
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

TOWARDS A MATHEMATICAL THEORY OF ANALOGY

Haraguchi, Makoto
Research Institute of Fundamental Information Science, Kyushu University

https://doi.org/10.5109/13366

出版情報：Bulletin of informatics and cybernetics. 21 (3/4), pp.29-56, 1985-03. Research
Association of Statistical Sciences
バージョン：
権利関係：

Bulletin of Informatics and Cybernetics Vol. 21, No. 3--4, 1985

TOWARDS A MATHEMATICAL THEORY OF ANALOGY

 By

Makoto HARAGUCHI*

 Abstract

 This paper presents a mathematical theory of analogy, which
should be a basis in developing analogical reasoning by a computer.
The analogy is a partial identity between two sets of facts. In order
to compare several analogies, we introduce an ordering of analogies,
and we define two types of optimal analogies, maximal analogies and

greatest ones. We show a condition under which the greatest analogy
exists, and also present a top-down procedure to find the maximal
analogies.

 1. Introduction

 Analogical reasoning (AR, for short) is a kind of reasoning which derives conclusion
from premises like other reasoning. The premise in AR is a statement that given

two situations are similar in some respect, while the conclusion is one that the situations

are similar in the other respects as well.

 The AR or analogical problem solving is so important in the studies of artificial

intelligence that many authors have investigated from various viewpoints [2, 4, 6, 14,

15]. In fact, Chapman [4] dealt with problem testing assistant by which some test

programs are automatically coded from "layer correspondences" which are mappings be
tween data types and programs. Tanwangson and Fu [14] also dealt with a robot

planning problem by using a mapping between commands to the robot. The mappings
in their studies are analogies, and their problem solving methods are based on AR.

Winston [15] developed a system to answer a question by detecting a similarity be

tween two English texts in question. Carbonel [2] proposed a general problem solver

which can map the past solution for some problem into a solution for the analogous new

problem.
 Thus AR covers various problem domains. However no framework to unify the

various AR techniques has been discussed. Furthermore neither methods to compare
various analogies nor powers of AR have been discussed. It seems to the author that

such unified and precise discussions would not be possible in the frameworks so far

proposed. This should come from lack of mathematical theory of AR, unlike other
reasoning such as deductive reasoning and inductive one. The deductive reasoning, as

is wellknown, has a firm basis of predicate logic, and has been implemented by using

* Research Institute of Fundamental Information Science , Kyushu University 33, Fukuoka 812,

 Japan.

 29

30M. HARAGCCHI

theoretical results on the logic. On the other hand, the inductive reasoning has a
mathematical basis of recursion theory, by which the power of inductive reasoning can

be precisely discussed [1]. Recently Shapiro [12] has succeeded to give a unified theory

of inductive reasoning. His theory is based on first order logic, and hence it has various

applications such as logic program synthesis, grammatical inference and automatic de

bugging [13]. The observations above naturally motivate us to propose a mathematical
theory of analogy.

 1.1. The problems

 The first problem to be answered in developing our mathematical theory of AR
should be in what language we describe our theory and related concepts. The final

goal of our studies on AR should be to design a knowledge information system which
uniformally performs deductive reasoning and inductive reasoning as well as AR. Hence

it is to be desired that one language can describe them. As we have observed in the

previous paragraph, the first order language has been working as a description language
common to deductive reasoning and inductive reasoning. It should be natural to expect
the language to work successfully for our AR. Thus we choose the first order language

as the description language of AR.
 Our second problem is how to describe analogies in terms of the first order language.

Generally an analogy is a partial agreement or likeness between two objects that are

unlike in other ways. Therefore two analogous objects have two portions of these

objects, one from each, which can be viewed identical in some way. In this sense, the

two objects are partially indentical. Thus, we consider an analogy as a partial identity.
Description of the partial identity depends on representations of the two objects in

question. In this paper, we assume that an object is a system which consists of parts
and relations between the parts. As is wellknown, the first order language is suitable
to represent the relations by facts, which are ground atoms in this paper. Then we

can represent the system itself by a set of facts. Moreover, we can represent the

identical portions by a formula, if we replace terms representing the system parts by

some variables.

 The third problem is to find an analogy, given two sets of facts. We call this

problem an analogy detection. It is important to clarify the analogy detection. In fact,
let us consider the following problem solving activities using AR :

 (Al) we utilize the past experiences to solve the current problem by detecting an
analogy between the past problem and the current one [2, 4, 6, 14, 15].

