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POWERSET MONAD, FILTER MONAD AND PRIMEFILTER 

       MONAD IN THE CATEGORY OF SETS 

            WITH MONOID ACTIONS

                       By 

             Yoshihiro MIZOGUCHI* 

                    Abstract 

   We construct a powerset monad, a filter monad and a primefilter 
monad in the category M-Set of sets with Mactions. To investigate 
the categories of algebras of these monads in M-Set, we consider the 
category of complete semilattices (resp. continuous lattices, compact 
Hausd orff spaces) with Mactions. We show that if M is a group, 
this category is isomorphic to the category of algebras of the 

powerset monad (resp. filter monad, primefilter monad) in M-Set.

   1. Introduction 

   Continuous lattices were introduced by Scott [5] as semantic domains of programming 

languages. In denotational semantics, data types are characterized by recursive domain 

equations. So we can argue about semantics only in a category where these equations 

have solutions. The category CL of continuous lattices and continuous map has just this 

property. So the investigation of continuous lattices has made a considerable contribution 
to the development of the semantic theory. For example, the domain equation, 

D=[D—D], has only trivial solutions in the category Set of sets and maps. But in the 

category CL, the equation has a nontrivial solution D. and this domain plays an 

important role in the theory of lambda calculus. Further, since continuous lattices have 

rich structures, many mathematical properties are studied. As one of them, Day [1] 

identified the category of the filter monad algebras in Set with the category of continuous 
lattices together with non-empty directed join and arbitrary meet preserving maps as 

morphisms. 

   At this point, turning round to see these things, we find these theories and domains 

are based on the classical logic or on the category Set. So the following ideas appear : 

What happens, when we can think these things on the intuitionistic logic or on a topos. 

If we can consider the continuous lattices in a topos, many interesting questions occur. 
Is there a domain equation which could be solved by classical logic but does not have 

solutions by intuitionistic logic ? How change the solutions of a domain equations ? 

These differences seem to be caused by an essential point of the relation between the 

semantic theory of programmings and logics.

* Department of Mathematics
, Kyushu University 33, Fukuoka 812, Japan. 

                            83



84Y.  MIZOGL  CHI

   With these motivations, we first begin considering continuous lattices in a kind of 

topoi M-Set. The category M-Set provides a rich source of examples of topoi. For 

example by assigning a suitable monoid to M, the category M-Set exhibits a non
classical but bivalent topos [2]. By the results of Day we consider following problems 

in this paper : Can we consider the filter monad in the topos M-Set ? Dose the algebra 

of this monad in Al-Set have a rich structure as a continuous lattice has? In algebraic 
theory, we first consider a monad (triple) in a base category, next we define algebras 

by using this monad and construct a category of these algebras [3]. Answering to the 

first question, we change the base category Set of the filter monad to M-Set. In other 

words, we extend this algebraic theory from Set to M-Set. For attacking the second 

question, we compare the algebras of this monad with continuous lattices equipped with 
Mactions by making a functor between two categories of these objects. 

   At the same time, the powerset monad and the ultrafilter monad in Set are extended 
to monads in M-Set. The algebras of these monads are complete semilattices and 

compact Hausdorff spaces [3, 4]. We also compare these objects equipped with Mactions 

with algebras in Al-Set by using fucntors. 

   In section 2, we tabulate some properties of the category M-Set, algebraic functors 

[6] and relations, which are fundamental concepts in this paper. In section 3, we 
construct a powerset monad PM in M-Set by using powerobjects and the category 

M-SetPM of PMalgebras. On the other hand, we consider the category M(SetP) of 
Palgebras with Mactions and Maction preserving Palgebra homomorphisms. In other 

words, objects of M(Set") are complete semilattices with supremum preserving Mactions 

because it is well known that Palgebras are complete semilattices [4]. To compare 

these two categories M-SetPM and M(SetP), we define an algebraic functor from M-SetPM 
to M(Set"). We show that if M is a group, then it is an isomorphism of categories. 

That is, if M is a group PMalgebras are complete semilattices with supremum preserving 

Mactions. In section 4, we extend the filter monad F in Set to a monad in M-Set. As 

the powerobject on an M-set is regarded as the set of Mrelations (cf. § 2), we can 

naturally induce an order (subset relation) on the powerobject and we can define a filter 

on M-sets by using this order. So the usual filter monad F can be extended to a monad 

FM in M-Set naturally. For the filter monad FM, it is shown that if M is a group then 

the category MSetF'M of FMalgebras is isomorphic to the category M-(Set') of Falgebras 

with Mactions and Maction preserving Falgebra homomorphisms. By the result of 

Day [1] that the objects of Seth' are continuous lattices, it follows that if M is a group 

then FMalgebras are continuous lattices with non-empty directed join and arbitrary meet 

preserving Mactions. In section 5, by modifying the definitions of § 4, we obtain the 

primefilter monad UM in M-Set. If M is a group, a primefilter on an M-set is an 
ultrafilter. So the monad UM includes the ultrafilter monad U in Set by assigning 

onepointmonoid 1 to M. And we show several properties of the monad UM by using 

the results of § 4. Especially, we show that if M is a group then UMalgebras are 

compact Hausdorff spaces with continuous Mactions.
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    2. Preliminaries 

