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FINITE TREE AUTOMATA ON INFINITE TREES

                  By 

Takeshi HAYASHI* and Satoru MIYANO**

                    Abstract 

   Finite tree automata on infinite trees which move from the root 

infinitely are investigated through six types of acceptance conditions. 

Each condition is an extension of the one used for finite automata on w

words. We relate the six classes of infinite tree languages with the 

corresponding classes of wlanguages defined by finite automata, and 

the relationship among these six classes is established.

   1. Introduction 

   Rabin [6-8] introduced finite tree automata on infinite trees to study the problems 

of definability in monadic second-order theories. As byproducts, he obtained several 
decidability results. He considered the acceptance conditions which are extensions of 

the ones studied in [1, 3]. For colanguages, a series of acceptances by finite automata 

have been introduced and investigated [1-4, 8, 10-12]. These acceptance definitions for 

wlanguages can be also naturally extended for the infinite tree acceptance by finite tree 

automata and we can define the classes of infinite tree languages defined by these finite 

tree automata. In this paper we deal with six types of acceptance conditions for finite 

tree automata on infinite trees which move from the root infinitely. Each condition 
uses a family of final sets for acceptance as was done in [3] for finite automata on co

words. The purpose of this paper is to establish the relationship among these infinite 
tree language classes. First it is proved that a single final set is sufficient for four 

types of acceptance definitions. We also prove an embedding theorem which relates the 
infinite tree language classes with the wlanguage classes. With the aid of this em

bedding theorem and a result due to Rabin [7], we classify the infinite tree language 

classes. A summary of the results is figured out in Fig. 1 in Section 5. 

   It is known that the nondeterministic infinite tree language class is larger than the 
deterministic one for any type of the acceptances [9]. To refine this result, we consider 

the nondeterministic degree which is defined to be the maximum number of possible 

transitions of a finite tree automaton. Then the determinism is regarded as the non

deterministic degree one. We show that the nonderministic degree gives a hierarchy 

between the nondeterministic class and the deterministic one for each acceptance defini

tion. This is a property special to (infinite) tree languages. In addition to this observa

tion, the results in this paper show that the class of infinite tree languages accepted by 
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nondeterministic finite tree automata which accept in the manner of Rabin [6] is the 

most general one and this class may be considered as a natural extension of the class 

of wregular languages [3], where deterministic finite automata are used as basis.

   2. Preliminaries 

   Let  Xk= {0, 1, ••• , k-1} be an alphabet consisting of k symbols. The infinite k-ary 
tree is the set Tk=fk. The empty string s is the roof of Tk. For x Tk, x0, xl, ••• , 
x(k-1) are the sons of x arranged from left to right. Note that TkTk+l for k>_1. 
Let be a finite alphabet. An infinite k-ary tree over I (a k-ary I-tree) is a function 
t: Tk --* I. The set of all k-ary I-trees is denoted by IT k. For x, y in Tk, we say 
that x is a prefix of y denoted by x < y if y = xz for some z in It.  The prefix rela

tion gives a partial ordering on Tk. A path in Tk is a subset 7 Tk satisfying (i ) 
s E jr, (ii) for x E rc, exactly one of k sons x0, x 1, • • • , x (k —1) belongs to 7t, (iii) is 
the smallest subset of Tk satisfying ( i ) and (ii). 

   For a set S, IS I denotes the cardinality of S and P(S) is the set of all subsets of 
S. For a function f : X -> Y and a subset X' of X, f 1 X' denotes the restriction of f to X'. 

   DEFINITION. A (nondeterministic) finite k-ary tree automation is a quintuple M= 

<S, 1, 4, so, SF>, where 
   (1) S is a finite set of states, 

   (2) d is a transition function d : S x I --> P (S k) — {01,  where S k is the k-fold product 
of S, 

   (3) so is a state in S called the initial state, 
   (4) I is a family of subsets of S. F in F is called a final set and states in F are 

called final states. 
   M is said to be deterministic if 14(s,  a)1=1 for each s in S and each a in I. 

   Let M=KS, 1, 4, so, F> be a finite k-ary tree automaton and let t: Tk—*I be a 
k-ary I-tree. A run of M on t is a function r : Tk—*S such that r(s)=so and for each 
x in Tk, (r(x0), r(xl), ••• , r(x(k1)))Ed(r(x), t(x)). Let r be a path in Tk. For a run 
r : Tk—÷S  we define 

In(r 17r)= is S I s=r(x) for infinitely many x in lr} 

   DEFINITION. A finite k-ary tree automaton M=<S, 27, 4, so, g> is said to accept a 
k-ary I-tree t in the sense of Ci (i =1, • • • , 6) if there exists a run r of M on t such 
that for each path 7r Tk there is a final set F in F which satisfies the condition Ci 
described below. A run r satisfying the condition Ci is called a Ciaccepting run of 
M on t. 