 (A2) we learn a general law by detecting an analogy and then by identifying the
analogous parts of the two situations [15].

 Thus the key problem in AR is the analogy detection. There may exist several

analogies for a pair of objects, because of the following facts :

(Fl) Information about the objects depends on the amount of knowledges about the
objects and also depends on the power of deductive reasoning.

 (F2) Analogy often depends on viewpoints.

 (F3) The partial identity is not always unique.
 Any system which deals with the analogy detection should have three subsystems.

First one deduces enough information about objects to find useful analogy. The second

Towards a mathematical theory of analogy31

one extracts a necessary portion of these objects from some viewpoints. The third one

finds analogies by using the information obtained in the two subsystems above. We

present, in this paper, an analogy detection method which is used in the third sub
system. Since several partial identities may exist for a given pair of objects, we should

have an ordering of partial identities to compare them. We define such an ordering, and

we also present a top-down method to find optimal partial identities with respect to the
ordering. Although we can develop a bottom-up detection, we do not adopt it, since it

may find many nonoptimal partial identities before it finds the desired optimal ones.

 The fourth problem is to derive conclusions in AR. For this purpose, it is necessary
to set up relationships between analogous problems and the corresponding solutions.

For instance, Plaisted [8] has mathematically clarified, in his theorem proving method,

some relationships between sets of clauses and the corresponding resolution proofs.

Although we do not discuss this problem in detail in this paper, it is possible to build

a mathematical theory of AR by combining such a method as in the above and the

theory we are presenting [5].

 1.2. The outline
 Analogy treated in this paper is based on Polya's clarified analogy [11] : Two

systems are analogous if they agree in clearly definable relations of their respective

parts. In Section 2, we make some assumptions on two objects with which AR is con
cerned and consider some examples on the clarified analogies, according to which we

formalize analogies. Our formal analogy consists of a set of atoms and a pair of subs

titution, and it defines a partial identity between two sets of facts. By taking the

formal analogy as a logical formula, the set of atoms and the pair of substitutions turn

out to be a theorem and a pair of proofs, respectively. Finally we show that our formal
analogy can define Winston's analogy [15].

 In Section 3, to compare several analogies, we introduce an ordering of analogies

which is a quasiordering in the sense of Plotkin [9]. The ordering relates to an im

provement of analogies. We also present three improvement operators : Refine, Merge
and And. These operators produce a better analogy from given analogies. Moreover,

we show that two analogies are ordered if and only if one of them is constructed by
applying the three operators to the other.

 In Section 4, we discuss what is called canonical analogies. In general, our formal

analogy may have some redundancy in defining the partial identity. Such a redundancy

can be removed by unifications. We call the analogy thus obtained a canonical analogy

that is better than the original one. In consequence, we have a finite search space of

canonical analogies, which is called a canonical analogy structure. Here we should
notice that our canonical analogy can be treated in nearly the same way as generaliza

tion of literals by Plotkin [9, 10]. This fact is mathematically simple, but it is important

when we consider the analogy detection.

 In Section 5, we define maximal and greatest analogies by using the ordering. We

characterize the maximal analogy and greatest one in terms of the Refine and And

operators. We also present a top-down method which finds the maximal analogies by
using the canonical analogies.

32M. HARAGUCHI

 2. Analogy as a Partial Identity

 In this section, we define a formal analogy on clarified analogy, and we also show

that Winston's analogy can be described in our formal analogy.

 2.1. Clarified analogy
 "Looking in a natural history museum at the skeletons of various mammals ,

 you may find them all frightening. If this is all the similarity you can find
 between them, you do not see much analogy. Yet you may perceive a wonder

 fully suggestive analogy if you consider the hand of a man, the paw of a cat,
 the foreleg of a horse, the fin of a whale, and the wing of a bat, these organs

 so differently used, as composed of similar parts similarly related to each other.
 This example illustrates the most typical case of clarified analogy ; two systems

 are analogous, if they agree in clearly definable relations of their respective

 parts."
 G. Polya [11] : Induction and Analogy in Mathematics

 Thus, to detect analogy between two systems, first we should find out some rela

tions between the parts of each system. Such relations naturally depend on our view

points, interest, preconceptions and so forth. However in this paper we do not deal
with the problem of how to find the relations, and instead we start with making an

assumption as in system theory.

