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Abstract

We construct a powerset monad, a filter monad and a primefilter
monad in the category M-Set of sets with M-actions. To investigate
the categories of algebras of these monads in M-Set, we consider the
category of complete semilattices (resp. continuous lattices, compact
Hausd orff spaces) with M-actions. We show that if M is a group,
this category is isomorphic to the category of algebras of the
powerset monad (resp. filter monad, primefilter monad) in M-Set.

1. Introduction

Continuous lattices were introduced by Scott [5] as semantic domains of programming
languages. In denotational semantics, data types are characterized by recursive domain
equations. So we can argue about semantics only in a category where these equations
have solutions. The category CL of continuous lattices and continuous map has just this
property. So the investigation of continuous lattices has made a considerable contribution
to the development of the semantic theory. For example, the domain equation,
D=[D—D], has only trivial solutions in the category Set of sets and maps. But in the
category CL, the equation has a non-trivial solution D. and this domain plays an
important role in the theory of lambda calculus. Further, since continuous lattices have
rich structures, many mathematical properties are studied. As one of them, Day [1]
identified the category of the filter monad algebras in Set with the category of continuous
Jattices together with non-empty directed join and arbitrary meet preserving maps as
morphisms.

At this point, turning round to see these things, we find these theories and domains
are based on the classical logic or on the category Set. So the following ideas appear:
What happens, when we can think these things on the intuitionistic logic or on a topos.
If we can consider the continuous lattices in a topos, many interesting questions occur.
Is there a domain equation which could be solved by classical logic but does not have
solutions by intuitionistic logic ? How change the solutions of a domain equations ?
These differences seem to be caused by an essential point of the relation between the
semantic theory of programmings and logics.
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With these motivations, we first begin considering continuous lattices in a kind of
topoi M-Set. The category M-Set provides a rich source of examples of topoi. For
example by assigning a suitable monoid to M, the category M-Set exhibits a non-
classical but bivalent topos [2]. By the results of Day we consider following problems
in this paper: Can we consider the filter monad in the topos M-Set? Dose the algebra
of this monad in M-Set have a rich structure as a continuous lattice has? In algebraic
theory, we first consider a monad (triple) in a base category, next we define algebras
by using this monad and construct a category of these algebras [3]. Answering to the
first question, we change the base category Set of the filter monad to M-Set. In other
words, we extend this algebraic theory from Set to M-Set. For attacking the second
question, we compare the algebras of this monad with continuous lattices equipped with
M-actions by making a functor between two categories of these objects.

At the same time, the powerset monad and the ultrafilter monad in Set are extended
to monads in AM-Set. The algebras of these monads are complete semilattices and
compact Hausdorff spaces [3, 4]. We also compare these objects equipped with M-actions
with algebras in M-Set by using fucntors.

In section 2, we tabulate some properties of the category M-Set, algebraic functors
[6] and relations, which are fundamental concepts in this paper. In section 3, we
construct a powerset monad P, in M-Set by using powerobjects and the category
M-Set?¥ of Py-algebras. On the other hand, we consider the category M-(Set?) of
P-algebras with M-actions and M-action preserving P-algebra homomorphisms. In other
words, objects of M-(Set?) are complete semilattices with supremum preserving M-actions
because it is well known that P-algebras are complete semilattices [4]. To compare
these two categories M-Setf» and M-(Set), we define an algebraic functor from M-Setf»
to M-(Set?). We show that if M is a group, then it is an isomorphism of categories.
That is, if M is a group Py-algebras are complete semilattices with supremum preserving
M-actions. In section 4, we extend the filter monad F in Set to a monad in M-Set. As
the powerobject on an M-set is regarded as the set of M-relations (c¢f. §2), we can
naturally induce an order (subset relation) on the powerobject and we can define a filter
on M-sets by using this order. So the usual filter monad F can be extended to a monad
Fy in M-Set naturally. For the filter monad Fy, it is shown that if M is a group then
the category M-Set"# of Fy-algebras is isomorphic to the category M-(Set?) of F-algebras
with M-actions and M-action preserving F-algebra homomorphisms. By the result of
Day [1] that the objects of Set” are continuous lattices, it follows that if M is a group
then Fj-algebras are continuous lattices with non-empty directed join and arbitrary meet
preserving M-actions. In section 5, by modifying the definitions of §4, we obtain the
primefilter monad Uy in M-Set. If M is a group, a primefilter on an M-set is an
ultrafilter. So the monad Uy includes the ultrafilter monad U in Set by assigning
one-point-monoid 1 to M. And we show several properties of the monad Uy by using
the results of §4. Especially, we show that if M is a group then Uy-algebras are
compact Hausdorff spaces with continuous M-actions.
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2. Preliminaries

We recall some relational notations and properties.