   We recall some relational notations and properties. 
   Let A, B and C be sets. When a is a subset of Ax B, we call that a is a relation 

from A to B and denote it by a : A— B. For relations a: A—B and S : B—C, we define 
a composite j3 • a : A—C of a and I3 by jS • a := {(a, c) E A X C J (a, b) E a and (b, c) E 13 for 
some b E B} . For a relation a : A— B, we denote by a : B— A the inverse relation 
a :_ {(b, a) E B X A j (a, b) E a} . We identify a map f : A-->B with a relation {(a, f(a)) 
E A x /31  a E A} (the graph of f). 

   Let 1 be the one-point set and A be a set. In this paper we identify an element 
a E A with a map a:1—>A and a subset aEA with a relation a :1—A. 

   Let M be a monoid with unit e. For a set A a collection a= {am:  A > A 1 m E M} of 
maps am from A to A is called an Maction on the set A if a satisfies ae=1A and 
(79.• an=amn for each in, n E M. An M-set is defined to be a pair A=(A, a) of set A 
and an Maction a on A. For M-sets A=(A, a) and B=(B, r) we call a map 0: A—>B 
an AI map 0 : A-->B if zm • 0 = 0 • a m for each m M. The category of Al-sets and M
maps is denoted by M-Set. 

   Generally, let C be a category. A pair A=(A, a) of an object A of C and a col
lection a= {am: A--Al mEM} of endomorphisms am in C is an Al object in C if it 
satisfies ae=lA and am • an=amn in C for each m, n 1V1. For 1objects A=(A , a) and 
B=(B, r) in C a morphism P : A—B in C is an Mmorphism in C if zm • D _ 0 • am for 
each m E M. We denote by M-C the category of Mobjects in C and Mmorphisms 
in C. 

   We note that if 1v1 is a onepointmonoid 1, then 1-Set is isomorphic to the category 
Set of sets and maps. 

   A monoid M is abelian if nm—mn for any m, n E M. We denote by r and 1, the 
right multiplication and the left multiplication of M, respectively. That is, r and 1 are 
defined by rm(n)=nm=ln(m). We note that M=(M, 1) is an M-set and rn : M—>M is an 
M-map for each n E M. For an M-set A=(A, a) we call a subset a of A an 
Msubset of A if it is closed under a. There is a one-to-one correspondence between 

Msubsets of A and monosubobjects of A in M-Set. We call an Msubset a of Mx A 
an Mrelation from M to A and denote it by a : M—A. The condition that a is an 
Msubset is translated to an equivalent relational expression aC a m • a • l m (mEM). An 
Mmorphism a : M *A is naturally identified with an Mrelation . We call a subset 
r :1—M a left ideal of M if /m • 1Cr for each m E M. We denote by LM the set of all 
left ideals of M. 

   It is well known [2] that M-Set is a topos and the subobject classifier Q in *1 Set 
is (LM, w), where wm(r) :=4, ,•r for mEM and rELM. 

   LEMMA 2.1. For an M-set A=(A, a) the powerobject QA is the set of all M relations 

from M to A with the Maction pA defined by pA,,(a) :=a • rm for m E Al and a E QA. 
   PROOF. The powerobject QA is the set of all Mmorphisms a : Mx A>S2 with the 

Maction p defined by pm(a) :=a • (rm X 1 A) for m E M and a E QA [2]. Since Q is a 
subobject classifier, there is a one-to-one correspondence between M morphisms 
n : Mx A-*Q and monosubobjects a of Mx A. Hence we can identity QA with the set
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of all AI-relations from lI to A. Let pA be the Maction on the set of all Mrelations 
induced by p. Then we obtain pm(a)=a•rm (=(r,nx1A)-'(a)) for mEM and a S?A 

because the following diagram must be a pullback. 

pm(a) C > Mx A 

r,nx1A 
         W W 

                     a r  MxA 

   For a monad T=7,  r, p) in Set we define a monad T = (T, :lj, p) in .AI-Set as 

follows. Let A, B be M-sets and 0 :A--43 an Mmorphism. We define TA by 

(T A, T a), where (T a),n :=T (a) and TO :=TO. The natural transformations rA : 
A—JA and ,uA : T'A— TA are defined by )7A :=riA and pA :=pA, respectively. It is 

obvious to see that T is a monad in M-Set. We denote by M SetT the category of 

Talgebras and Tmorphisms [3]. 
   LEMMA 2.2. Let A=(A, a) be an M-set and x a map. Then the following 

conditions are equiralent : 

   (a) x•27A=1A, ,aA=x•Tx and am•x=x•Tam for each mEM, 

   (b) ((A, a), x) is an object of M-SetT, 

   (c) ((A, x), a) is an object of M(SetT). 

