1, w2, • • • be an effective enumeration of E* and 

Li(m)=Lin{w1i ..., w,,, }. 
   Stage n: (n>_1) Find a pair (j, m) of integers such that T,,CL; and L;(m'=Li(m) 

            If such a pair is found, then output any element sn in Li(m)—L,(m), set 

Tn+1=TnU{sn}, and go to Stage n+1. 

Li(n1) is a computable finite set, and hence decision L., (m) Li (m) is computable. 
We can effectively enumerate all pairs of integers. Therefore Q effectively enumerates 

elements in a finite tell-tale of Li. ^ 

   THEOREM 6. The class of languages defined by primitive formal systems base steps 

of which are ground atoms is inferable from positive data. 

PROOF : Let E= { P(w), P(t(x1i x2, • • •, xn))-P(x1) & P(x2) & • • • & P(xn) } . be a primitive 

formal system and w be a nonempty constant string. Assume that distinct strings s1 

and s2 are contained in L(E). Clearly, 

Iwlclsll and Iwl—<_Is21,(1) 

Since the base step P(w) is a ground atom and only one formula P(w) is provable 

from the base step, the induction step of E is used by at least one of the proofs of 

P(s1) and P(s2). We may assume, without loss of generality, that P(s1) is proved by 

using the induction step P(t(x1, x2, • • •, x.))4---P(x1) & P(x2) & • • • &'P(xn). Then, there exists 
a nonerasing substitution that maps t(x1, x2, • • •, xn) to sl. Therefore,
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I  t(xl, x2, ..., xn) I < 1 s11,(2 ) 

From Proposition 1 and Proposition 4, we have 

C(s1i s2)= { L(E) I s1 E L(E), s2 E L(E), 

                E is a primitive formal system and 

                the base step of E is a ground atom} 

={L(E)Is,  E L(E) , s2 L(E) , 
                E is a canonical primitive formal system, and 

               the base step of E is a ground atom}. 

From (1) and (2), the number of canonical primitive formal systems E such that L(E) 

contains both sl and s2 is finite. Therefore, the class of languages defined by primitive 

formal systems, base steps of which are ground atoms, satisfies Condition 2' , and hence 
by Lemma 5, it is inferable from positive data. ^ 

   LEMMA 7. Let E be a primitive formal systems and So(E) be the set of the shortest 
strings in L(E). Then 

So(E)=L({P(t)})nEIt!, 

where P(t) is the base step of E. 

PROOF : Let s be one of the shortest strings in L(E). Since P(s) can be proved 

by the base step P(t), we have So(E) c L({ P(t)1). The length of the shortest strings in 
L({ P(t) }) is equal to 1 t I , because substitution for variables are restricted to nonempty 

terms. Thus we have So(E)= L({ P(t) } )nX Itl. ^ 

   Here we should remember that the set of the shortest strings in a pattern language 

is a finite tell-tale [3]. 

   LEMMA 8. Let El and E2 be any primitive formal systems, and let P(t1) and P(t2) 

be the base steps of E1 and E2, respectively. Then 

So(E1) C L(E2) C L(E1) = tl='t2 , 

PROOF : So(E1) c L(E2) implies I t1 I > I t2 I . L(E2) c L(E1) implies I t2 I > I t1 I . There
fore I t1 I = I t2 I and So(E1)=So(E2). Thus, t1 and t2 are equivalent. ^ 

   Now we state and prove our main theorem. The proof closely resembles that of 

the main theorem on unions of two pattern languages [7]. 

   THEOREM 9. The class of languages defined by primitive formal systems is inferable 

from positive data. 
PROOF : We give a proof by showing that the class of languages defined by 

primitive formal systems satisfies Condition 1. Here it should be noticed that both Condi
tion 2 and Condition 2' are violated. 