(C1) In(r I r)nF# O . 
(CO In(r 12r) F. 

   (C3) r(2r)nF #0 . 
   (C4) r(7). F. 

(C3) In(r I Ir)=F. 
(Co) r(r)=F. 

   The acceptance defined by Cl condition is sometimes called the acceptance in the
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sense of  Buchi and the C5acceptance is called the acceptance in the sense of Muller. 
   DEFINITION. For i=1, • • • , 6, the set Li(M) of k-ary I-trees is defined as 

L,01)=. {t e_ XT k I t is accepted by M in the sencse of Ci} . 

We say that a set L c XT k is accepted by M in the sense of Ci if L = L i(M). 
   DEFINITION. For i=1, • • • , 6, we define 

   (1) Xik' = {La(M)IM is a nondeterministic finite k-ary tree automaton}, 
   (2) .6)Zk' _ {L0(M) 1 M is a deterministic finite k-ary tree automaton} . 

   In this paper we are concerned only with the classes for k=1, 2. We denote /2P) 

(resp. pil') by (resp. -DZ). The classes 7li2' and O}2' are specially denoted by Y22i 
and .0gi, respectively. A binary /-tree is simply called a I-tree and a finite binary 
tree automaton is called a finite tree automaton. For k=1, this is just the case of 
finite automata on w-words [1-4, 8, 10-12]. In fact, T1= {0} * and IT' is the same as 
the set I(' of wwords. A subset of Tri is called an wlanguage. We call a finite unary 
tree automaton by a finite automaton. The reader is referred to [2, 11] for the termi
nologies on w-words and wlanguages. 

   Finite automata on w-words have been extensively studied and the classes and 
• • • , 6) of wlanguages have been completely determined [2, 10-12]. Table 1 

summarizes the results on Ji and .0,(i=1, • • • 6). Here R denotes the class of wregular 
languages [3]. With respect to the product topology on It" based on the discrete 
topology on I, the classes in Table 1 are characterized as GR=GnR, FR=Ff1R, GS = 
Gan R and FQ =FQn R, where G(resp. F) denotes the class of open (resp. closed) sets 
and G((resp. Fa) denotes the class of countable intersections (resp. unions) of open (resp. 
closed) sets. The inclusion relations among these classes are GR Ga c R, FR FQ R 

and GRUFR.GoT1RQ. We refer the reader to [4, 10-12] for more details on these 
classes.

   3. Finite Tree Automata with a Single Final Set 

   In this section we consider finite tree automata which have just one final set. In 
the literatures [4, 10], it has been known that a single final set is sufficient for the 
co-word acceptances by Ci conditions for i=1, • • • 4. The purpose of this section is to 
show that an analogue also holds for infinite tree acceptances. 

   A finite tree automaton M=<S, 1, 4, so, {F} > with a final set F is also denoted by 
M=<S, I, d, so, F>. 

   THEOREM 3.1. Let M=<S, I, A, so, "> be a finite tree automaton. Then for each 
                                                                      ••• , 4, there exists a finite tree automaton M=<S, I, 2, s"o, P> with a final set P 

such that Li(M)=Li(M). Furthermore, if M is deterministic, so is M. 
   PROOF. The idea of the proof is due to [4, Theorem 4.1; 10, Lemma 7].
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 CASE 1. i=1, 3 : M is simply defined by M= <S, X, 4, so, F>, where F = { s I s E F 
for some F in 9-1. 

   CASE 2. i=2 : M is defined as follows : 

   (1) g= {(s, -) I g c g and for each F in , s is in Fl. 
   (2) so=(so, 0). 

   (3) If (s1, s2) is in 4(s, a), then for all 0# g" £, 4((s, g), a) contains ((s1, {FI F 
s1EF}), (s2, {FIFE , s2EF})) and d((s, 0), a) contains ((s1, {F FE g, 

(s2, {F I FE Ef, s2 E F} )). 
   (4) P= {(s, g)I(s, g)ES with #0}. 