   PROOF. Since (a)H(c) and (b)H(c) are trivial, we only show (a)—>(b). The last 

equation of (a) shows that x : TA—*A is an Mmorphism, so the other equations of (a) 

imply x • rA=1A and x •,uA=x • Tx in M-Set. Therefore ((A, a), x)m M-SetT. 

   LEMMA 2.3. Let A=(A, a) and B=(B, r) be M-sets, (A, x) and (B, y) objects of 
M SetT and 0 : A--B a map. Then the followings are eqyivalent: 

   (a) 0•x=y-TO and 0.6m=rm•0 for each mEM, 

   (b) 0 : ((A, a), x)--((B, r), y) is a morphism in M-Setr, 

   (c) : ((A, x), a)—*((B, y), z-) is a morphism in M(SetT). 

   PROOF. Since (a)H(c) and (b)—*(c) are trivial, we only show (a)—>(b). The last 

equation of (a) shows that 0 : A—*B is an Mmorphism, so the first equation shows that 

0 • x = y • T O in M Set. Therefore 0 : (A, x)—>(B, y) is a Tmorphism. 
   By Lemma 2.2 and Lemma 2.3 we obtain the next proposition. 

   PROPOSITION 2.4. M-Setr = M(SetT). 

   For two monads Q=(Q, )iQ, p(2) and R=(R, riR, pR) in M-Set, a natural transforma

tion s : Q-:+R is called algebraic if for each M-set A, 

  (i)sA•7iQA=r)RA, 
                                                           (2.1) 

  (ii)sA•pQA=pRA•sRA•QsA 

   If s : Q-:->R is an algebraic natural transformation, then a functor s*: MSetR—M-SetQ 

is defined by s*(A, x) :=(A, x•sA) for (A, x)E/1M7-SetR, and s*o :=P for a morphism 

:(A, x)-*(B, y) in M-SetR [6]. The functor s* defined in this manner is called an 

algebraic functor induced by s. 

   LEMMA 2.5. If an algebraic natural transformation s: Q—*R is an isomorphzsn , 

then the induced algebraic functor s*: MSetR_*M-SetQ is an isomorphism of categories.
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   PROOF. Let  t  :  R—*Q be the inverse natural transformation of s. Since tA•s A=1QA 
and sA • to=1RA, it easily follows from the algebraic condition (2.1) for s that riQA= 
tA•sA•riQA=tA•riRA and ,uQA•tQA•RtA=to•sA•pQA•tQA•RtA=tA•/IRA•sRA•QsA• 
tQA•RtA=tA• pRA•sRA•QsA•QtA•tRA=tA• pRA•sRA•tRA=tA• PRA. Therefore the 
condition (2.1) for t holds. So we have an algebraic functor t*: MSetQ->?I~I-SetR and it 
is obvious that t* is inverse functor of s*. 

   In the rest of this paper, if no confusion occurs we omit subscripts and superscripts 
from natural transformations. 

   3. Powerset Monad in M-Set 

   In this section, we introduce a powerset monad PM=(PM, 77m, pm) in M-Set. Next, 

to compare the category II-Seem of PMalgebras with the category M-Set' of Palgebras, 

we define an algebraic functor SP* : M Set"M--M-Set". Finally we show that if M is a 

group, this functor Sp* is an isomorphism of categories. 
   Let A, B be M-sets and b :A-43 an Mmorphism. We define an endofunctor 

Pm: MSet—>M-Set by PMA :=QA with an Maction pA and PM0(a) := 1 • a (a E SQA). 
   Moreover we can define natural transformations r)M :lm_set--->PM and pi : P11—*PM as 

follows. 
   For an M--set A=-(A, a), a E A and E PMA, 

         (m, c)EriMA(a) iff c=am(a), 

(m, a) E pPMA(-4) iff (m, a) E LA and (e, a) E a for some a E PMA. 

   To prove exactly that PM defines a functor and rlM, pf define natural transforma
tions, we must check the followings : 

   ( i ) PM0(a) is an Mrelation for aEPMA, 
( ii) PO is an Mmorphism, 
( iii) 77 A(a) is an Mrelation for a E A, 
(iv) rl11,A is an Mmorphism, 
( v ) riM is a natural transformation, 
(vi) 41.4(,.A) is an Mrelation for AEP2mA, 

   (vii) 111A is an Mmorphism, 
   (viii) pM is a natural transformation. 

   We now verify above conditions. Let m and n be elements of M. 

( i ) tn•PM0(a)•ln=z1•0•a•lnD0•a1,•a•lnDO•a=PM0(a). 
(ii) (4•PM0)(a)=p.(P.a)=0•a•rm=PM1(a•rm)=(PMD•pm)(a)• 
( iii) (an • r7A(a))(m)=(an • am.)(a)=anm.(a) A(a) •ln)(m)• 
(iv) Since (7 7A(a) •rn)(m) _ (77A(a))(mn) = amn(a) = am • an(a) _ ((r)A• an)(a))(m), we 

have (p, • rlA)(a)=rlA(a) •rn=(rlA• an)(a). 

