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AXIOMATIZATION OF COMPUTER-ORIENTED MODAL 

      LOGIC AND DECISION PROCEDURE

        By 

Hajime SAWAMURA*

                     Abstract 

   Modal logic has various applications in Computer Science. In this 

paper, an axiomatization of computer-oriented modal logic has been 

given through the modification of Gentzen-type axiomatization of modal 

propositional logic S4. The characterization theorems of the axiom 
system, i. e, soundness, decidability were also proved. Finally, some 

provable and unprovable examples are shown together with the com

puter implementation of our proof procedure which is now being 

developed.

   1. Introduction 

   The main roles of logics in computer science are to provide a language with high 

expressive power in which the object to be investigated is appropriately described, and 
to provide an inference mechanism. Among various logics, intensional logic such as 

modal logic has specific applications in  computationaI linguistics (e.g., [1]), program

ming language semantics (e. g., [21) and data semantics (e. g., [3]). The objects in 

these fields are sentences in natural language, programs and data respectively. Since 

meanings of these objects generally vary with time or situation, it is difficult or even 
impossible to capture such an aspect within the framework of extensional logic. Inten

sional logic, on the other hand, allows us to express time or situation dependency of the 

meanings of objects in these cases. 

   In spite of these significances of intensional logic, there is not so much work done 

about automated proof procedure for it. 

   In this paper, we investigated a proof procedure for propositional modal logic S4 

with modalities, necessity and possibility, which is considered to be best suited for com

puter implementation. Before obtaining the proof procedure, we first give an axioma
tization of computer-oriented propositional modal logic S4, which can be derived from 

the Gentzen formalism for logical system [4]. Our formalism of propositional modal 

logic S4 is simplified one of Ohnishi and Matsumoto [5] in which Gentzen-type axioma

tization of modal logic was first given. More specifically, we employ the method of 

Rasiowa and Sikorski [6] who derived a variant of Gentzen formalism LK for first-order 
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predicate calculus. In their formalism, axioms are allowed to include superfluous for

mulas, and the number of inference rules are reduced by transforming a sequent into 

the sequence consisting of formulas only. This type of formalism makes it easy to 

construct the decision procedure and to implement it by a computer without losing the 

naturalness of axiom system which was one of the Gentzen's intension for it. 

   The axiom system obtained by applying the method of Rasiowa and Sikorski for 

Ohnishi and Matsumoto's Gentzen-type axiom system for modal propositional logic S4, 

is called Sequence Calculus S4 (SC-S4 for short) in this paper. In Section 2, after in

troducing the propositional modal language and its semantics, we show the process of 

transforming the original Gentzen-type formalism into the corresponding Sequence Cal

culus and deductive equivalence of those axiom systems. In Section 3, we prove sound

ness theorem and decidability theorem for our Sequence Calculus. In Section 4, we 

briefly discuss about a computer implementation based on the decidability result, together 

with some provable and unprovable examples. In Section 5, conclusions and future 

research plans are included.

   2. Sequence Calculus S4(SC-S4) 

   We first introduce an object language for propositional modal logic S4 and its 
semantics. Next, we construct an axiom system, Sequence Calculus, for it through the 
modification of Gentzen-type axiom system. In the remainder of this section, we prove 
that the both systems are deductively equivalent. 

   2.1. Language 
   In this paper we consider symbols and formulas of the following kind. 

   2.1.1. Symbols 
   1) Propositional variables : P, Q, R, • • • . 

   2) Logical symbols : (not), A (and), ^ (necessary). 
   3) Auxiliary symbols : ) , (, , . 

   Greek letters a, 13, r, • • • (with or without subscripts) serve as syntactical variables 
representing formulas. 

   2.1.2. Formulas 
   1) A propositional variable is a formula. 

   2) If a is a formula, so are ~a, ^ a. 
   3) If a, 13 are formulas, so is (a A (3). 

   2.1.3. Defined symbols 

(aV 
(aD1S)=i(aA-1jS). 
(a=13)=(aJj3)A(1~a). 

Qa=~^~a. 
(a-3j3)= ^ (aD j). 

   2.2. Model 
   2.2.1. Kripke frame 

   An ordered pair <W, R> is called Kripke frame, where W is a non-empty set and 
R is a binary relation over W.
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   2.2.2. Valuation 
   A valuation V over  <W, R> is a function which maps any ordered pair (a, w) with 

propositional variable a and W to either t or f. We extend the valuation for any 
formula a, and any w W as follows : 

   1) V(-~a, w)=t if V(a, w)=f. 
   2) V(aAj, w)=t if V(a, w)=t and V(p, w)=t. 