Let t: T2 -* I be a X-tree. First we establish a one-to-one correspondence between the 
runs of Al on t and the runs of M on t. Let i : T2—>g be an arbitrary run of M on t. 
Then we associate it with a run r : T2—>S such that r(x)=s, where F(x)=(s , g) for x 
in T2. By (3), we can see that r is a run of M on t. Conversely for a run r: T2-~ S 
of Al on t, we associate it with a run T: T2—>g of M on t which is defined as follows : 
F is inductively defined. First we define i(s)=(so, 0). Suppose that T(x)=(s, g) is 
defined. Then note that r(x)=s. Assume that in the run r a transition (s1, s2)E 
4(s, t(x)) is taken at the node x. Then if g =95, the transition ((s1, {Fj FE g, s1 E F} ), 

(s2, {FI FE F, s2 E F} )) is taken at x in the run F. Namely we define F(x0)=(si, {FI F 
s1 E F}) and 1--(x1)=-(s2,  {FI FE EF, s2E F} ). If  ICZ5, then we put i (x0)=(s1, {TV 
sl F}) and T(x1)=(s2, {FIFE g., s2E F} ). Again by (3) we see that i is a run of 

M on t. By this correspondence we assume that r and F denote the runs corresponding 
to each other. To prove L2(M)=L2(M), it suffices to show that the following two 
statements are equivalent for each path it c T2. 

   (5) There exists F in F such that In(r 17r) c F. 

                  N 

   (6) In (F•I~r) .F. 
For a path 7r= {xo<x1< ••• xn< •••}, let r"(xn)=(sn, Fn) for n>0. Then there exists an 
integer no such that In(rI jr)= {sn l n>no} and In(F17r)= {(sn, ffn) I n>no}. Suppose that 
In(r 17r) c F for some F in F. Then by the choice of no we see that sn is in F for all 
n>_no. If gn1=O for some n1>_no, then by the choice of no we see that gn=0 for 
infinitely many n>n1. As we observed above, snl+, is in F. Therefore by (3) we see 
that F is in g n1+1. Moreover, since sn is in F for all n> n1, it follows from (3) that 
F is in gn for all n>n1. Hence Fn#0 for all n>n1. This is a contradiction. Thus 

.# 0 for all n > no. Therefore In(F I 70 c F. Conversely suppose that In(F ! 7r) c F. 
Then it follows from (3) and (4) that F n F n+1 and g n # QS for all n >_ n o. Since g. 
is finite andn O, there exists F in I such that F is in g7, for all n > n o. Therefore 
sn is in F for all n > n o. Thus In(r I rc) __ F. 

   CASE 3. i=4 : M is defined as follows : 

   (1) S= {(s, g-) I  c EF and for each F in g, s is in F} . 
   (2) s""o=(so, go), where E'o= {FI FE F, soE F} . 

   (3) If (s1, s2) is in 4(s, a), then for all r, 4((s, >), a) contains ((s1, {F1 F, 
s1EF}), (s2, {FIFE g, s2EF})). 

  (4) F={(s, ")1(s, g)ES with g#Q}. 
Let t: 712-27 X' be a X-tree. As in Case 2, by the one-to-one correspondence between 
the runs of M on t and the runs of M on t, we denote by r and r" the runs correspond
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ing to each other. Let  7= { x o < x 1 < • • • x< • • • } be an arbitrary path in T2 and let 

i(xn)=(sn, n) for n>_0. Then we show the equivalence of the following two statements. 

   (5) There exists F in g such that r(r)F. 

               N 

   (6)r"(r) cF. 
Suppose that r(7r)C_F for some F in F. Since r(s)=so is in F, we see that F is in go. 
By induction we can see that F is in g n for all n �0. Hence FØ for all n�0. 0. 
Therefore i(rr)F. Conversely, if -1-(7)g F, then gn QS for all n >0. Since gn n+i 
and g n # 0 for n�0, 0, there exists F such that F is in g n for all n �0. Since i(x)= 

(r(xn), gn), it follows from (3) that r(xn) is in F for all n>0. Hence r(r)~F. 
   In Cases 1-3, the construction of M shows that if M is deterministic then so is M. 

   By Theorem 3.1, we hereafter consider only finite tree automata with a single final 
set for Ciacceptances for i=1, • • • , 4. 

   For the acceptance conditions C5 and C6, the number of final sets affects the 
definability. We will discuss this matter in Section 6. 

   4. Embedding Theorem 

   Let I= {a, M. We define c: XT1 + 272 and p: 272->271 as follows : For w in 
271, c(w) is defined by c(w)(x)=w(x) for x in T1 and c(w)(x)=a for x in T2—T1. For 
t in XT2, we define p(t)=1-1T1. Namely, c(w) is a s-tree whose leftmost path is the 
same as w and other nodes are labelled with a. p(t) is the w-word obtained by spelling 
out the labels of the leftmost path of t. 