 (Al) Objects of AR are systems, each of which consists of a set of parts and a
set of relation instances which occur in the system. The relations are already defined

so that they can describe relationships between the parts.

 Then the next problem is how to decide whether the two systems agree in relations

or not. For this purpose, we make another assumption.

 (A2) Two systems agree in relations of their respective parts if there exists a

pairing, which corresponds parts in one system to parts in the other system, and at
least one pair of relation instances, one from each system, such that they are the same
instance of a relation except for the pairing.

We call the above pair of relation instances an agreement of relations under a

pairing of parts. Moreover, since there may exist several agreements under a pairing,
we mean an analogy by a set of agreements under the pairing.

 Under the assumptions Al and A2, let us consider the following example in which

parts of systems and relations are represented by individual constants and predicate
symbols, respectively. Then each relation instance is represented by a fact, i. e., ground

atom.

 EXAMPLE 2.1. A family is a system of persons and relations such as "parent",
"father" , etc. Consider the following families :

F1=({makoto, fumiko, soichiro} ;

 {parent (makoto, fumiko), mother (makoto, fumiko),

 father (fumiko, soichro), groundfather (makoto, soichiro)}).

F2=({james, frank, edward} ;

 {parent (james, frank), father (james, frank),

 father (frank, edward), groundfather (james, edward)}).

Towards a mathematical theory of analogy33

Under the pairing {<makoto, james>, <fumiko, frank>}, the relations parent (makoto,

fumiko) and parent (james, frank) can be viewed identical under the pairing. In other
words, the above two facts are identified and paired by the pairing of constant sym

bols. Such a pair of identical facts is called an identity of facts (under a pairing of
terms). Then the above identity of facts can be described in the following way :

 There are some persons X and Y such that parent (X, Y) ;

 X is makoto in F1 and james in F2, and

 Y is fumiko in F1 and frank in F2.

This statement is also described by an atom parent (X, Y) and a pair u=(u1, u2) of

substitutions :

u1= {makoto/X, fumiko/Y},

u2= {james/X, frank /Y} .

Observe that the pairing of constants is described by the substitutions and variables.

For instance, the pair <Xu1i Xu2> is <makoto, james>. Thus P1=({parent (X, Y)}, u)

defines the pairing and the identity of facts under the pairing. There are two more

agreements of relations under the pairing {<makoto, janzes>, <fumiko, frank, <soichiro,
edward>} . One is

< f ather (fumiko, soichiro), father (frank, edward)>

and the other is

 <groundfather (makoto, soichiro), groundfather (james, edward)>

These two agreements are certainly identities of facts under the pairing. Similarly to

P1, the former identity is defined by

P2=({father (Y, Z)}, v),

and the latter identity is defined by

P3=({groundfather (X, Z)} , v),

wherev=(v1, v2),

v1= {makoto/X, fumiko/Y, soichiro/Z},

v2= {james/X, frank/Y, edward/Z} .

By combining P1, P2 and P3, we have a set of agreements

P=({parent(X, Y), father (Y, Z), groundfather (X, Z)}, v) .

Note that, since each agreement is an identity of facts, the pair P defines a partial

identity between two sets of facts under the pairing of constant symbols.

 EXAMPLE 2.2. In the example above, constants as system parts are in corres

pondence with each other. Moreover we can naturally correspond constants to terms
which describe some constructed parts. Consider two systems represented by the fol

lowing Fig. 2.1,

34M. HARAGUCHI

Fig. 2.1 Two systems.

where Fl is a system with

 S1= {above (a, b), triangle (a), square (b)},

and F2 is a system with

S2= {above (c, on (d, e)), square (e), circle (d), triangle (c)} .

The function symbol "on" represents a figure constructor and that the predicate symbol
"above" represents a relation . Between Fl and F2, we observe two agreements of

relations :

 There is a triangle X, and the triangle X is above Y ;

 X is a in Fl and c in F2, and

 Y is b in Fl and on (d, e) in F2.

In the last agreement, we correspond a constant symbol b to a term on (d, e) which is

a constructed part F2'. We allow such a pairing of terms. Similarly to Example 2.1,

these agreements are identities of facts under the pairing {<a, c>, <b, on(d, e)>1. Moreover,

the sets of these identities of facts is defined by P=(W, u), where

 W= {triangle (X), above (X, Z)} ,

u=< {a/X, b/Z}, {c/X, on(d, e)/Z}>.

