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LATTICE PATHS RESTRICTED BY TWO 

    PARALLEL HYPERPLANES

               By 

Masako SATO* and Taishin SADO*

                    Abstract 

   In the present paper, a lattice path in the nonnegative orthant in 
the (k+1)dimensional integer lattice is considered. The generating 
functions are obtained for the numbers of lattice paths restricted by 
two parallel hyperplanes satisfying various conditions and are ex

pressed by rational functions of kvariables. Results include those by 
Sato and Cong [161.

   1. Introduction 

   Let us consider paths starting from the origin in the nonnegative orthant of the 

(k+1)dimensional integer lattice space with coordinate variables Z1, ••• , Zk+i. A lattice 

path (abbreviated by LP throughout) is a path which makes one unit length jump in the 
positive direction along one of (k+1)-axes Z1, ••• , Zk+i at each step. 

   A general introduction to the theory of lattice path combinatorics and its applica
tions in various fields are compiled in Mohanty [1]. 

   As is well known, the number of LP's from the origin to a point (n1, • • • , n k, n k+1) 

in the (k+1)dimensional lattice space is given by a multinomial coefficient 

             nn n(n-1) ...(n— n1+1)                   =1(1
.1) 
                     IZn1i •..., nkn1 ! ••. n I 

             k+1 
where n= E ni and n=-(n1, ••• , nk) for ni>0, i=1, ••• , k. 

                i=1 

   In what follows, we denote by bold letters ktupples of nonnegative integers or 

variables and define a dot product d-Z= E dili for d=(d1, ••• , dk) and Z=(Z1, ••• , Zk). 
i=i 

And we assume that d1i • • • , dk are positive integers and a, b and c are nonnegative 

integers. 

   Among those on the lattice path, much attention has been paid on the problems 

concerning the number of LP's restricted by given hyperplane(s) in the (k+1)dimen
sional space. Consider a problem counting the number of LP's starting from the origin 

and terminating at (n, d •n+ a) without crossing a given hyperplane Z k+1=d • Z. Mohanty 

([2], [4]) showed that the number is given by 
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                            a+1  ¢+1+(d+1)•n              A
n(a+1, d+1)=a+1+( +1) •n(1.2) 

where 1=(1, 1,  •••  , 1). He derived a convolution identity on the expressions (1.2) and 

also the one relating multinomial coefficients with (1.2). His results were generalizations 

of Gould's results for k=1([51-[81). 

   Note that An(1, 2) (a case that k=1, d1=1, and a=1) is the socalled n-th Catalan 
number which plays an important role in combinatorial problems ([9][13]). See also 

Speed [141 for a geometric and probabilistic interpretation of (1.2). 

   Now consider two hyperplanes P1: Zk+1=d•Z—b and P2: Zk+1=d•Z+c. Denote 

by Wd(n, a, b) and Td(n, a, b, c) (0—<a<b+c) the number of LP's from the origin to 

(n, d • n + a — b) without crossing the hyperplane P1 and that of LP's from the origin to 
the same point (n, d•n+a—b) which cross neither P1 nor P2, respectively. Obtain the 
expressions W d (n, a, b) and T d (n, a, b, c). 

   For a case that k=1, this problem has been already solved by Sato and Cong([15], 

[161). 
   In the present paper, we shall extend their results to a multidimensional case. In 

section 2, we shall give an expression for Wd(n, a, b) from which we derive its generat
ing function. In section 3, we give a generating function for Td(n, a, b, c) by making 

use of the results in section 2. One will see that both generating functions are ex

pressed in terms of polynomials 

                                  (d+1).1—n-1 
Wd(X, n)=En1Xi 

                                          n—d•1 
= E(—X)l, n>0, (1.3) 

osd•ln 1 

where Xl=xi1 ••• xkk and (—X)1=(—xl)ll -•• (—xk)lk for X=(x1, •••, xk) and 1=(l1, ..• , lk), 

and where cp1(X, n) are closely related to the Chebyshev polynomials of the second kind. 
In section 4, we consider a special case that d=1. By expanding the generating func

tion for T1(n, a, b, c) obtained in section 3, we give an explicit expression for 

T 1(n, a, b, c). 