Let A, B and C be sets. When a is a subset of Ax B, we call that a is a relation
from A to B and denote it by a: A—B. For relations a: A—B and B:B—C, we define
a composite -a:A—C of @ and B by B-a:={(a, )€ AXC|(a, b)=a and (b, c)=f for
some b< B}. For a relation «: A—B, we denote by a%:B—. the inverse relation
ay:={(b, a)e BXAl(a, b)ea}. We identify a map f: A—B with a relation {(a, f(a))
e AX Blas A} (the graph of f).

Let 1 be the one-point set and A be a set. In this paper we identify an element
as A with a map a:1—-A and a subset aC A with a relation a:1—.1.

Let A/ be a monoid with unit e. For a set A a collection 6= {g,, : A—>A|me M} of
maps ¢, from A to A is called an M-action on the set A if ¢ satisfies ¢.,=14 and
Om 0n=0ny, for each m, neM. An M-set is defined to be a pair A=(A4, ¢) of set A
and an M-action ¢ on A. For M-sets A=(A, ¢) and B=(B, ) we call a map @ : A—B
an M-map ¢:A-B if z,-®=@-¢,, for each me M. The category of M-sets and M-
maps is denoted by M-Set.

Generally, let € be a category. A pair A=(A, ¢) of an object A of ¢ and a col-
lection 6= {6, : A—~A|lmeM} of endomorphisms ¢, in € is an AM-object in C if it
satisfies ¢,=1, and 0, 0,=0,, in C for each m, ne M. For M-objects A=(A4, ¢) and
B=(B, ) in ¢ a morphism @:A—B in C is an M-morphism in C if 7,-®=0@ ¢, for
each meM. We denote by M-C the category of M-objects in ¢ and M-morphisms
in C.

We note that if M is a one-point-monoid 1, then 1-Set is isomorphic to the category
Set of sets and maps.

A monoid M is abelian if nm=mn for any m, ne M. We denote by » and /, the
right multiplication and the left multiplication of M, respectively. That is, » and / are
defined by r,(n)=nm={,(m). We note that M=(M, [) is an M-set and r,: M—M is an
M-map for each n=M. For an M-set A=(A4, ¢) we call a subset « of A an
M-subset of A if it is closed under ¢. There is a one-to-one correspondence between
M-subsets of A and mono-subobjects of A in M-Set. We call an M-subset @ of Mx A
an M-relation from M to A and denote it by a: M—A. The condition that « is an
M-subset is translated to an equivalent relational expression aCe -a-l, (m€M). An
M-morphism «:M—A is naturally identified with an M-relation. We call a subset
7:1=M a left ideal of M if [,-yCy for each meM. We denote by L, the set of all
left ideals of M.

It is well known [2] that M-Set is a topos and the subobject classifier £ in M-Set
is (Ly, ), where w,(r):=r# -y for meM and 7= Ly.

LEMMA 2.1. For an M-set A==(A, a) the powerobject 24 is the set of all M-relations
Srom M to A with the M-action p* defined by ph(a):=a-r, for meM and ac 4.

ProOF. The powerobject 24 is the set of all M-morphisms & : MxX A—£ with the
M-action p defined by pn(&): =& -(rnx1,) for meM and a4 [2]. Since £ is a
subobject classifier, there is a one-to-one correspondence between AM-morphisms
a:MxA—$ and mono-subobjects a of Mx A. Hence we can identity 24 with the set
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of all M-relations from M to 4. Let p* be the M-action on the set of all M-relations
induced by p. Then we obtain p&(a)=a-r, (=(rn.xX10) a)) for meM and a=0*
because the following diagram must be a pullback.

pmla) o MxA

|

a . MxA

7’m><1A

For a monad 7=(T, 7, ¢) in Set we define a monad T=(T, 7, f) in M-Set as
follows. Let 4, B be M-=sets and @:A—B an M-morphism. We define T4 by
(TA, To), where (To),:=T(s,) and T@®:=T®. The natural transformations 7A4:
A—TA and gA:T*A—TA are defined by 74:=79A and gAd:=pA, respectively. It is
obvious to see that T is a monad in M-Set. We denote by M-Set? the category of
T-algebras and T-morphisms [3].