   THEOREM 4.1. For i=1, ••• , 6, if L is in 77a'i (resp. .02'i), then p(L) is in Ti 

(resp. gi). 
   PROOF. CASE 1. i=1: Given a finite tree automaton M=<S, I, 4, so, F> with 

L=L1(M), we construct a finite automaton .A71-=<g X, d, so, P> as follows : For s in 
S, let MS=<S, 27, 4, s, F> and let S1= {s E S ! L1(MS) # 0 } . Then we define as follows : 

   (1) S=SU {1}, where 1 E.S. 
    (2) s"a=So. 

   (3) For each s in S and a in E, 2(s, a) is equal to the set { p I There is (p, q) 
4(s, a) with q E S1} if this set is not empty else {1} . And 3(1, a)= { 1 } . 

  (4) P= F. 
If t is in L, then there exists a run r of M on t such that for any path r in T2, 
In(r I r)fF #0. Therefor r(0711) is in S1 for all n>_0. Hence r, defined by r(x)=r(x) 
for x in T1i is a run ofM on p(t). Moreover r is a C1accepting run since In(r I 70)n 
F O for the leftmost path ro in 7'2. Thus p(L) c L1(M). Conversely if w is in L1(M), 
then it follows from the definitions of Si and d that there exist a s-tree t and a C1
accepting run of M on t such that w= p(t). Therefore L1(M) p(L). Thus p(L)=Li(M). 

   CASE 2. i=2 : This case can be proved in the same way as Case 1. 
   CASE 3. i=3: Let 11M1=<S, E, 4, so, F> be a finite tree automaton with L=L3(M). 

Without loss of generality, we may assume that so is not in F. We construct a finite 
automaton M=<S, X, d, s"o, P> satisfying p(L)=L3(M) in the following way : Let S3= 

{s E S (L3(MS) # O} . Notice that if s is in F then L3(M8) =XT2. Hence F E S3. For 
each s in S and a in I, let S(,,,,=  { p I There is (p, q) E 4(s, a) with q E S3}



76T. HAYASHI and S. MIYANO

   (1)  S=S'  _,'  {1, T}, where 1, TES. 
    (2) s"o=so. 

   (3) For each s in S and a in I, d(s, a) is defined by 

1 if S(S,,)=O 

4(s, a)= T if So , Q,fF*0 

So, a) otherwise 

and 3(1, 6)=111, 4(T, a)= {T}. 

         N 

   (4)F= {T}. 
Let t be in L and let r be a C3accepting run of M on t. Then we inductively define 
i : T1-->S as follows : Let i(s)=r(s)=so. Assume that r`(On) is defined. If r(On) is in 
S, then two cases arise. First if r(On+1) is in F, then 77-(On+1)=T. If r(On+1) is S—F, 
then r"(On+l)=r(On+1) If f(On)=T, then r(On+1)=T. Since r(iro)fF 0 for the leftmost 

path 7ro, there exists an integer no10 such that r"(On) is in S—F for 0<n<no and f(On) 
= T for all n > no. Since r is a C3accepting run of M on t and since r(On) is in S—F 

for 0<n<no, r(On+1)EScrcon),ccon)) for 0<n�no and r(Ono+1)EScr(o ),cco ,>nF, where m=no. 
Therefore r" is a C3accepting run of M on p(t).Hence p(L)c_L3(1V1). Conversely, let i 
be a C3accepting run of M on w in L3(M). Then by (3) and (4), there exists an 
integer no10 such that r"(On) is in S—F for O1n<no and r(On)=T for all n>no . 
Furthermore for each n, 0�n:�  no, there is qn in S3 such that (r(O"+1), qn) E 4(r(On), w(On)) 
and i(Ono+1) E F c S3. Therefore by the definition of S3, we can see that there exist a 
X-tree t with p(t)=w and a C3accepting run of M on t. 

   CASE 4. i=4:  This case can be proved in a manner similar to Case 1. 
   CASE 5. i=5 : For a finite tree automaton M=<S, I, 4, so, > with L = L5(M), we 

construct a finite automaton M=<S, I, d, s"o, g.> as follows : Let S5= {s E S I L5(MS) # 0 } . 
Then we define as follows : 

   (1) S=SU{1}, where IES. 
   (2) So= so. 