   3) V (^ a, w)=t if V(a, w') = t for every w' such that w R w'. 
   2.2.3. Kripke model 

   A Kripke model is an ordered triple <W, R, V>, consisting of a Kripke frame <W, R> 
and a valuation V over it. 

   Kripke showed that various modal logics are well characterized in terms of binary 
relations R [7]. Propositional modal logic S4 is characterized by letting R be a reflexive 
and transitive relation over W. 

   2.2.4. Truth, validity 
   A formula a is true in a Kripke model <W, R, V> if V(a, w)=t, for every wW. 

If a formula a is true in every Kripke model, it is valid and we write a to indicate 
that the formula a is valid. 

   2.3. Gentzen-type axiom system L-S4 for S4 
   2.3.1. Sequent 

   A sequent is an expression of the form a1, • • • , an— p1, • • • , p (n, in >_0), where ai, 

pi represent any formula and — is an auxiliary symbol and not a logical symbol. Capital 
Greek letters F, 4, 0, A, H represent arbitrary (possibly empty) sequences of formulas 
separated by commas. —IF, ̂  r represent sequences obtained by prefixing ^ to all 
formulas of r respectively. 

   2.3.2. Axiom schema and inference schemata of L-S4 
   Axiom schema : a—>a 

   Inference schemata : 

  (Thinning)r,0 r,0                   a, o ' r-> 0, a 

   (Contraction)a, a, r-->0r,e, a, a                   a
, r, ' F-4), a ' 

(Interchange)I;a, p,Z1—>0r—*0, a,p, A  r, p
,a,4-0' F—>0, j3, a, A 

  (Cut)F->0, a a,4A  F, 4-0 , A ' 

  (-1)a,r-o r—o,a  r 0
, a ' a, r, 0 

  (A)a, p, r--->0r—*0, a r, 0, p . aAp, r—*0 ' r-~0, aAp ' 

(E)a, F—>01 ^r->« ^a
, F 0 •
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   2.3.3. Provability of a sequent 
   We define the provability of a sequent recursively as follows : 

   1) An axiom is provable. 

   2) Ifr (0) is one of the inference schemata and [(and 0) is provable, then 4 is 

provable. 
   A formula a is said to be provable when a sequent -> a is provable and we write 

I-a to indicate that the formula a is provable. 
   THEOREM 1. (Cut Elimination Theorem) L-S4 is deductively equivalent to L-S4 without 

cut rule (see [2] for the proof). 
   Therefore, in what follows, we consider L-S4 without cut rule. 

   2.4. Construction of Sequence Calculus 
   By the left rule of (-i) in L-S4 we can transpose all formulas from left to right, 

replacing each sequent a1i • • • , an-* j31, • • • , Am, by an equivalent sequent -> /31, • • • , ~3m, 
• • • ,  an. The symbol  is then discarded. This simplifies a sequent to only a 

sequence of formulas ri, • • • , 1 k. Furthermore, we identify a sequence of formulas r 
with simply a finite set r of formulas. Then, an axiom schema in Sequence Calculus 
SC-S4 is of the form Ti, a, 4, -la, e. Inference schemata in SC-S4 are as follows : 

  (Thinning)Ti  r
,a 

                F,a  
' Ti a 

(A)r, a r,  r, aA
IS 

(-,A) F
, --1(aA15) 

(C)---------------a —1Li ^a 

(~~)I;~---1Oa • 

   2.4.1. Provability of a sequence 

   Provability concept of a sequence in SC-S4 is the same as that of a sequent in L-S4. 

   THEOREM 2. A sequent r-›a is provable in L-S4 if a sequence --II, d is provable 

in SC-S4, in other words, the two axiom systems are deductively equivalent. 
   PROOF. (b) This case is obvious from the construction of SC-S4. 

() The axiom Ti, a, 4, ~a, A is deducible as follows in L-S4: 

a -~ a---------------- 
possibly several thinnings r'

,a-*a,d 
F' a, 4, -la 

F' a, 4, A 
                          ~I,,a,d,~a,lj,wherer=-'Ti.



Axiomatization of computeroriented modal logic and decision procedure 61

 -*r  
(Thinning) : r a 

-4' , a 
             —r 

-->F, ~~a 

 I', a F, j9  (
A) : ->r , aAp 

(r, 'a,~R ~A) a, 13->r  
aA(3—*r  

—*r,-1(aA ) 

-~ ^ r , a  (^) 
^r->a 
                ^r-~^a 
                        ~-,^r, ^a 

(^)-4",--la a->r 
^a->r 

-*r , -1^a

   Note that in the proof the double negation signs are freely eliminated since in L-S4, 

a sequent including double negations is provable if and only if the sequent obtained by 
eliminating double negations is provable. 