LEMMA 2.2. Let A==(4, o) be an M-set and x:TA—A a map. Then the following
conditions are equivalent :

(@ x-pA=14 x-pA=x-Tx and 6p-x=x-Ton for each me M,
() ((4, ¢), x) is an object of M-SetT,
(€) (A, x), g) is an object of M-(SetT).

ProOOF. Since (a)«(c) and (b)«(c) are trivial, we only show (a)—(b). The last
equation of (a) shows that x: TA—A is an M-morphism, so the other equations of (a)
imply x-74=1, and x-g4=x-Tx in M-Set. Therefore ((4, a), x)= M-SetT.

LEMMA 2.3. Let A=(A4, o) and B=(B, t) be M-sets, (A, x) and (B, y) objects of
M-SetT and @ : A—B a map. Then the followings are eqyivalent :

@ @ x=yTO and P-cpn=1,-D for each meM,
by @:((4, a), x)—UB, 7), ¥) is a morphism in M-SetT,
(©) @:((A4, x), a)—~((B, v), 7) is a morphism in M-(Set”).

PRrROOF. Since (a)~(c) and (b)~(c) are trivial, we only show (a)—(b). The last
equation of (a) shows that @ : A—B is an M-morphism, so the first equation shows that
@ -x=v-TQ in M-Set. Therefore @:(A, x)—(B, v) is a T-morphism.

By Lemma 2.2 and Lemma 2.3 we obtain the next proposition.

PROPOSITION 2.4. M-SetT= M-(Set?).

For two monads @=(Q, 7, t¢) and R=(R, ng, pr) in M-Set, a natural transforma-
tion s:Q-»>R is called algebraic if for each M-set A,

(i) sA-poA=nzA, }
(ii) sA-pgA=ppA-sRA-QsA ]
If s:Q—R is an algebraic natural transformation, then a functor s* : M-Set?— M-Set?
is defined by s*(A4, x):=(4, x-sd) for (4, x)eM-Set?, and s*@: =@ for a morphism
@ :(A, x)>(B, y) in M-Set? [6]. The functor s* defined in this manner is called ap
algebraic functor induced by s.

LEMMA 2.5. If an algebraic natural transformation s:Q—R is an isomorphisn.,
then the induced algebraic functor s*:M-SetF—M-Set® is an isomorphism of categories.

2.1y
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PROOF. Let t: R—Q be the inverse natural transformation of s. Since t4-sA=1¢4
and sA-tA=1p,, it easily follows from the algebraic condition (2.1) for s that nod=
tA-sA-noAd=tA-nrA and [IQA'tQA'RtA:tA'SA"Llei‘zQA'RZ‘A:tA'HRA'SRA'QSA'
tQA-RtA=tA-prA-sSRA-QsA-QtA-1RA=tA -ppA-sRA-tRA=tA-prA. Therefore the
condition (2.1) for ¢t holds. So we have an algebraic functor ¢*: M-Set?— M-Set® and it
is obvious that t* is inverse functor of s*.

In the rest of this paper, if no confusion occurs we omit subscripts and superscripts
from natural transformations.

3. Powerset Monad in M-Set

In this section, we introduce a powerset monad Py=(Puy, 7, ) in M-Set. Next,
to compare the category M-SetFx of Py-algebras with the category M-Set? of P-algebras,
we define an algebraic functor sp*: M-Set? u—M-Set?. Finally we show that if M is a
group, this functor sp* is an isomorphism of categories.

Let A, B be M-sets and @:A—B an M-morphism. We define an endofunctor
Py : M-Set—M-Set by PyA:=04 with an M-action p* and PyP(a):=0-a (s 24).

Moreover we can define natural transformations 7% : 1y .see—Py and pf : P —Py as
follows.

For an M-set A=(A, ), acA and JA=P%A,

(m, c)eniA(a) iy c=0ona),

(m, a)= pA(A) iff  (m, @)€4 and (¢, a)sa for some a < PyA.

To prove exactly that P, defines a functor and 3§, p#f define natural transforma-
tions, we must check the followings:

(i) Pu®(a) is an M-relation for a=PyA,

(ii) Pyu® is an M-morphism,

(iii) 7n%Aa) is an M-relation for ac A,

(iv) %A is an M-morphism,

(v ) %% is a natural transformation,

(vi) pRA(A) is an M-relation for A€ P} A,

(vil) pBA is an M-morphism,

(viil) ph 7s a natural transformation.

We now verify above conditions. Let m and n be elements of M.