   Consider the following procedure Q. The input to Q is a primitive formal system 
E, instead of an index of a language. Let P(t) be the base step of E and let w1, w2••• 
be an effective enumeration of all nonempty constant strings.
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procedure Q(E) 
   begin 

      output all elements in So(E) 

      T :=S0(E) 

i :=1 

     while wi L(E)—L({P(t)}) do i :=i+1 

      output wi 
T :=Tu{wi} 

      B :_ {FI F=P(t'(xi, x2, •••, xn))E—P(xi) & P(x2) & ••• & P(xn), 
           F is a canonical formula, 

t'(xi, x2, • • , xn) I < I wi I, and 

TcL({P(t), F})} 

for j :=1 to co do 

        if w2 E L(E) then 
            begin 

             B' :={FEBI w;OL({P(t), F})} 

              if B'#QS then 

                  begin 
                        output w2 

T :=Tu{w;} 

                           B :=B—B' 

                    end 
             end 

   end

   Since So(E) is computable from E by Lemma 7, the effectiveness of Q is obvious. 

We show that Q enumerates a finite tell-tale of L(E). Note that the while loop checks 

the redundancy of the induction step. We consider two cases depending on whether 

the induction step of E is redundant or not. 
   Case 1. If the induction step is redundant, then the while loop never terminates. 

The set enumerated by Q is So(E). Since the induction step of E is redundant 

L(E)=L({ P(t) }) . 

Assume that there exists another primitive formal system E' such that So(E) c L(E'). 

By Lemma 8, the base step of E' is equivalent to P(t) and clearly 

L({P(t)})cL(E'). 

Therefore L(E') is not properly contained in L(E), that is, So(E) is a finite tell-tale of 

L(E). 

   Case 2. If the induction step is not redundant, then the while loop eventually 

terminates and a string wi in L(E)— L({ P(t) }) is found. Assume that there exists 
another canonical primitive formal system E' such that So(E)U { wi } c L(E') L(E). By 

Lemma 8, the base step of E' is equivalent to P(t). Let F=P(t' (xi, x2, • • •, x.))+—P(x1)8z 

P(x2) & •-•  & P(x,,) be the induction step of E'. Since wi is not in L({ P(t) } ), F is not 

redundant, that is, P(wi) is proved by using F from E', and hence there exists a non

erasing substitution that maps t' (x,, x2, • • •, x,) to wi. Therefore
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 t'(xi, x2, •.., x.)1 < I wi I , 

and any canonical formula F' such that 

So(E)U { wi } c L({ P(t), F }) L(E) 

is always contained in B calculated before the for loop. The number of formulas in 
B is finite because the number of premises of any formula in B is bounded by I wi I . 
For each formula in B such that L({ P(t), F}) L(E), the for loop will find a string w; 

in L(E)—L({P(t), F}), output w;, and remove F from B. Since B is finite, Q outputs 

finitely many strings. From our observation, it is clear that the set enumerated by Q 

is a finite tell-tale of L(E).

   6. Concluding Remarks 

   We have discussed inductive inference of formal systems from positive data. Since 

recursively enumerable languages are definable by Smullyan's elementary formal sys

tems [1], we have paid attention to restricted formal systems. The class of languages 

represented by Arikawa's simple formal systems [2] is a indexed family of recursive 
languages, and is located between the classes of context-free languages and context

sensitive languages. Clearly from Gold's theorem [9], his class is not inferable from 

positive data. 
   The most important class inferable from positive data should be the class of 

pattern languages introduced by Angluin [3]. The main purpose of the present work 
is to find a class of languages inferable from positive data that is a natural extension 

of Angluin's class. As we have seen, we have succeeded to define a superclass of 

Angluin's pattern languages by using restricted formal systems, named primitive formal 

systems, and to show their inferability from positive data. It should be an important 

and interesting problem to find more general formal systems that are still inferable 

from positive data. 

   The author studied Angluin's pattern languages from the viewpoint of practical 

applications of inductive inference [5, 6, 7, 8]. The main subject was computational 

complexity of inductive inference rather than inferability from positive data. It should 

be another important problem to consider practical application of inductive inference of 
formal systems. 

   We can regard formulas in elementary formal systems as Horn formulas in logic 

programming [12] over strings in which only the concatenation is used as a function. 
Shapiro [13] studied inductive inference of theories and showed that his result is ap

plicable to Prolog program synthesis and debugging. Another discussion will be needed 
to apply Shapiro's result to inductive inference of formal systems, because the unifications 

in formal systems are quite different from those in the usual logic programming. 
For example, two terms f(a, f(X, b)) and f (f (a, X), b) are not unifiable in the usual 

sense, but they are equivalent to each other when f is a concatenation, and therefore 

they must be unified in our formal systems.
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