   3. Soundness, Completeness and Decidability 

   In this section, we describe the proofs of soundness and decidability theorems of 

SC-S4. With respect to the completeness of SC-S4, we rely on the completeness of 

L-S4 and the deductive equivalence of L-S4 and SC-S4. 

   3.1. Truth of a sequence 
   A sequence of formulas a1, • • • , an is true in a Kripke model <W, R, V> if and only 

if for every WE W there exists some ai(1<_i<n) such that V(ai, w)=-t. If a sequence 

a1i • • • , an is true in every Kripke model, then it is valid. 

   THEOREM 3. SC-S4 is sound, i.e. for any sequence of formulas a1, , an, if a1, ••• , 

an is provable, then a1, ••• , an is valid. 

   PROOF. We only prove the validitypreserving property of the inference schemata 

(^) and (-7111) since the propositional logic part is easy. We take any Kripke model 
K=<W, R, V>. 

   (i) The validity of axiom schema is obvious. 

(ii) The case where the inference schema is (^) : In the inference schema 
^ al, ... , -' ^ an, 3 

 -,^a i, ...,-,^an,^ 
                    , we assume that the upper sequence^a1i•• •,^an,/3is 

true in K and the lower sequence —i ̂ a1, • • • , '^an, ^ (3 is not valid. Then, for some
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w IV, we obtain, 
V( ^ai, w)=f (i=1, ••• , n)(1), 

V (^ j3, w)=f(2). 

From (2), we have, for some w' such that wRw', V(13, w')=f. From (1), since V(0 ai, 
w) = t (i=1, • • • , n), at any w" such that wRw", we have V (^ ai, w") = t (i= 1, • • • , n) using 
the transitivity of R. Therefore, for the w', we have V (^ ai, w') =t (i =1, • • • , n) and 
V (j3, w')=f, that is, V (—i ̂ ai, w')= f (i =1, • • • , n) and V((3, w')=f. This contradicts to 
the assumption. Since K is any model of SC-S4, the inference schema (^) is validity

preserving. 
   The case where the inference schema is (-1 ̂ ) : In the inference schema 

 al, • • • , an, —113is t rue in K and the                    we assume the upper sequence a1,•••,a,~, 
ai, ••• , a., ^ /3 

lower sequence a1, • • • , ^13 is not valid. Then, we obtain, for some w W, 

V(ai, w)=f (i=1, ••• , n)(1), 

V(-1^J3, w)=f(2). 

From (2), we have V( E I3, w)=t. Therefore, for all w' such that wRw', we have, 

V(j3, w')=t, 

                                          w')=f. 

By the reflexivity of R, letting w' be w, we have, 

V(ai, w)=f (i=1, ••• , n) and V(i1, w)=f. 

This contradicts to the assumption. Hence, the inference schema (-10) is validity

preserving. 
   From the soundness theorem, it can be easily seen that SC-S4 is consistent, i. e. it 
is not true that both a sequence a consisting of a signle formula a and its negated 
sequence --?a are provable. 

   3.2. Decision procedure for a sequence 
   The axiom system SC-S4 is convenient for designing a decision procedure for the 

system. It is because the upper sequence and the inference schema to be applied are 
uniquely determined except for only one schema (Thinning) when the lower sequence is 

given. The schema (Thinning) is not needed in the case of first-order predicate calculus 
whose axiom system is given as sequence calculus in this paper. However, by the 
existence of thinning rule in SC-S4, the resulting decision procedure turns out to be complex 
only in the point of combinatorial complexity. 

   3.2.1. Degree of a modal formula 
   We define the degree of a modal formulas as follows : 

   1) The degree of a propositional variable is 0. 
   2) If the degrees of formulas a and (3 are m and n respectivery, then the degree 

of —la is m, the degree of ^ a is m+1 and the degree of a A I3 is max (m, n). 
   3.2.2. Decidability
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   THEOREM 4. SC-S4 is decidable. 
   PROOF. It is sufficient to show that the following procedure is a decision procedure 

for SC-S4. In the procedure, we assume that whenever a double negated formula ap

pears, it is replaced by a formula without double negation sign. The procedure is des
cribed as ALGOL-like interation procedure with the help of natural  language and mathe
matical notation. The symbols are used as follows : 