(i) t%-Py@a)l,=ti- @ a-1,20 6% a-1,DP -a=Pyd(a).

(i) (0B -Pu®)a)=p5(@ -a)=0 -a-rn=Py@(a-r,)=(Pu®- pr)(a).

(iii) (gn-pA@)m)=(0r" 0 n)(a)=0rn(a)=(nA(a)-{;)(m).

(iv) Since (94(a)-7,)(m)=(nA(@)(mn)= 0n(a)=0n 0,(a)=((nA-0:)(a))(m), we
have (p4-nd)a)=nd(a)-r,=(nA-0,)a).

(v ) Since (@-pA(a)im)=(D-o)(a)= (tm @) (a) = ((B-P)(a))(m), we have
(Py®@-pA)a)=0 -nA(a)=(9B-D)a).

(vi) We first show

#A(J)ZU(n,a)eJa rh. B.D
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If (m, a)epA(A) then there exist acPyA such that (m, @) and (e, a)ca.
Therefore (m, a)ca-r5C\Uwm, weua-ri. Conversely assume (m, a)E\Jm, meaa-ri.
Then we have (m, a)ea-r; for some (n, @), and so m=kn=I[,(n) and (k, a)Ea
for some k=M. Hence (e, a)ea-7;,. As A is an M-relation, (n, a)=4 implies
{x(n), pf(a))=(m, a-rr)eA. This shows (m, a)=pA(H).

By using (3.1) we have % pA(A) In=07 U wea@ 15 ln=\Um wca 0 a riln
DUt ared b ln 17D\ weaa - vi=pA(A) for each me M. Therefore pA(A) is an
M-relation.

(vii) For A=P%A, we obtain

(n, a)e(pA- ppFu*)(A)=pA(A r,)
—JacPyA;, (n, a)sArn, (¢, A)=a
—IJdacsPyAd; nm, @)=, (¢, a)Ea
o (nm, a)e pA(A)

< (n, ) pA(A) 1o=(on" AN (A).

(viii) For A=P% A, we obtain

(m, by (uB-PyONA)=pB(PyD- 1)

—38=PyB; (m, BEPyP -4, (¢, b)ES
eJacsPyd; (m, a)ed, (e, b)) PyD(a)=0-a (=4,
—3JdacPyA, JacA; m, )4, (¢, a)ea, b=0(a)
—JasA; (m, a)spAA), b=0(a)

—(m, b)EQ)-yA(J):(PM@-yA)(J).

We denote by P=(P, n*, ¢¥) the powerset monad in Set [3, 4].
THEOREM 3.1.

(@) Pu=(Py, 7%, th) is a monad in M-Set.

(b) If M=1, then P, is the powerset monad P in Set.

PrOOF. (a) Let a=PyA and F=PyA.
(1) pA-pPuA(@)=\Jm perPua@y ri=\Urcy pa(@) ri=\Urexa-r,-ri=a (by (3.1).
Therefore p-nPy=1p,.
(ii) (n, a)e(uA-PynA)a)=pA(n4-a)
—drePyd; (n, r)end-a, (¢, a)ey
—dced; (n, o)€a, (e, a)snAlc) (=)
«(n, a)=a.
Therefore p-Pyn=1p,.
(iii) (m, a)e(pA -PypANF)=pA(pA-F)
~JacPyd; (m, a)cpA-F, (¢, a)ca
oAePyA; n, §IET, (¢, a)epA() (=a)
o3dEePyA, drePyd; (n, §) €F, (¢, 1)EE, (e, a)=T
—JrePyd; (m, ) pPyA(F), (e, a)=7
«(m, a)s pA(pPy A(F))=(uA- uPy A)NF).

Therefore p-Pyp=p- pPy.
(b) It is obvious that P, is the powerset monad P in Set.
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PROPOSITION 3.2. (a) For an M-set A=(A, ¢) a map sp:PA—PyA, defined by
spA(@)=_acanyA(a) (a=PA), induces a natural transformation sp:P-Py.

(b) The natural transformation sp:P—-Py is algebraic.

PrROOF. (a) Let A=(A, o) and B=(B, 7) be M-sets and @ : A—B an M-morphism.
Then we obtain (Py@-sA)(a) = @-sA@) = Usca @ pud (@) = UseaPu @ nxA)(a) =
Uaea(ﬂ.vB'(p)(fl):b'bed)-aﬁ.\lB(b):(SB‘P(D)(CY)-

For meM and a=PA we have (p&-sA)Na)=Uaca Ny A(@) 7 n=Uascalon nyA)a)=
Useapud-02)(@)=\Uccs,,.« PuAlc)=5A(Pon(a))=(sA-Poy)a).