   (3) For each s in S and a in X, d(s, a) is equal to the set { p j There is (p, OE 
4(s, a) with q E S5} if this set is not empty else {1}. And 3(1, a) = {1}. 

   (4)  =g. 
Then by an argument similar to Case 1, we can prove p(L)=L5(M). 

   CASE 6. i=6: Let M=<S, I, A, so, F> be a finite tree automaton satisfying L= 
L6(M). For S#Q__S and s in S, let 9.Q={F •IFUQE9.1 and let M(Q,s,=<S, I, 4, 
s, gQ>. Then let SQ= {s E Q I L6(M(Q, S))# 0} . Without loss of generality, we may 
assume that every F in F contains the initial state so. For F in g, an F-chain is a 
set {Si j0<i<_n} of subsets of F such that So= {so}, Sn=F, SiSi+1 and 1 Si 1 =1+1 for 
0�_i _n. n. Then let SF be the set of all Fchains. We define a finite automaton M= 

<S, X, d, so, g> as follows : 
  (1) S=SXP(S)U{1}. 

   (2) S""o=(so, {so} ). 
   (3) For each s in S, a in 2' and Q S, 4((s, Q), a) is equal to the set {(p, Qv { p} ) 

There is (p, q) E 4(s, a) with q E SQ,,fq } if this set is not empty else {1}. And
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 4(1,o)= 

   (4) {G _ S x P(S) I p1(G)=F and p2(G) E SF for some F in g} , where p1 and p2 
are the projections to the first and second components, respectively. 
For t in L,(M), let r be a C6accepting run of M on t. Let sn=r(On) and Fn= {si I O< 
i___ n} for n>_0. Then we define is T1—>g by i(0n)=(sn, Fn) for n>_0. We show that 
i1 is a C,accepting run of -1 on p(t). First note that i(s)=(so, {so}). For each n>0, 
consider the transition (r(On+1) r(On1)) E J(r(On), t(On)). Since r is a C6accepting run of 
Al on t, r(Onl) is in SFnJ{rconin. Therefore r" is a run of M on p(t). Since r(7ro) is in 
F for the leftmost path rro in T1, F= {sn I n>_0} is in F. Since Fo= {so}, FnEFn+1 for 

all n>0 and F= U Fn, the set {(sn, Fn) I n>_0} is in . Hence i is a C,accepting run 
n=o 

of M on p(t). Thus p(L) L6(M). Conversely, for a Csaccepting run F. of M on w in 

L6(M), we can find a X-tree t with p(t)=w and a C6accepting run of M on t by using 
the definitions of SQ and 4. Thus L6(M)E p(L). 

   In Cases 1-6, it is obvious that if M is deterministic then so isM. 
   REMARK. For a finite tree automaton M=<S, X, J, so, 9), we define a finite auto

maton M'=<S, X, 4', so, 9> by setting J'(s, a)= {p I (p, q)E4(s, c)} for s in S and a• in 
T. Then M' does not necessarily accept p(Li(M)) in the sense of Ci for i=1, ••• , 6. 
Namely, the definitions of M in the proof of Theorem 4.1 are essential. For example, 
let Mi=<S, X, di, so, Fi) be 

S= {so, sl} , 

f_ {a}, 

(s1, so) i=3 4 
(so, a)= (

so, s1) 

4i(s1, a)=(s1, si) for i=1, ••• , 6. 

                     {s1} i=3 
Fi = 

{so} i3. 

Then Li(Mi)=O for each i=1, •••, 6. However, Li(M?) for each i=1, •••, 6. 
   REMARK. In the proof of Theorem 4.1, I g 1=191  for i=1, • • • , 5. However, for 

the C,acceptance, the size of g is increased in the construction of M. 
   The following embedding theorem establishes the relationship between 1"li(resp. cDi) 

and Tgi(resp. D9i) for i=1, ••• , 6. 
   THEOREM 4.2. For i=1, , 6 and L_XT1, L is in Jli(resp. Di) if and only if t(L) 

is in J12i(resp. g9i). 
   PROOF. For let 11,1=<S, I, 4, so, 9> be a finite automaton such that L= 

Li(M). Then a finite tree automaton M=<g, X, d, s""o, g> which accepts t(L) in the 
sense of Ci is constructed as follows : 

   (1) S=SU {1, T}, where 1, T S. 
    (2) go= so. 

   (3) For each s in S,
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               4(s,  6)=  {(p, T) I pEd(s, a)} for a in I, 

d(T, a)= {(T, T)}, J(T, b)= {(1, 1)}, 

3(1, a)= {(1, 1)} for Q in I. 

gU{{T}} for i=1, 2, 3, 5 
  (4) _ 

gU{{s°, T}} for i=4, 6. 