   2. Generating Function of {Wd(n, a, b), n>-0} 

   Let us introduce a generating function 

Wd(X, a, b)= E Wd(n, a, b)X", 
nZO 

where W d (0, a, b) =1. If a < b and 0—<d • n < b— a, W d (n, a, b) can not be evaluated since 

the terminal point (n, d • n+ a — b) lies outside the nonnegative orthant. However, we 
shall define, for the convenience, 

                                a—b+(d+1)•n 
Wd(n, a, b)=(2.1) 

                                        n
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for  n�0  0 with 0_<d • n < b— a. Note that the right hand side of the above expression 

can be called as a negative multinomial coefficient. 
   In order to derive Wd(n, a, b) and its generating function, let us quote the following 

two lemmas : 
   LEMMA 1. (Mohanty [3]). For any p= c8i, • • • , Q k) > 0, let us put 

u(X)=u(x1i ••• , xk)= E An(1, 13)X", 
n?O 

where An(1, 13) is defined by (1.2). Then the function u(X) satisfies the equation 

u=1+ E(2.2) 
i=1 

   Furthermore the following expansions are valid for any a: 

u"= E An(a, /3)Xn, a-r00(2.3) 
n20 

                                         a+13 •n 
----------------=~; Xn(2.4) 

                              1n0                1—43ixiu~i`n 
i=1 

   Note that the function u(X) is the unique solution of (2.2) analytic at 0 and that 
the series appearing in (2.3) and (2.4) converge for I xi < (13i1)P11/gi I, i =1, • , k. 

   LEMMA 2 (Mohanty [3]). For any a1, a2 and 18>0, one has the following convolution 
of Vandermonde's type: 

                  ai+,3•1a1} a2 19•n 
                            O515n I An 1(a2, 13)=n(2.5) 

nl nk 

where E means E ••• E for 1=(l1i •••, lk) and n=(n1, •••, nk). 
0212n 11=0 1k=0 

   Since Wd(n, a, 0)=An(a+1, d+1) for n?0 according to Mohanty [3], we obtain 

from Lemma 1 

Wd(X, a, 0)= ;An(a±1, d+1)Xn=ua+1,(2.6) 
                                                   n?O 

where u(X) is the unique solution of an equation 

                                               k 

               u=1+ ± xiudi+1 (2.7) 
i=i 

which is analytic at 0. 
   Note that Wd(n, a, 0) is equal to the number of LP's from the origin to (n, a+d•n) 

without crossing a hyperplane Zk+1=d•Z-Fa. 

   THEOREM 1. For any integers a, b>-0 and any k-tuple d>0 of integers, 

                              (d+1)•l—b-1 
           Wd(n, a, b)= EAn1(a+1, d+1), (2.8)                   0212nt                                            d•l2b 

where An(a+1, d+1) is defined by (1.2). 

   PROOF. For n?0 with d•n>b, we get
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             a—b±(d+1)•n  ((d+1)•1—b-1) 
   Wd(n, a, b)=— EAn_1(a+1, d+1), 

          n d`l>b  1 

which yields, from (2.5), 

                          /(d —1) •l—b-1 
 TVd(n, a, b)= EAnl(a+1, d+1) 

0.n\1 

                           (d+1) • l—b-1 
              EAn_1(a+1, d+1) Ostsn1                                        d • l>b 

                          (d+1)•l—b-1 
= EAn1(a+1, d+1). 

0<lsn1 d•l~b 

For n>_0 with d•n<_b, it is clear that 

                              a—b+(d+1) •n 
Wd(n, a, b)= 

n which is equal to the right hand side of (2.8) from (2.5). 
   THEOREM 2. For any integers a, b?0 and any k-tuple d>0 of integers, 

Wd(X, a, b)=ua+149d(X, b),(2.9) 

where cod(X, b) is defined by (1.3) and 0+1 is given by (2.6). 

   PROOF. From Theorem 1, we get 

                  ((d+1)-1—b-1)         Wd(X, a, b)= EAnl(a+1, d±1)Xn 
n?OOslsn   d•lb1 

                         /(d±1) • l—b-1 
= E E An1(a+1, d+1)Xn 

              0d•lb 1 nal 

b—d•Z 
= E (-X)1 E An(a-l-1, d+1)Xn• 

0_d•lVb 1 n>0 

   From (1.3) and (2.6), we get the equation (2.9). 
   COROLLARY 1. For any integers a, b?0 with b>a and any k-tuple d>0 of integers, 

E Wd(n, a, b)Xn=ua+lyd(X, b)—cpd(X, b—a-1), 
                         d•n>b-a 

where cpd(X, n) is defined by (1.3) and 0+1 is given by (2.6). 

   The proof is clear from Theorem 1 and theorem 2. 