( v ) Since (0 • A(a)) (m) = (0 • am) (a) = (zm • 0)(a) = ((r7B• 0) (a)) (m), we have 
(PM  A)(a)=D • 72A(a)=(iB• 0)(a). 

   (vi) We first show 

pA(A)=U(n,a)EJla•rn .(3.1)
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   If (in, a) E pA(ul) then there exist a E PMA such that (in, a) E ,A and (e, a)Ea. 
Therefore (in, a) E a • rn,. C U cn, a) E a-71.  Conversely assume (m, a) E U (n, a) E^Z a . r1. 
Then we have (in, a) E a • rn for some (n, a) E,A, and so m=kn=l k(n) and (k, a) E a 
for some k E M. Hence (e, a) E a • rk. As ,A is an 111 relation, (n, a) E LA implies 

(lk(n), pk(a))=(m, a•rk)ELA. This shows (m, a)EpA(A). 
    By using (3.1) we have a ,•pA(A)•lm=a .•U(n ,a)E,Aa•r;I•l„f=U(n,a)Eact•a•ran',•lm 

~Ucn, a>E am a lm r ~Ucn, a)E a • r= a 4(<A) for each m E M. Therefore pA(JA) is an 
Mrelation. 

   (vii) For J E P }IA, we obtain 

             (n, a)E(pA•pniP A)(LA)—pA(,A•rm) 
H3aEPMA; (n, a)E,A•r,n, (e, a)Ea 
E-]aEPMA; (nm, a)E~2, (e, a)Ea 
H (nm, a) E pA(A.) 
H (n, a) E pA(.A) • rm=(p , • pA)(-=1). 

   (viii) For ul E PMA, we obtain 

(in, b)E(pB•PM0)(,A)=pB(PM0 •(A) 
H3/3EPMB; (m, J3)EPMI•,A, (e, b)Ej3 
4-3aEPMA; (in, a)E , (e, b)EPM((a)=(D•a (=J3, 
H3aEPMA, 3aEA; (in, a)E<A, (e, a)Ea, b=0(a) 
H3aEA; (m, a)E pA(AA), b=b(a) 
H (m, b) E 0 • pA(<A) = (P 11 o • pA) (,,i). 

   We denote by P=(P, r)P, pP) the powerset monad in Set [3, 4]. 
   THEOREM 3.1. 

   (a) PM=(PM, rl , a ) is a monad in 11I Set. 
   (b) If M=1, then P1 is the powerset monad P in Set. 

   PROOF. (a) Let a E PMA and F E P IA. 

(i) aA• PMA(a)=U(n,r)ErP„Auor•rn=UnE,so(a)•r1=UnEma•rn•7-;1=a (by (3.1)). 
Therefore a• r2PM=1PM. 

   (ii) (n, a)E(pA•PM1IA)(a)=pA(r)A•a) 
H3rEPMA; (n, r)EyiA•a, (e, a)Er 
4-3cEA; (n, c)Ea, (e, a)E-IA(c) (=r) 
--*(n, a)Ea. 

Therefore p•PMr)=1PM. 

   (iii) (m, a)E(pA•PMpA)(")=pA(pA•") 
H3aEPMA; (in, a)E pA• ', (e, a)Ea 
4 EPMA; On, s)E, (e, a)EpA() (=a) 
H 3 E PMA, 3r PMA ; (m, e) E 9., (a, r) E , (e, a)Er 
4 rEPMA; (m, r)EpPMA(F), (e, a)Er 
4-(m,  a) E pA(pPMA(I ))=(pA• pPMA)(`TF)• 

Therefore p • Pm p = p • pPM. 

   (b) It is obvious that P1 is the powerset monad P in Set.
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   PROPOSITION 3.2. (a) For an  M-set A=(A, a) a map sp : PA->PMA, defined by 
spA(a)=UaEa yrA(a) (a`PA), induces a natural transformation sp : P.4P;tis. 

   (b) The natural transformation sp : P*PM is algebraic. 
   PROOF. (a) Let A=(A, a) and B=(B, r) be M-sets and 0 : A-+B an A/morphism. 

Then we obtain (PMO • sA) (a)=0 • sA(a) = UaEa • r)MA(a) = UaEa(PM0 • ri uA) (a) = 

UaEa(7]MB• 0)(a)=UbEo.a 72,rB(b)=(sB• P0)(a). 
   For mEM and aEPA we have (4•sA)(a)=UaEa7MA(a)•rm=UaEa(p •7mA)(a)= 

Ua=a(7)MA• am)(a)=UcEaay.a ri MA(c)=sA(Pam(a))=(sA•P6m)(a)• 
   Therefore sA is an M-morphism and sP is a natural transformation. 

   (b) Next we check that sp is algebraic. 
   (i) For aEA we have sA•A(a)=sA({a})=rlMA(a). Therefore sA•A=77MA. 