Notice that if M is deterministic then so is M. 
   The converse direction follows from Theorem 4.1. 

   5. Comparison of the Classes Concerned 

   This section relates the classes 9I2i and Zgi for i=1, ••• , 6. The results are 
summarized in the lattice diagram in Fig. 1, where an unbroken line indicates a proper 
containment and a broken line means a containment whose properness is unknown. 
One can also draw a similar diagram for the deterministic classes.

   NOTATION. Let t be in 2T2. For a path 7C= { x o < x 1 < • • • xn < • • • } in T2, we denote 

by [t rr] EXT1 a function defined by [t j 2r1(0n)=t(xn) for n>_0. 

   PROPOSITION 5.1. (1) 72 T1 and 77 T2 are incomparable. 

   (2) D2.1 and gg'2 are incomparable. 
   PROOF. Let I= {a, b} and let 

L1=c(L'), where L'=(ba*)WTXT1, 

L2={tXT2i[tj 1 X*aw1GT1 for every path rr in T2}. 

We can easily construct a deterministic finite tree automaton which accepts Li in the
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sense of  Ci for i=1, 2. Since L' is known not to be in FQ [2, 11] and since T2=F10-' 
from Table 1, it follows from Theorem 4.2 that L1 is not in J'222. On the other hand, 
Rabin [7] has proved that L2 is not in 7221. Hence L1 is in D21—J"222 and L2 is in 
222— 2 1• 

   PROPOSITION 5.2. (1) 1223 and 1224 are incomparable. 

   (2) 223 and 224 are incomparable. 
   PROOF. These results follow from Theorem 4.2 and the fact that GR and FR in 

Table 1 are incomparable.
7~7    THEOREM 5.3.(1) J113Ugcn1ff4J2 26. 

   (2) 223U~24 226. 
   PROOF. By Theorem 3.1, we deal with a finite tree automaton M=<S, X, J, so, F> 

with just one final set. Then we consider finite tree automata Mo=<S, X, d, so, go> 
and M1=<S, X, 4, so, SF1>, where o= {G j Gr1F # O, G _S S} and F1 = {G I O G~F} . 
Then it is not difficult to see that L3(M)=L6(Mo) and L4(M)=1-6(M1). By the defini
tion, it is obvious that if M is deterministic then so are Mo and M1. The properness 
of the inclusions follows from Theorem 4.2 and the fact that GRuFRGafFQ in 
Table 1. 

   THEOREM 5.4 [5]. (1) gig 6_cg221ng222• 

(2) g2 6C 1n222
 PROOF. Let M=<S, I, 4, so, F> be a finite tree automaton. We construct a finite 

tree automaton M'=<S', X, 4', so, F'> such that T6(M)=T1(M')=T2(M') as follows : 

   (1) S'=SxP(S). 
   (2) sa=(so, {so}). 

   (3) For each s E S, Q c S and a• E X, 4'((s, Q), a) = {((p, Q1), (q, (22)) I (p, q) E 4(s, a), 
Q1=Qv{p}, Q2=QU{q}}. 

   (4) F'={(s, F)IsES, FEEF}. 
As simulating M, M' stores the states occurring on the path from the root to the cur
rent node in the second component of its state. Let t be in L1(M') and let r' be a 
C1accepting run of M' on t. Then we define r by r(x)= p1(r'(x)), where pi is the 

projection to the first component. By (3), r is a run of M on t. We show that r is a 
C6accepting run of M on t. For an arbitrary path r= { xo < xi < • • • x,< • • • } in T2i let 
r'(xn)=(sn, Fn) for n>0. Then by definition, we see that FngFn+1 for n>0. There
fore there exists an integer no such that Fno=Fn for all n?no. Note that Fno= 

{sn I n>0}. Since r' is a C1accepting run, In(r' I ar)nF' 0. Therefore there is (s, F) 
in F' such that (s, F)=(sn, Fn) for infinitely many n>_0. Since Fno=Fn for all n>no, 
F=Fno. Since Fno=r(2r), r(7r) is in g. Hence r is a C6accepting run of M on t. 
Thus L1(M') c L6(M). 