   3. Generating Function of {Td(n, a, b, c), n>0} 

   In this section, we deal with LP's restricted by two parallel hyperplanes in the 

(k+1)dimensional lattice space.
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   Let us introduce a generating function 

 Td(X, a, b, c)= E Td(n, a, b, c)X', 
n>_O 

where T d (0, a, b, c) =1. If a < b, we define, for convenience, 

                         a—b+(d+1) .n 
Td(n, a, b, c)=Wd(n, a, b)=, for n>_0 with 0_d•n<b—a. (3.1) 

                               n 

   Firstly, we derive Td(X, b+c, b, c) as follows : 

   THEOREM 3. For any integers b, c>_0 and any k-tuple d>0 of integers, 

Td(X, b+c, b, c)= wd(X, b)(3.2) 
cpd(X, b+c+1) 

where cod(X, n) is defined by (1.3). 
   PROOF. For any n>_0, we have the following relation : 

E Td(l, b+c, b, c)Wd(n-1, b+c, b+c+1)=Wd(n, b+c, b). (3.3) O5_lsn 

By applying Theorem 2, we get 

                             ub+c+l~d(X,b) god(X,b)              T
d(X, b+c, b, c)=b+~+l//\1 =                            ugod(X, b+c+1) Cod(X, b+c-+1) 

THEOREM 4. For any integers a, b, c>0 with a<b+c and any k-tuple d>0 of 

integers 

Td(X, a, b, c)=~d(X,b)cpd(X,b+c—a)(3.4) 
                                 cod(X, b+c+1)' 

where cod(X, n) is defined by (1.3). 
   PROOF. Similarly as in the proof of Theorem 1, it can be seen that 

                   Wd(n, a, b), for n>_0 with 0�d•n<b+c—a 
     Td(n, a, b, c)= 

                  Wd(n, a, b) — E Td(l, b+c, b, c)Wd(n—1, a, b+c+1), OSLSn d•l<d•n—(b+c—a) 

                                         for n>_0 with d•n>b+c—a. 
Hence, we obtain 

Td(X, a, b, c) 

      =Wd(X , a, b)— ETd(l, b+c, b, c)Wd(n-1, a, b+c+1)Xn 
                           d•n>b+c-a O615n d 

•l<d •n—(b+c—a) 

=Wd(X, a, b)— E Td(l, b+c, b, c) E Wd(n—1, a, b+c+1)Xn 
I>_0 nal d

•n>d•I+b+c—a 

=Wd(X , a, b)—Td(X, b+c, b, c) E Wd(n, a, b+c+1)Xn. d • n>b+c a 

Appealing to Theorem 2, 3 and Corollary 1, we see that 

T d(X, a, b, c) 

        =Ua+1cod(X, b)—~dX~(b~b)+1){ua+lcod(X, b+c+1)—wd(X, b+c—a)}
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 —   cpd(X, b)cpd(X, b+c—a)  
cpd(X, b+c+1) • 

   Now we show that Td(X, a, b, c) converges to W d(X, a, b) as c--400.  To this end,. 

we prove the following lemma. 
   LEMMA 3. For any k-tuple d>0 of integers, 

           limcpd(X, n)un+1=1(3.5) 
1— E (di+1)xiudi 

i=1 

where u(X) is given by (2.7) and Ixil <0i/(di+1)(di+l), i=1, 2, ••• , k, for X=(x1, •••, xk). 
   PROOF. From (2.4), we get 

                     1(d+1)•l 

            /I=E?01XI                    1— E(di H1)xiudi1 
i=1 

which can be rewritten as 

        1  u-(n+1) ---------------------------
_---------------------------un+1 kk 

/        1— E (di+1)xiudi 1— E(di+1)xi.udi 
   1=1i=1 

                (d+1)•1—n-1 
     = E Xlun+1 

       l~0 1 

              (d+1) •1—n-1((d+1)-1—n-1) 
    = EXlun+1+ EXl0+1 

      Od•15n 1 d•1>n 1 

                     ((d+1)•m—n-1) =cpd(X, n)un+1+ E { EAtm(n+1, d+1)X1} (3.6) 
                                         d•l>n d•m>n 

0s-ms-1 

for any n>-0. The coefficient of X' in the expansion of cod(X, n)un+1 is positive for 

any n>-0 since it is given by Wd(l, n, n). It follows that 

             (d+1) •m—n-1((d+1)-1) 
       0< EAl_m(n+1, d+1)< 

d•m>n 
          0_<-ml m1 

                                           (+1H)xi=ofor any n0 and any 10 with d•l>n. Since limdEn1 for Ixil< 

                                              

•

01/(di+1)di+l, i=1, ••• , k, the second term of the right right hand side of (3.6) con
verges to 0. Thus, 

                                1                    li
mcpd(X,n)un+1= k 

                                 1— E (di+1)xiudi 
                                                                     i=1 

From Lemma 3, it follows immediately that : 

   THEOREM 5. For any integers a, b?0 any k-tuple d>0 of integers, 

limTd(X, a, b, c)=Wd(X, a, b), 

for I xil <dai/(di+1)(di+l) i=1, 2, ••• , k.
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   4. Explicit Expressions 