   (ii) For -4 ̀ P2A then we have 

(m, a)m(pmA•sPMA•PsA)(,A) 
HaemPEA; (in, ,;)e.(sPMA•PsA)(A), (e, a)m 
4-3emPMA, 3amPsA(.A); (m, S)miMPMA(a), (e, a)e 

 amPsA(LA); (e, a)e p (a)=a•rm (_ ) 
H 2a m PsA(-A) ; (m, a) m a 
H 3r E ,A ; (m, a) m sA(r)=UcEr riMA(c) (=a) 

2cmr; (in, a)E1)MA(c) 
4-3cm ,iA( ); (in, a)m-MA(c) 
4—* (m a)m (sA •,uA)(J). 

Therefore sA •/cA=[fMA • sPMA• PsA. 
   Since the condition (2.1) holds, then sP is algebraic. 

   For an AI-set A we define a map tPA : PMA-*PA by tpA(a) :=a • e (a m PMA). We 
note that the unit element e m M is identified with a map 

   PROPOSITION 3.3. tp is a natural transformation iff M is a group. 
   PROOF. First we obtain PO. tA=tB•PM0 because (PP.tA)(a)=PO(a•e)=0•a•e= 

(tB•PM0)(a) for aEPMA. Next we have (Pa m•tA)(a)=Pam(a•e)=Qm•a•e and (tA• 00(a) 
=tA(a • rm)=a • rm • e for each m m Al The relation am • a • eCa • rm • e (m E M) is trivial. 

To show that tp is a natural transformation, we only show am • a • eDa • rm • e (m m M). 
   If M is a group, then a m a • rm • e implies (in, a) E a, (e, am-,(a)) m a and a m am • a • e. 

So we have a m • a • e = a • rm • e. Therefore tp is a natural transformation. 
   Conversely, assume that tp is natural. Then we have a • rm • ec am • a • e for any 

M-set A, a EA and m m M. If we assign A :=(M, 1) and a :=Mx M, then there exists 
nma•e such that lm(n)=mn=e for any mmM since ema•rmeClm•a•e. This shows 
that M is a group. 

   THEOREM 3.4. If Al is a group, then the algebraic functor sP : MSetPM--ILI Set" is 
an isomorphism of categories. 

   PROOF. By Lemma 2.5, we must only show that s is an isomorphism. Let A be 
an M-set and a m PA. Then we have (tA• sA)(a) =sA(a) • e=UaEa 'MA(a) • e= a. There
fore tA• sA=1PA. 

   Next we note that (sA•tA)(a)=UaEa•e2MA(a)=Uce,a)Ea77MA(a). It is obvious that 

Ue, a)Ea 12MA(a)Ca, and, since Al is a group, (in, b) m a implies (lm-,(m), a m,(b))=
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(e, ami(b))`a and (m, b)E7)MA(am1(b)). So we have Uce,a)Ea72MA(a)=a and sA•tA 
=lpMA• 

We denote by CSL, the category of complete semilattices and arbitrary supremum 

preserving maps. It is known that CSL = Setp as categories. So we obtain the next 
corollary by the last theorem and Proposition 2.4. 

   COROLLARY 3.5. If M is a group, then 

M Set"M = M (Setp) = Al CSL. 

   By this corollary, if M is a group then a PMalgebra is identified with the a com

plete semilattice with a supremum preserving Al action. 

   4. Filter Monad in M-Set 

   In this section, we define a filter on M-sets by using the order (inclusion) of 
Mrelations, a filter monad FM in M-Set and an algebraic functor sF* : M SetFM- M Set'. 
Moreover we show that sp* is an isomorphism if M is a group. 

   A filter on an M-set A is a subset f cQA that satisfies 

(Fl) 0 E f (where 0 :=Mx A), 
          (F2) if a, 13E/. then an/3 E f, 

          (F3) if a E f and a c 8 (E QA) then 15 E f. 

   We note that if a, 43 E QA then af(3 E QA. 
   To obtain an endofunctor FM : MSet-*M-Set, we define FMA to be the set of all 

filters on A, and the Maction CA on FMA by 

aEbm(f)2ff am•aEf 
for f E FMA and m E M. 

   For an Mmorphism : A—B we define FM(: FMA—*FMB by 

j3EFMP(f) if #•pEf 
for f E FMA. 

   To check that FM is a functor, we verify the followings. 

(i) Cm(f) is a filter on A for mEM. 

   Since a ,, • 0 = 0 E f we obtain O E 1m(f ). If a, (3 E cm(f) then we have am • (al j3) = 

(a • a)(1(a , • 13) E f and so of (3 E cm(f ). If a(f) and a E(3 E SZA then we have 

j3Ebm(f) by (al •a)c(am.j3)Ef. 

  (ii) Ft(f) is a filter on B. 

   It is similar to (i). 

   (iii) Cm•F0=F(P•C , for mEM. 