Therefore sA is an M-morphism and sp is a natural transformation.

(b) Next we check that sp is algebraic.

(i) For a=A we have sA-74(a)=sA({a})=nyA(a). Therefore sA-7A=nyA.

(ii) For A=P?A then we have

(m, a)=(puuA-sPyA-PsA)A)

—3eePyd; (m, §(sPyA-PsA)A), (e, a)E&
—3JeePyA, JacsPsA(A); (m, ) EnyPudla), (¢, a)EE
—JacsPsA(A); (e, a)E phla)=a 1, (=)
oJacsPsA(A); (n, a)Ea

odred; n, a)esA@)=Uw;nudlc) (=a)

—dred, Jeey; (m, a)EnyAlc)

oIcepgA(A); (m, a)enudlc)

«(m, a)e(sA- gA)A).

Therefore sA-gA=pyA-sPyA-PsA.

Since the condition (2.1) holds, then sp is algebraic.

For an M-set A we define a map tpA:PyA—PA by tpA(a) :=a-e¢ (a=PyA). We
note that the unit element e M is identified with a map e¢:1—-M.

PROPOSITION 3.3. ip is a natural transformation iff M is a group.

Proor. First we obtain PO®-tA=tB-Py® because (PO -tA)a)=Pbla-e)=0 -a-e=
(tB-Py®)(a) for a=PyA. Next we have (Po,,-tA)a)=Po,(a-e)=0n a-¢and ((4-pn)a)
=tA(a-7,)=a-ry-e for each meM. The relation ¢, a-eCa-rn-e (meM) is trivial
To show that ¢p is a natural transformation, we only show o, a-eDa vy, e (meM).

If M is a group, then a€a-r,-¢ implies (m, a)Ea, (e, on-1(a)Ea and acag,-a-e.
So we have ¢, -a-e=a-r,-e. Therefore tp is a natural transformation.

Conversely, assume that tp is natural. Then we have a-rp-eCon-a-e for any
M-set A, ac A and meM. If we assign A:=(M, [} and a:=MXM, then there exists
nea-e such that [,(n)=mn=e¢ for any m& M since e€a -rneClny-a-e. This shows
that M is a group.

THEOREM 3.4. If M is a group, then the algebraic functor sk M-SetPyx—M-Set? is
an isomorphism of categories.

PrROOF. By Lemma 2.5, we must only show that s is an isomorphism. Let 4 be
an M-set and a=PA. Then we have (fA-sd)a)=sA(a)-e=\UseayuA(a)-e=a. There-
fore tA-sA=1p4.

Next we note that (sA-tA)@)=\Usca-e N Ad(@)=, weauA(a). It is obvious that
Ue weanud(@)Ca, and, since M is a group, (m, bea implies ({n-10m), 0 p-1(b)=
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(e, op-1(b))=a and (m, by nuA(o,-1(b)). So we have U, meapuAla)=a and sA-tA
=1pya

We denote by CSL, the category of complete semilattices and arbitrary supremum
preserving maps. It is known that CSL=Set” as categories. So we obtain the next
corollary by the last theorem and Proposition 2.4.

COROLLARY 3.5. If M is a group, then

M-Set?n = M-(Set”)= M-CSL.

By this corollary, if M is a group then a P-algebra is identified with the a com-
plete semilattice with a supremum preserving M-action.

4. TFilter Monad in M-Set

In this section, we define a filter on M-sets by using the order (inclusion) of
M-relations, a filter monad Fy in M-Set and an algebraic functor sz*: M-SetFu— M-SetF.
Moreover we show that sy* is an isomorphism if M is a group.

A filter on an M-set A is a subset fC£24 that satisfies

(F1) @<=f  (where & :=MxA),
(F2) if a, B=f then aNBe/,
(F3) if asf and acCp (€24) then Bef.

We note that if a, f=24 then anfe 4.

To obtain an endofunctor Fy : M-Set—M-Set, we define FyA to be the set of all
filters on A, and the M-action {4 on FyA by

acsli(f)  if  oncacsf
for feFyA and meM.
For an M-morphism @ : A—B we define Fy® : FyA—FyB by

BeFy®(f) iff O%-Bef
for fe FyA.

To check that Fy is a functor, we verify the followings.

(1) Calf) is a filter on A for me M.