seqi denotes a sequence of formulas, i. e. a set of formulas ; 

pi denotes a sets of sequences of formulas, e. g., {seq„ • • • , seq.}, where m�1, 
                                                                      representing the most upper sequences of formulas in the proof tree which is currently 

made backwards from the sequence to be proved ; 
   P denotes a set, {Pi, • • • , PO, where n�1, 1, representing all possible candidates of 

proofs of a given sequence to be proveed. 
   Axiom (seq) denotes the predicate such that if seq is an axiom, then true, otherwise 

false. 
   Not-Axiom (seq) denotes the negated predicate of Axiom (seq). 
Procedure DPSC-S4(P) : 
begin 

1: if there exists a pi E P = { pi, • • • , p,j such that Axiom (seq,) for every seq; E pi, 
      then return ("PROVABLE") ; 

   if there exists a p, E P such that it does not contain any empty sequence in it, then 
      begin 

      choose such a pi P and a seq; E pi ; 

      if seq;=l', ap and Not-Axiom (seq;), then 
P : =(P—pi)U {(pi—seq;)U { {F, a}, {I', j9} } } ; 

      if seq;=l', —1(aA p) and Not-Axiom (seq;), then 
P: =(P—pi)U {(pi—seq;)U { {r, ~a, —IP} }I ; 

      if seq; ^ E, ^ a and Not-Axiom (seq;), then 
P: =(P—pi)U{(pi—seq;)U{{—I^1 , all ; 

       if seq;=l', 1 ^ al, • , ^ at (where any formula in F is not of the form —1 ^ a) 

          and Not-Axiom (seq;), then 
P: =(P—pi)U{(pi—seq;)U{{I', —^a1i ••, -na,., ..•, ^at}} Ir=1, .••, t} ; 

       if seq,=a1i ••• , as and Not-Axiom (seq;), then 
          P:=(P—pi)U {(pi—seq;)U {{a„ • • • , as} — {au}} I u=1, • • • , s} ; 

      go to 1 ; 
      end 

   return ("UNPROVABLE") ; 
 end 

   In the procedure. we use the clause "choose such a pi e P and:a seq; E pi". We do not 
intend this as a nondeterministic step. It is just that it does not matter in what 
specific order the sets pi and seq; are maintained. We also omit the algorithms of 
Axiom and Not-Axiom since it is easy to construct the algorithms which test whether
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seq is an axiom or not. 
   This procedure terminates in a finite number of steps since the number of sub

formulas contained in the initial sequence to be proved are finite and by the applications 

of the inference shemata (^) and (-1E), the degree n of a modal formula reduces to 

n  1. 

   4. Proof Examples 

   In this section, we list some proof examples. Some are provable examples, but 

others are unprovable in SC-S4. In the following proofs, justification for each line is 

indicated in the right margin. 

   EXAMPLE 1. The proof of a formula ^ P-3 LIP is as follows ; the left is a 

success and the right is a failure :

  (success)(failure) 
^P, ^P  

     ^P, ^-^P ~0~)^-i^-i^P( -'0) 
^P ^-~^-~^P-L^P ^-10-10P 

      1(^PA-i^-i^-10 (~~)~(^PA—^^—^P) (A) 

 ^~(^PA—^~^~^P) (^) ^—i(^PA—i^—i^—i^P)--------------------------(^) 

EXAMPLE 2. I ^ Q ^ ^ QV R. 

 (success)(failure) 
^Q, EQ  (

^) ^ Q
, ^ ^ Q(Thinning)Q,^ ^ Q,R  ------(-10) 

      -,^Q
, ^ ^Q, R(~^)^Q,^^Q,R (-in) 

   i(^QA-i^ ^QA-iR) 1(0QA-i0 ^QA IR) 

EXAMPLE 3. Unprovability of S5-aviom OP D ^ OP. 

^ -P 
                     Li-iP,^-1^-IP(Thinning) 

                ,(-1^PA-IO~^~P)n) 

EXAMPLE 4. Unprovability of Brouwerian axiom P D ^ OP. 

-,P
, ^ OP  

                      i(PA-100P) (~^) 

EXAMPLE 5. I ^ P V ^ Q D ^ (^ P V ^ Q ). 

-i^P, ^P, ^Q  
(--1A)-i^Q,^P,^Q  (~^) ^P

, -1(-i^PA-i^Q) ^Q,(~^PA^Q)      ^P,^-i(i^PA-i^Q) (A)1^Q,^7(i^PA-ILQ) (A) 

EXAMPLE 6. I (Sometime At(End) A Always(At(end) D Q) JSometime (At(End) A Q). 