   For fEFMA we have (3E(FO•Cm)(f)HV#•pEU(f)HamV'•13Ef400°•zm•pEft 
z ,•p F0(f)H13E(V•F0)(f)• 

   Next three maps rimA : A-*FMA, 7r1A : QA_Q'nA and p,1A : FIA--FMA for an 
M-set A are defined by
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 aer)  rA(a) ift' (e, a)Ea, 

(in, f)Er',A(a) ii a•l,nEf , 

aEp,A(g)iff ;~MA(a)E`~ 

for a EA, a E 2A and g E FMA. 
   For M-sets A=(A, a), B=(B, r) and an M-morphism : A-*B the following facts 

holds : 

(i) )21;,A(a) is a filter on A for a EA. 
   (ii) ~nA,•r)MA=rIIA•n, for mEM 

   For aEA we have aE(CA„•72A)(a)4-4a17,•aEv 4(a)H(e, a)Ea ,•a4(e, Qm(a))EaH 
a E rjA(a,n(a))  a E (r)A• am)(a)• 

   (iii) Fr0•r)MA=r)B•l• 
   For aEA we have ae(FM0•7)A)(a)4-->V•aErA(a)H(e, a)EV•a—(e, 0(a))Ea—+ 

a E r)B(0(a)) H a E (7)B• 0)(a). 
  (iv) p rA(g) is a filter for gEFA. 

   Since rA(0)=Mx FMAE g we have e E pA(g ). If a, 13 E,uA(g) then we have 
rA(a), rA((3) E g, so (m, f) E rA(ar1 f3) H (an f3) • 1,,, E f . a • l m;l (3 • l m ̀ f <--> a • l,, E f and 

j3 • l,„ E f H(m, f) E 7rA(a)f rrA(J3). Therefore rA(af p) =rA(a) \rA(,8) E Sr. If a E pA(g) 
and a C j3 then we have rA(a) E g, so (in, PE rA(a)Ha l m E f -+;3 • l m E f f-->(m, f) E 7,7/1(p). 

                                                                Therefore 7A(a)C7rA((3)Eg. 

(v) pFrA•CmFMA=CA„•piA for mEM. 
   For gEF2mA we obtain aE(pA•SmFMA)(g)HrA(a)ECmFMA(g)H(SAm)#•rA(a)E H 

rA(oli•a)Eg aEpA(g)Ha(C,A,,,•pA)(g), since (n, f)E7rA(6m•a)(4i•a•lnE fH 
a•InmC ,(f)E-*(n, Cm.(.f));rA(a)-*(n, f)E(Cm)°•rA(a). 

   (vi) p B•FMO=FMP•p A. 
   For gEPIA we have aE(pB•Fi0)(g)H;rB(a)EF310(F)  (FM0)f •rB(a)e 

rA(V' • a) E H # • a E pA(g) H a E (FMA • pA) (g), since (m, f) E (F_M0)# • rB(a) 

(m, FM0(f))ErB(a)4 a•1mEFM0(.f) •a•1mEfE-'(1n, f)erA(O# •a). 
   The facts (i)-(vi) show that ,: lyr_set--Fr and u x : F;~:~F_~s are natural transfor

mations. 
   PROPOSITION 4.1. 7r A is an Mnzorphism for any M-set A iff M is abelian. 

   PROOF. For any n E M we have (m, f) E (pnF'MA • rA)(a) H (m, f) E rA(a) • r„ H 

(mn, f) E rA(a) H a • l m„ E f H a • lm • l„ E f and (m, f) E (rA • p'71)(a) F-' (m, f) E rA(a • r„) H 
a • r„ • l,„ E f Ha • l m • r„ E f . So we can reduce the condition p „FMA • r 4 A • pn (n E M) to 

a•lm,•ln=a lm rn (aEQA, n, mEM).(4.1) 

   If M is abelian then the equation (4.1) is trivial. Conversely, if the condition (4.1) 
is valid then by assigning A=M, a-=-1m and m=e we have 1M•le•ln(k)=1i1•le•r„(k) for 
any n, k E M. This means nk=kn for any n, k E M. Therefore M is abelian. 

   LEMMA 4.2. For each aEQA, 

                        (a) AA” • rMA(a)=(r FMA• rrA)(a), 
   (b) r)MA# • rMA(a)=a. 

   PROOF. (a) Since (n, f)erA(a)•lm H (inn, f)ErA(a) f-' a•lmn` f `-' a•lm•InE f 

(n, f) E rA(a • lm), we obtain (717, ) E (rF,zA • rA)(a) H ;r A(a) • l m E g H ;r A(a • lm) E g H
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a•lmE pA(g) H (m, pA(g))E7:A(a) 4--> (m, g)E pA •;rA(a). 

   (b) (in, a)Er)A4•rrA(a)H(m, )A(a))ErrA(a)4,a•lmEr2A(a)H(e, a)Ea•lr-(m, a)Ea. 
   We denote by F=(F, r)F, pF) the filter monad in Set [1]. 