Since ¢%-0=0cf we obtain O, (f). If a, f€L,(f) then we have g% -(aNnf)=
(eh-a)N\(o%-B)ef and so anBeln(f). If acln(f) and acfeP4 then we have
BELL(f) by (05 -a)CT(ch-Bef.

(ii) FO(f) is a filter on B.

It is similar to (i).

(iii) (B-FO=F®-C4 for me M.

For feFyA we have BE(F@-La)(f) e P*-Bela(f)oah OF-fefodf o -fefor
th-BEFO(f) o BeR-FOX)).

Next three maps nhd:A—FyA, z5A4:Q24-02"4* and phA:F4A—FyA for an
M-set A are defined by



Powerset monad, filter monad and primefilter monad ot

a=nhAla) i (e, a)=a,
(m, NHezfhAdlay i al.=1,
as L AF) i whAl)=g

for ac A, a=Q4 and F=F,A.
For M-sets A=(A, ¢), B=(B, v) and an M-morphism @ : A—B the following facts
holds :

(i) nhAla) is a filter on A for a=A.

(i) Ca-nhA=n5A-on for meM.

For acA we have ac((4-nA)a)o ok -asnAla)e(e, a)=oh-aele, ay(a))sae
aGnA(om(a))Hae(nA-am)(a).

(i) Fu® -phA=95B-0.

For a=A we have as(Fy® -nA)a)o 0% asyA(a)—(e, a)=d*-awle, a))=sae
acyB(@(a))—ac(nB-0)a).

(v) phA(F) is a filter for FEF}

Since 7A@)=MxFyAcTF we have O=pA(F). If a, f=pA(F) then we have
rA(), AB)ET, so (m, HeErAlang)e (@) lnefoa-lnN\f-lncfoal,sf and
Bln€ feim, flerAla)NwA(B). Therefore rA(anB=rAla)"zAB)ET. If a=pA(T)
and aC S then we have zA(a)EF, so (m, Herdla)yoa-l,s f—plns feln, lexAlf).
Therefore rA(a)CrA(B)E9.

(v) phA-CSut=C04 ufA for me M.

For 9=F%A we obtain ac(pd L, u*)(F)orAla)elu!(F)o () rAla)sT <
rA(ck ) F ook -acpA(F) o acs (L pANT), since (n, HerAloh-a)ooh -al,sfe
a-l,elalfN)em, GiMerAla)(n, lelCn)? rdla).

(vi) pEB-F4Q=Fy®- piyA.

For $=F%A we have aE(yB-F%,(D)(EF)«—»xB(a)EF},Q')(EE)H(FM(Z))’-nB(a)e.Cr“«—»
rA@* a)eTF o O ac pA(F) o as (FyD-pA)(F), since (m, /e (Fy®)* zB(a) «
(m, Fu@(ferBla)s>a-l, € Fy@(f) e P*-a-l,s fo(m, NernA(d*- a).

The facts (i)-(vi) show that p% :ly.sec=Fy and ufy: F3—>Fy are natural transfor-
mations.

PROPOSITION 4.1. 75 A is an M-morphism for any M-set A iff M is abelian.

ProOF. For any ncM we have (m, f)< (p,fut-rd)a) < (m, f)< rAla) 7, <
(mn, flerAla) o a-lp.€f > aly-lyef and (Om, Herd pi)a) « (n, Nerdla-ry) <
A rpln€ foa-ln-r,€f. So we can reduce the condition o ut - rA=nA-po5 (nEM) to

alpln=aln1, (=24 n, meM). 4.1)

If M is abelian then the equation (4.1) is trivial. Conversely, if the condition (4.1)
is valid then by assigning A=M, a=1y and m=e we have 1o le- L (R)=1y L, ¥ (k) for
any n, kM. This means nk=kn for any n, k=M. Therefore M is abelian.

LEMMA 4.2. For each as 84,

(@) pyA* i Al)=(x5FyA -nfA)a),

(by phA* -z Ala)=a.

ProOF. (a) Since (n, flenda) I, « (mn, Hlecdla) o alp,sf < a-ly-l,ef e
(n, f)enAla-l,), we obtain (m, Fye(zFyAd rA)a) o 7d{a) [, =F o nAla-l,)ET <
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a-lp,spA(F) < (m, pA(F))erndla) < (m, Frepd® -zAla).

(b) (m, a)enA?* -wAla)o(m, nAla)end(a)—a-lnenAla)o(e, a)sa-l—0n, A)=a.