Here we assume that the two interdefinable modal operators "Always" and "Some



Axiomatization of computeroriented modal logic and decision procedure 65

time" correspond to  ^ and Q in SC-S4 respectively. This formula says that if asser
tions about termination of a program "Sometime At(End)" and weak correctness of the 

program "Always (At(End)pQ)" hold, then an assertion about strong correctness of the 

program "Sometime (At(End) A Q)" holds [8]. The proof of the formula is illustrated 
below in the computer output form of theorem prover TP-PML implemented on FACOM 
M180II, where a propositional variable P denotes the proposition At(End). 

TP-PML ((NOT (AND (AND (NOT (NEC (NOT P))) (NEC (NOT (AND P (NOT Q))))) 

  (NEC (NOT (AND P Q)))))) 

(THE PROOF OF) 
(NOT (AND (AND (NOT (NEC (NOT P))) (NEC (NOT (AND P (NOT Q))))) 

  (NEC (NOT (AND P Q))))) 

((0 ((NOT (AND (AND (NOT (NEC (NOT P))) (NEC (NOT (AND P (NOT Q))))) 
  (NEC (NOT (AND P Q)))))))) 

(1 ((NOT (AND (NOT (NEC (NOT P))) (NEC (NOT (AND P (NOT Q)))))) 

  (NOT (NEC (NOT (AND P Q))))) (0 NOTAND)) 

(2 ((NOT (NOT (NEC (NOT P)))) (NOT (NEC (NOT (AND P (NOT Q))))) 
  (NOT (NEC (NOT (AND P Q))))) (1 NOTAND)) 

(3 ((NOT (NEC (NOT (AND P Q)))) (NEC (NOT P)) (NOT (NEC (NOT (AND P 

  (NOT Q)))))) (2 NOTNOT)) 

(4 ((NOT (NEC (NOT (AND P Q)))) (NOT (NEC (NOT (AND P (NOT Q))))) 

  (NOT P)) (3 NEC)) 

(5 ((NOT (NEC (NOT (AND P (NOT Q))))) (NOT P) (NOT (NOT (AND P Q)))) 
  (4 NOTNEC)) 

(6 ((NOT P) (NOT (NOT (AND P Q))) (NOT (NOT (AND P (NOT Q))))) (5 NOTNEC)) 

(7 ((NOT P) (AND P Q) (NOT (NOT (AND P (NOT Q))))) (6 NOTNOT)) 

(8 ((NOT P) (AND P Q) (AND P (NOT Q))) (7 NOTNOT)) 
(9 (P (NOT P) (AND P (NOT Q))) (8 NOTAND)) 

(9 (P (NOT P) (AND P (NOT Q))) ISAXIOM) 

(10 (Q (NOT P) (AND P (NOT Q))) (8 NOTAND)) 

(11 (P Q (NOT P)) (10 NOTAND)) 

(11 (P Q (NOT P)) ISAXIOM) 

(12 ((NOT Q) Q (NOT P)) (10 NOTAND)) 

(12 ((NOT Q) Q (NOT P)) ISAXIOM) 
=PROVABLE 

   Note that in the proof, formulas are represented by Polish notation, and a sequence 

is represented by the list of the form (sequence no. (wffl wff2 • • • wff,,) justification list), 

where justification list is of the form (sequence no. inference rule name or "ISAXIOM"), 

denoting the justification of a derivation of current sequence. Then, the line of a proof 
should be read as : Either the current sequence of "sequence no." has been obtained by 

applying "inference rule name" to the sequence of the former "sequence no.", or it is 

an axiom.
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   5. Conclusions 

   We have presented a computeroriented axiomatization of propositional modal logic 

S4 and a proof procedure. Our method seems to be easily contracted or extended to 
other propositional modal logic such as T or S5 [7] since it employs completely proof

theoretic approach. If we used the modeltheoretic concepts such as world and acces

sibility relation over the set of worlds in a decision procedure, we would have to alter 

the structure itself of our proof procedure of DPSC-S4 for the systems T and S5. That 
is, our prooftheoretic approach to proof procedure for modal logic is not only adequate 

for a computer implementation, but also flexible for the uniform treatment of various 

modal systems. 

   Our future research plans are to introduce the measure of proof complexity for a 
modal formula and to develop our Sequence Calculus so as to be able to obtain proof 

procedures for modal predicate logic and nonmonotonic logic [9].
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