   THEOREM 4.3. 

   (a) Fitit=(FM, rlM, p ) is a monad in M Set. 
   (b) If M=1, then F1 is the usual filter monad F in Set. 

   PROOF. (a) Let f E FMA and g E F ,A. 

(i) aE(pA•rlFrA)(f)< A(a)m FtirA(f)E-->(e, Pen-A(a)4 a•lem f_*am f. There
fore p • r)Fx=1F,1. 

   (ii) aE(pA•F )2A)(f)Hrr A(a)EF,1riA(f)<>riA''•rrA(a)E fHaE f by Lemma 4.2(b). 
Therefore p. F. ri =1F M. 

   (iii) a m (pA• pFMA)(g) H rrA(a) E pF,iA(g) H (7rFj1A• 2rA)(a) m g * pA' •7 A(a) m g H 
rrA(a) E Fm pA(g) E-> a E (pA • F,s pA)(g) by Lemma 4.2(a). Therefore p• pFx = p • FM p. 

   (b) It is obvious to see that F1 is the filter monad F in Set. 
   We note that a E pA(g) iff rrF1A(a) E g for a set A and g EPA. 
   PROPOSITION 4.4. 

   (a) For an M-set A a map sFA : FA—>F1A, defined by 

aEsFA(f) iff a•eE f UEFA), 

induces a natural transformation SF: F >FM. 

   (b) The natural transformation SF: F->FM is algebraic. 
   PROOF. (a) Let A=(A, a) and B=(B, z) are M-sets, 0 :A--43 an Mmorphisms 

and m E M. Then it follows that ,3 E (FM0 • sA)(f) E-> 0"•  (3 E sA(f) < -> 0"•  p • e E f H 
emF0(f)H13E(sB•F0)(f), and am(V,•sA)(f)H6m•amsA(f)H6m•a•em fH 

a • e E Fa (f) H a E (sA • Fa m)(f ). These show that sF is a natural transformation. 

   (b) Next we check that sF is algebraic. 
(i) For a EA, we have aE(sA•TiA)(a)a•em A(a)Ha Ea. eH(e, a)EaHaE MA(a). 

Therefore sA • Ti A=77 mA. 

   (ii) For a E FMA and g E F2A, since f E (sA)# • rrMA(a) • e 4-> sA(f) E rrMA(a) • e E--> 
(e, sA(f )) E rrMA(a) H a E sA(f) 4-> a • e E f 4-> f E 2r1A(a • e), we have a E (sA • uA)(g) 
a • e m pA(g) H rr1A(a•e) E g H (sA)" •rrMA(a)•e m g 4-> mA(a)•e m FsA(g) H rrmA(a) m 

(sFMA•FsA)(g) E-> aE(pMA•sFMA•FsA)(g). Therefore sA. A=pMA•sFMA•FsA. 
   Hence sF is algebraic. 

   For an M-Set A we define a map tFA : FMA—>FA by 

amtFA(f) iff UaEae;A(a)Ef (f FMA). 

   LEMMA 4.5. The naturality F0•tFA=tFB•FM0 in Set holds for any M sets A= 

(A, a), B=(B, z) and an Mmorphism 0 : A—*B iff M is a group. 
   PROOF. For fEFMA it follows that j3m

(({F0•tA)(f)*0•j3EtA(f)HUQEoo.,s~MA(a) Ef and 83E(tB•FM0)(f)HUbEfirMB(b)EFM0(J)0 •UbEArMB(b)m f. 
   So the condition F0 to = tB• FM 0 for tF is reduced to UaE00. ?M A(a) = 

0 # • (UbEA ri; B(b)) (13 E PB). Because we can easily show that the left-hand side of the 
last equality is a subset of the right-hand side, the naturality of tF is equivalent to the 
condition
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             UaE~7A(a)~~~((J~MB(b))  ((3EPB).(4.6) 

   Let M be a group and (m, c) E (UbEA )7MB(b)). Then 0(c)=z-m(b) for some bE f3. 
By assigning a :=am-i(c) we have 0(a)=(0 ami)(c)=(vm1•0)(c)=bE13 and am(a)=c. 
This shows (in, c)EUaE00.p7MA(a). 

   Conversely, we assume that (4.6) is valid and put A=B=M, 0 =rm. Then we 
obtain (in, e) E UaEr1. ei~liTr A(a), since (m, e) E rm • 72MB(e) for any m E M. This means 
that there exists aEA such that rm(a)=e and lm(a)=e. That is, aEA=M is an 
inverse element of in. Therefore M is a group. 

   THEOREM 4.6. If M is a group, then the algebraic functor sF :117 SetF r-M-Setl' is 
an isomorphism of categories. 

   PROOF. Let A be an M-set. We first show that sFA is an isomorphism with tFA 
as the inverse morphism in Set. By definitions, it follows that 

aESFA(f) H tpA(a)E f (f EPA), 

aEtFA(f) 4-* spA(a)Ef (f EFMA). 