We denote by F=(F, »¥, uF) the filter monad in Set [1].

THEOREM 4.3.

(a) Fy=(Fy, 7%, ¢ is a monad in M-Set.

(b) If M=1, then F, is the usual filter monad F in Set.

Proor. (a) Let feFyA and F=F}A.

(i) ac(pAd pFyA)flonAl@)enFyA(f)ole, lenAla)oa-l.€ foasf. There-
fore g nFy=1p,.

(ii) as(pd-FypA)(floaAla)s FynA(f)onA*-mA(a)€ feac f by Lemma 4.2(b).
Therefore p-Fyn=1r,.

(iiiy as(pd-pFyA)F)o nAla)EpFyA(F) o (@FyA-nAa)ETF < pA* Tt Ala) e T <
nAl)€ FypA(F)ac(uA-FypA)F) by Lemma 4.2(a). Therefore p-pFy=p-Fyp.

(b) It is obvious to see that F, is the filter monad F in Set.

We note that e pA(F) iff aFLA(@)eF for a set A and FeF*A.

PROPOSITION 4.4.

(a) For an M-set A a map spA: FA—>Fy A, defined by

acspA(f)  iff  a-esf (feFA),

induces a natural transformation sp: F—-Fy.

(b) The natural transformation sg: F—Fy is algebraic.

PrROOF. (a) Let A=(A, ¢) and B=(B, ) are M-sets, ® : A—B an M-morphisms
and meM. Then it follows that Be(Fy®-sA)f)« O#-BesA(f) & D*-B-ecf o
‘B~eEF(D(f)<—>ﬂE(SB‘F@)(f), and ac (4 -sA)(f)—ok-acssA(f)o oh-aecfo
a-e€Fa,(f) > ac(sA-Fo,)f). These show that sp is a natural transformation.

(b) Next we check that sy is algebraic.

(i) ForacA,wehaveac(sd-7A)a)oa-ecjA(a)~asa -e—(e, a)SamacnyAla).
Therefore s4-7A=nyA.

(i) For acFyA and FeF?A, since fe(sAy -nyd(a)-e« sA(f)enydla)-e
(e, SA(f))EnyAla) & acsA(f) > a-ecf— fem Ala-e), we have ac(sd-gdA)(F)<
a-ec jA(F)eomAla-e)eT o (sA) nyAla)-ec T o nyAla)ec FsA(F) o nyAla)E
(sFyA-FsA)F) o ac(uyA-sFyA-FsA)XF). Therefore sA-gA=pyA-sFyA-FsA.

Hence sy is algebraic.

For an M-Set A we define a map tzA : FyA—FA by

astrA(f)  iff UscanhA@E] (fEF4A).

LEMMA 4.5. The naturality FO®-tpA=tpB-Fy® in Set holds for any M-sets A=
(4, 6), B=(B, 7) and an M-morphism @ : A—B iff M is a group.

PROOF. For feFyA it follows that S (F@-tA)(f)o®* etA(f)oUaco s 7 Ala)
ef and BE(B-Fyu®)(f)-\Uses naBb)EFyD(f)o0*-\Upep ni Bb)E f.

So the condition FO-tA=tB-Fy® for tr is reduced to \Useo#.pnhA(a)=
O%-(Uwes i B(b)) (BEPB). Because we can easily show that the left-hand side of the
last equality is a subset of the right-hand side, the naturality of ¢» is equivalent to the
condition
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Udeo#. 3 9 A(@) DO (Uses ki BU) (B PB). (4.6)

Let M be a group and (m, ¢)=®%-(Uses p5B(b)). Then @(c)=r,(b) for some bEf.
By assigning a:=a,-1(c) we have @(a)=(D0,-1)(0)=(tp-1-D)(c)=bE B and ogn(a)=c.
This shows (m, ¢)E\Uaco® .3 95 Ala).

Conversely, we assume that (4.6) is valid and put A=B=M, @=rn. Then we
obtain (m, €)€\Uaer? 1 nhrAla), since (m, e)erh-phBle) for any meM. This means
that there exists acA such that r,(a)=e and [,(a)=e. That is, acA=M is an
inverse element of m. Therefore M is a group.

THEOREM 4.6. If M is a group, then the algebraic functor ¥+ M-SetFw—M-Set? is
an isomorphism of categories.