   In this section, we shall give explicit expressions of both Wd(n, a, b) and 

 Td(n, a, b, c) for a special case that d=1. 
kk 

   For d=1, if one puts Z= E Ziand n= E ni for n=(n1i ••• , nk) he may easily 
            j=1i=1 

see that 

W1(n, a, b)= )Wi(n, a, b) 

                                 n T1(n, a, b, c)= T1(n, a, b, c), 

                                  n where, as defined before, W1(n, a, b) is the number of LP's from the origin to the point 

(n, n+a—b) without crossing a line Zk+1=Z—b in the 2dimensional space (Z, Zk+1) 
and T1(n, a, b, c) that of LP's restricted by two lines Zk+1=Z—b and Zk+1=z-+c. 
Therefore we have 

Wi(X, a, b)= W1(n, a, b) (i xi)n 
n=oi=1/ 

n T1(X, a, b)= E T1(n, a, b, c)(± xi 
n=oi=1 

   In the present section, we will drive W1(n, a, b) and T1(n, a, b, c) using the generating 

functions obtained in the previous sections, respectively. 
   THEOREM 6. For any integers a, b>-0, 

               (1—A/1-4x  )a+lXb/2U(l)(i) W(X, a, b)=(2 1/.7(4.1) 
                 2n+a—b 2n-Fa—b n 

 (ii) W1(n, a, b)=—,n>0,(4.2) 
nn—b-1 n 

k k 
where x= E xi and n= E ni for X=(x1i ••• , xk) and n=(n1, ••• , nk), respectively, and 

i=1 i=1 

Un(x) is the Chebyshev polynomial of the second kind. 

   PROOF. From Theorem 2, we get 

WI(X, a, b)=co1(X, b)ua+l 

where u(X) is the unique solution with u(0)=1 of 

                             u=1+ E xiu2 
i=1 

and cp1(X, b) is given by 
                                          b-1•t 

cp1(X, b)= o~E~b Z (-X )1 

(4.1) is valid for any a, b>0 since it follows that
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                (1-/1-4x )
2x, 2)xn (4.3) 

and 

              ib/27 b—11l                 y1(X, b)= )(_x)1=xbbOUo(2,^x-)' (4.4)                                                  1=0 

where x= xi, An(a -1, 2)=------------a+1-1-2nCa+nJ+2n1for n>_0 and  Ub is the Chebyshev 
polynomial of the second kind : 

                     Ub(cos 6)=sin (b+1)0                                     1)B• 
sin e 

From (4.3) and (4.4), we have 

min in, b7 /b—1 
W1(X, a, b)= E E (-1)' An1(a+1, 2)xn 

                   n=0 1=0 \ 1 

                  2n+a—b (2n±a_-b)} 
              — xn

, 
                                               n=o 

                   72 n—b-1 

k 
which implies, with x= E xi, 

i=1 

2n+a—b 2nI--a—b n 
ti i(n, a, b)= — , n>_0 

n n—b-1 n 

with the convention (n)  =0 for r<0. Similarly, it follows that 

                     r 

   THEOREM 7. For any integers a, b, c>_0 with 0_a<b--c, 

                     U0(21/x)Ub+c—a(2)1/x 
      ) T(X, a, b, C)=x(ba-1)/2(4.5)                          Ub+c+1 (2,x 

   (ii) T1(n, a, b, c)=------------4{ (2 cos 0,)2n+a-b sin (b-i-1)0v sin (a+1)04 n , b+c-1-2 v=1n 

n>b—a,(4.6) 

k k 

where Un is the Chebyshev polynomial of the second kind, x= E xi, n= E ni, and 0,= 
                                      i=1 i=1 

v it  

b+c+2c+2for v=1, 2, •.• , [(b+c+1)/2](=M). 

   PROOF. It is clear that (4.5) is immediately follows from Theorem 3 and (4.4). 
Putting x=(2 cos B)-2, 0<0<7r/2, we get 

T1(X, a, b, c)=(2 cos B)—(b—a-1) sin (b+1)0 sin (b+c—a+1)6• 
sin 0 sin (b+c+2)6 

There are [(b1c1-1)/21 roots of co1(X, b+c+1) distinct from each other : 

x(')=(2 cos Op)-2,
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 /J 7C 
where B,=+~+2,v=1, ••• , [(b+c+1)/2](=M). Consequently, the coefficient of xn 

in the expansion of T,(X, a, b, c) is given by 

                 4 :tir E (2 
cos 6v)2"+a-b sin (b±1)0,, sin (a±1)0„ b+

c-2 v=~ 

for yi > h— a. From x"= E (fl) X n, we obtain (4.6). 
                                    1.n=n 11
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