   If M is a group then tpA and spA are isomorphisms, so we have sFA and tFA are 
isomorphisms in Set. On the other hand, since sFA is an Mmorphism, the inverse 
map tFA of sFA is also an Mmorphism. By Lemma 4.5, we see that tF is the inverse 
natural transformation of sF and that sF is an isomorphism of categories by Lemma 2.5. 

   We denote by CL the category of continuous lattices and non-empty directed join 

(sup) and arbitrary meet(inf) preserving maps. It is known that CL=SetF as categories 
[1]. So we obtain the next corollary by the last theorem and Proposition 2.4. 

   COROLLARY 4.7. If M is a group, then 

M-SetFM = M-(SetF) = M-CL. 

   If M is a group then, by this corollary, we can identify an FMalgebra with a 
continuous lattice equipped with a non-empty directed join and arbitrary meet preserving 
Maction. 

   5. Primefilter Monad in M-Set 

   In this section, we modify the definitions of the filter monad in § 4, to define a 

primefilter monad UM in M-Set. We show that the whole properties of the filter monad 
in § 4 also hold for the primefilter monad. 

   A primefilter on an M-set A is a subset f CS2A that satisfies 

(PF1) f is a filter on A, 
         (PF2) 0E f, 

(PF3) if aU E f for a, 13 E S2A then a E f or 13 E f. 

   We note that if M is a group then a primefilter is an ultrafilter (maximal filter). 
   Now by simulating the definition of the filter monad in § 4, we can define a prime

filter monad in M-Set. For example, we define an endofunctor Um: MSet-*M-Set. For 
an M-set A, UMA is the set of all primefilters on A, and the Maction CA on UMA is 
defined by
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aeym(f) iff Qm•aE f 

for m E M and f E Um A. We can also define Uo : UMA—UMB, rl : IM.set-->UM, 
:r t A: QA_* 2U sA and similarly. 

   In this section we only check the followings : 

(i),(f) is a primefilter for m E M and f E UMA. 
   Since at • 0 = ch E f, we have O E (f). If a Up E,';'„,(f ), then Q , • (aU1S) = 

(Qm•a)U'(ar,•48)E f, so we have ut •aE f or 01•(3E f. Therefore aECm,(f) or ISEC,/,,(f). 
   (ii) UM0(f) is a primefilter for f E UMA. 

   It is similar to (i). 

   (iii) 77UMA(a) is a primefilter for aEA. 
EE 77A(a) is trivial. If a'J E rjA(a), then (e, a) E aUQ, and so we have (e, a) E a 

or (e, a)Ej3. Therefore aErjA(a) or (3E72A(a). 

   (iv) 4A(g) is a primefilter for £ E U2mA. 
   Since 71-7,A(0)=0, we have ¢ E pA(F). Then we obtain 7rA(aU JS)=7rA(a)U7rA(/3) 

from 

          (m, f)E7vA(aU(3) 
(aU13)•lm=(a•lm)J(13•lm)Ef 

Ha•lmE f or le•l,,E f 
H(m, f)E7rA(a)'J7rA(1). 

If a' A E pA(F), then we have 7rA(aUp)=7rA(a)U7rA(13) E " and hence 7rA(a) E F or 
7rA(j3) E F. Therefore a E pA(F) or $ E pA(F). 

   We denote by U=(U, pU) the ultrafilter monad in Set [4]. 
   PROPOSITION 5.1. Let A be an M-set. 

   (a) For f E UMA, sFA(f) is a primefilter. 
   (b) If M is a group, then tFA(f) (f E CIA) is a primefilter. 

   PROOF. (a) This is trivial by the definition of F. 

   (b) If aUQ E tFA, then UaE«,,a 7MA(a)=(UaEa 7)M(a))U(UbEp 1)M(b)) E f, and so 
UaEa 72 A(a) E f or UbE,312MA(b) E f. Therefore a E tFA or P E tFA. 

   If M is a group, then we have e E tFA(f ), by UaEA rjC(a)=MX A=0 E f. 
   By the last proposition we can define a natural transformation sU M by 

by restricting a domain of sF. 
   Now we can show the several properties of the primefilter monad by using the 

results of the filter monad. 
   THEOREM 5.2. 

   (a) UM=(UM, ~1i A) is a monad in M-Set. 
   (b) If M=1, then Ul is the ultrafilter monad U in Set. 

   PROPOSITION 5.3. The natural transformation sU : U-:->UM is algebraic. 

   THEOREM 5.4. If M is a group, then the algebraic functor sz*, : MSetum-+1l1-SetU is 
an isomorphism of categories. 

   We denote by CH the category of compact Hausdorff spaces and continuous maps. 
   COROLLARY 5.5. If If is a group, then 

_'l1 SetU~1= _~7 (SetU) = M-CH.
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   If M is a group then, by the last corollary, we can identify a  Um-algebra with a 

compact Hausdorff space equipped with a continuous Maction.
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