   Conversely, let t be in L6(M) and let r be a C6accepting run of M on t. We 
define r' inductively. Let r'(s)=(so, {son. If r'(x)=(s, Q) is defined, then let r'(x0)= 

(r(x0), Q'J {r(x0)1) and r'(x1)=(r(x1), QU {r(x1)1). Then r' is a run of M' on t since 
r is a run of M on t. Let a•-= { x o < x 1 < • • • x< • • • } be an arbitrary path in T2. Let 
r'(xn)=(sn, Fn) for n>0. Since r is a C6accepting run, r(r)=-F for some F in g. 
Since FnEFn+1 and Fn= {si~0<i<_n}, there exists an integer no such that F=Fn for 
all n>no.Since {sn I n>no} is finite, there exists s in S such that (s, F)=(sn, Fn) for
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infinitely many n>_0. Therefore  In(r'  I  r)fF'#  0. Thus r' is a C1accepting run of 

Al' on t. Hence L6(M)C L1(M'). Thus L6(M)=L1(M'). 

   We now prove L2(M')=L6(M). We use the same definitions as those in the proof 

of L1(_11')=L6(M). Suppose that r' be a C2accepting run of Al' on t. Then for every 

path r, In(r' I r) c F'. Since In(r' L ;r) O, there exists (s, F) in F' such that (s, F)= 
(sn, Fn) for infinitely many n>_0. Since FnC_F71+1 for n>_0, there exists an integer no 
such that F=Fn, for all n>no. Therefore the run r defined by r(x)=p1(r'(x)) for x 

in T2 has the property that r(r)=F. Thus r is a Coaccepting run of M on t. Hence 

L2(Mt)c__ L6(M). To see the converse inclusion, it may be sufficient to note that in the 

proof of L6(M)gL1(M') we have (sn, Fn)=(sn, F) for all n>_no, where F is in E". 
Thus In(r' fr) c F'. Therefore r' is also a C2accepting run of M' on t. HenceL6(M) 

  L2(M1)• 

   By the construction, it is also obvious that if M is deterministic then so is M'. 
   REMARK. It is an open problem whether the inclusion is proper in Theorem 5.4. 

   THEOREM 5.5. (1) g2211Ja222•225 

   (2) 221Ug22225. 
   PROOF. Given a finite tree automaton 111=<S, I, 4, so, F>, we define in the same 

way as Theorem 5.3 finite tree automata Mo=<S, X, 4, so, 2o> and M1=<S, I, 4, so, 21>, 

where 'o= {G I GnF 0, GS} and 21= {G I O r G _ F} . Then we can see that L1(M) 
=L5(Mo) and L2(M)=L5(A) • 

   We now prove the properness of the inclusions. Let I= {a, b} and let 

L1=c(L'), where L'=(ba*)o XT1, 

L2 = {t XT2 I [t f r] aX*a°' for every path r T2} • 

We will show that L=LiUL2 is not in 1221UX22. Assume that L is in 1"221. Let 
M=<S, X, it so, F> be a finite tree automaton accepting L in the sense of C1. One 

can modify M to get a finite tree automaton M2 which accepts L2 in the sense of C1 

since for each tE L1i t(s)=b and on the other hand for each tE L2, t(e)=a. By the 

result due to Rabin [7], L2 is not in 21. Hence L is not in J221. Now assume that 

L is in X g.2. Then by the same consideration, one can get a finite tree automaton 

which accepts L1 in the sense of C2. In the same way as Proposition 5.1, this yields 
a contradiction. Hence L is not in 9222. Therefore L in not in T21U9222. 

   We can easily construct a deterministic finite tree automaton which accepts L in 
the sense of C5.

   6. Structural Measures for Finite Tree Automata 

   In this section we introduce two structural measures for finite tree automata to 

give further observations on 12 2i for i=1, • • • , 6. Let M=<S, I, 4, so, 2> be a finite 
tree automaton. The first measure is the nondeterministic degree of M, denoted by 

ndeg (M), which is defined to be max { 14(s, 6) j I s E S, 6E2'1.  The second measure is 
the number (2 I of final sets. As shown in Section 3, the size of 2 does not affect 

the Ciacceptances for i=1, • • • , 4. 

DEFINITION. For 1=1, • • • , 6 and an integer k�1,  a set L in J2 2i is said to be of
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nondeterministic degree  k if k=  min {ndeg (M) 1 L= Li(M)} . Then we define 

k— 122•1= {L Y79i L is of nondeterministic degree l with 1 l<k} . 

   A deterministic finite automaton is of nondeterministic degree one. The following 
theorem refines the result in [9] which separates the nondeterminsitic classes from the 
deterministic classes. 