PROOF. Let A be an M-set. We first show that spA is an isomorphism with trA4
as the inverse morphism in Set. By definitions, it follows that

acspA(f) > tpAl@)ef  (feFA),
actpA(f) & spAla)s f (fEFMA)‘

If M is a group then tpA and spA are isomorphisms, so we have spA and {pA are
isomorphisms in Set. On the other hand, since spA is an M-morphism, the inverse
map tpA of spA is also an M-morphism. By Lemma 4.5, we see that ¢ is the inverse
natural transformation of sy and that s} is an isomorphism of categories by Lemma 2.5.

We denote by CL the category of continuous lattices and non-empty directed join
(sup) and arbitrary meet(inf) preserving maps. It is known that CL=Set” as categories
[1]. So we obtain the next corollary by the last theorem and Proposition 2.4.

COROLLARY 4.7. If M is a group, then

M-SetFu = M-(Set”)= M-CL.

If M is a group then, by this corollary, we can identify an Fy-algebra with a
continuous lattice equipped with a non-empty directed join and arbitrary meet preserving
M-action.

5. Primefilter Monad in M-Set

In this section, we modify the definitions of the filter monad in §4, to define a
primefilter monad Uy in M-Set. We show that the whole properties of the filter monad
in §4 also hold for the primefilter monad.

A primefilter on an M-set A is a subset fC 24 that satisfies

(PF1) f is a filter on A,
(PF2) ¢ef,
(PF3) if auBef for @, f=P4 then asf or BE .

We note that if M is a group then a primefilter is an ultrafilter (maximal filter).

Now by simulating the definition of the filter monad in §4, we can define a prime-
filter monad in M-Set. For example, we define an endofunctor Uy : M-Set—M-Set. For
an M-set A, UyA is the set of all primefilters on A4, and the M-action {* on UxA is
defined by
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acla(f)  if oh-acf

for meM and felUyA. We can also define Uy® :UyA—>UyB, 7% :lysee—Un,
75 A: Q4 Qx4 and pY 1 U4Y—Uy similarly.
In this section we only check the followings:
(i) CA(S) is a primefilter for meM and feUyA.
Since g4 -d=d<f, we have ¢&la(f). If auBeli(f), then ah-(aUf)=
(6% -a)U(ok-B)=f, so we have ok -a=f or & -B<f. Therefore acl4(f) or Bela(f).
(i) Ux®(f) is a primefilter for feUxyA.
It is similar to (i).
(i) %%A(a) is a primejilter for a< A.
dsnAa) is trivial.  If aUfsnA(a), then (e, a)sa\UB, and so we have (e, a)<Ea
or (¢, a)=B. Therefore acnA(a) or SenAla).
(iv) pYAT) is a primefilter for F€U%A.
Since 7% A(g)=¢, we have g pA(F). Then we obtain rAl(aUB)=nd(a)JrxA(f)
from
(m, flexAla\JB)
o(aUp)ln=(a-l)J(B-ln)Ef
calgpefor Blzef
—=(m, lexAla)\JrA(f).
If auBespA(F), then we have rA(a\UB)=nA(a)UrA(f)€F and hence mA(@)eF or
7 A(B)yeF. Therefore acpA(F) or f€pA(F).
We denote by U=(U, 5, p¥) the ultrafilter monad in Set [4].
PROPOSITION 5.1. Let A be an M-set.
(a) For feUyA, spA(f) is a primefilter.
(b) If M is a group, then trA(f) (f€UA) is a primefilter.
ProOF. (a) This is trivial by the definition of sp.
) If aUfetrd, then UsceusnhA@)=(Uscani(@)I\Ures 7)< F, and so
UseaprA(@)e f or ez Ab)e f. Therefore actzA or fetpA.
If M is a group, then we have @<irA(f), by Uscani(a)=MxXA=0<c 7.
By the last proposition we can define a natural transformation sy:U-—U, by
by restricting a domain of sg.
Now we can show the several properties of the primefilter monad by using the
results of the filter monad.
THEOREM 5.2,
@) Uw=WUx, 7%, £%) is a monad in M-Set.
(b) If M=1, then U, is the ultrafilter monad U in Set.
PROPOSITION 5.3. The natural transformation sy:U-Uy is algebraic.
THEOREM 5.4. If M is a group, then the algebraic functor s&: M-SetVy—M-Set? is
an isomorphism of categories.
We denote by CH the category of compact Hausdorff spaces and continuous maps.
COROLLARY b5.5. If M is a group, then

M-SetVar = M-(Set?) =~ M-CH.
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If M is a group then, by the last corollary, we can identify a Uy-algebra with a

compact Hausdorff space equipped with a continuous M-action.
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