   THEOREM 6.1. For i=1, ••• , 6 and for k>-1, k—~21 i(k~ 1)—~21 i. 
   PROOF. Let 21= {a, N. For n�1,  let to be the X-tree defined by 

b if IxI=n 
tn(x)= 

a otherwise 

Let Lk= {t1, ••• , tk}. We show that Lk+l is in (k+1)—U"lYi but not in k—/22"i for 
i=1, • • • , 6. One can easily construct a nondeterministic finite tree automaton of non
deterministic degree k+1 which accepts L k+i in the sense of Ci. Suppose that L k+1 
is accepted in the sence of Ci by a nondeterministic finite tree automaton M=<S, I, 4, 
so, > with ndeg (M) < k. Let rn be a Ciaccepting run of M on to for n=1, • • • , k+1. 
Since 4(so, a) I�-k,  there exist in, n, 1 m < n < k H-1, such that rm(6) =rn(s) = so and 
(r.m(0), rm(1))=(rn(0), rn(1)). Let t be a X-tree defined by 

               b if either I x I =m and 0<x or I x I =n and 1<x 
         t(x)= 

                a otherwise 

Then from rm and rn we can construct a C1accepting run of M on t in the following 
way. We prune the subtree at the node 1 from rm and instead of it we graft the 
subtree of rn at the node 1. Then the resulting run is also a Ciaccepting run of M 
on t. However, t does not belong to L k+l, a contradiction. Hence L k+l is not in k —gig 1. 

                                                                    DEFINITION. The Muller degree of a language L in 1225i denoted by mdeg(L), is 
the minimum number of final sets sufficient for its acceptance in the sense of C5, i. e. 

mdeg(L)=min {k I L=L5(M) for M=<S, X, 4, s0, F> with k= I F I } . 

   THEOREM 6.2. For each k?0, there exists a language Lk in gig, such that k= 
mdeg (Lk). 

   PROOF. For n>_1, let to be the X-tree such that Et. I7r]=(anb)°' for each path 7 in 
T2. Let L0=0 and Lk= {ti, , tk} for k?1. It is clear that indeg(L0)=0. We will 

prove that mdeg (L k) = k for k�1.  One can easily construct a deterministic finite tree 
automaton M=<S, X, 4, s0, g> such that k = I g I and L k = L5(M). Thus mdeg (L k) < k. 
Assume that mdeg(Lk)=m<k. Then there exists a nondeterministic finite tree auto
maton M= <S, 4, so, F> such that m = I g I and L k = L5(M). Then by Theorem 4.1, 
there exists a finite automaton M=<S, X, d, s""o, g> such that m= I I and p(Lk)=L5(1VI) 
because the construction of M from M preserves the number of final sets. Since p(Lk) 
=(ab)wU(a2b)wlJ • • U(akb)w and m< k, there exist i j such that both (aib)°' and (a'b)~' 

can be accepted with the same final set F in Then there is w X* such that 
aibw(a'b)'' can be accepted by M with F in the sense of C5. This is a contradiction. 
Hence mdeg(Lk)=k.
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   REMARK. Theorem 6.2 still holds when we restrict the case to the deterministic 

C5acceptance. By the results in Section 3, we can also define a similar degree for a 

language in  M26. Although the language Lk defined in the proof of Theorem 6.2 also 

seems to be a candidate which has exactly degree k in this case, we have not proved 
this yet. 

   7. Concluding Remarks 

   By the results in Sections 4-6, the class Mg 5  that is studied in [6] is the largest 

one among the classes defined by finite tree automata. This class is closed under 

Boolean operations [6] and for each L in n125, p(L) is an wregular language. Hence 

the class 1225 may be considered to be a natural extension of the class of wregular 
languages to infinite tree languages. 

   In [5], Moriya has characterized 32 23 and 1l 24 in terms of general topology on 

Z7'2. We have not considered this approach in detail. 

   We have ignored the classes J2%k7 for k>2. However, the arguments in this paper 

are easily applicable to J"l i k' and we can get similar results for M1 k' for k >2. For 
instance, Theorems 4.1 and 4.2 can be generalized as follows : Let t k:ET k IT k+1 be 

a function defined by ck(t)(x)=t(x) if x is in Tk and ck(t)(x)=a if x is in Tk+1—Tk• 

Let pk : XTk+1*XTk be a function defined by pk(t)=tlTk for t in Tk+l.Then we 

have the following generalibations : 

   THEOREM 4.1'. If L is in V+1), then pk(L) is in i2ik' for i=1, ••• , 6. 

   THEOREM 4.2'. L is in alik> if and only if ck(L) is in Ylik+1) for i=1, ••• , 6.
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