 These observations can be summed up as follows :

 A set of agreements of relations under a paring of parts is a partial identity be

tween two sets of facts. The pairing of parts is defined by a pair u of substitutions.
The partial identity under the pairing is defined by the pair u and a set W of atoms.

Thus (W, u) defines our analogy as a set of agreements of relations.

 2.2. Formal definition of analogy

 Let S1 and S2 be finite sets of ground atoms with no common individual constants.

Let u be a pair (u1, u2) of substitutions. For a variable or an atom A, the pair <Au1,

Au2> is denoted by Au. For a set W of variables or atoms, the set {Au: A E WI is denoted

by Wu. Var (W) denotes the set of all variables in W. Moreover, when there is no

confusion, the association A with the pair Au is denoted by A— Au.

Towards a mathematical theory of analogy35

 DEFINITION 2.1. Let S1 and S2 be sets as in the above.

 (1) We say that a pair u of substitutions satisfies the partial identity condition (PIC,
for short) for a set W of atoms if Wu c S1 x S2, and both Wu and Var(W)u are one-to-one.

 (2) We call W an analogy theorem under S1 and S2 if there exists a pair of subs
titutions u which satisfies PIC for W. In this case we call (W, u) an analogy, Wu the

partial identity between two sets of facts (PIF, for short) of (W, u), and Var(TV) u the
pairing of terms (PT, for short) of (W, u). Moreover, we say that a variable x in W
defines the pair xu of terms, and that an atom A in TV defines the identity Au of
facts. (The term "partial identity" is due to Klix [7].)

 W and ui in an analogy (W= {A1, • • • , An} , u=(u1, u2)) are taken as a formula
3 x1 • • • 3 x k [A1 A • • • A An] and an answer substitution of refutation of S1–* W, respectively.
In fact, we have

 PROPOSITION 2.1. For a set S= {B1i ••• , BO of ground atoms, the following condi
tions are equivalent.

 (1) BlA•••ABq_-3x1•••3xk[AlA•••AAn] is valid.
 (2) A1V • • • V An usubsumes B1 V • • • V Bq for some substitution u.

 (3) {A1, • • • , An} u c S.
 PROOF. Assume that B1 A • • • A Bq —> 3 x i • • • 3 x k [Al A • • • A.--1„1 is valid. Then S'

{B1, • • • Bq, Al V •••V An} is an unsatisfiable set of clauses. Since each B; is positive,
and since A1V • • • V An consists of negative literals, there is a linear refutation of S'
with 71,V • • • V An as top and {B;} as side clauses. According to "subsumption algorithm"
for instance, refer to [3]), Ai V • • • V An usubsumes Bi V • • • V Bq for the answer substitu

tion u of the linear refutation. The converse is trivial.
 Thus an analogy (TV, u) consists of a theorem under each Si and a pair of proofs

which satisfy PIC. For this reason, we call W an analogy theorem.
 2.3. Extensiblerelation representation

 Now we show that Definition 2.1 is still available to define a set of agreements of
relations about relations. Such relations are said to be extensible. In what follows, we
simply call relation instances relations.

 P. H. Winston [15] developed a system which reasons and learns by analogy. Inputs
to his system are simple English like sentences which describe several facts about some
situations such as Shakespeare's tragedies and scientific laws. Then the system translates
them into kinds of networks called extensiblerelation representations by using a frame
structure. The extensiblerelation representation consists of situation parts as nodes that
are tied together with relations. In order to express a supplementary description for

 find

charming ------------------ cinderella

iind-1 -------------------------> shoe-1 i
nstrument

 Fig. 2.2 Extensiblerelation representation.

36M. HARAGUCHI

the relation itself, a new kind of node called reference node is created. Such a node

is hanging from the relation to which the node refers. By using the reference nodes,

we can treat the extensiblerelations between relations and parts. For example, the

system translates the input sentence "Charming finds Cinderella [instrument Shoe-1]"

into the network structure illustrated by Fig. 2.2, where "cinderella", "charming", and
"shoe-1" are situation parts , "find" and "instrument" are relation names. "find-1" is a
reference node which refers the relation find (charming, cinderella). There is another

relation istrument (find-1, shoe-1). Since "find-1" refers find (charming, cinderella), the

last relation is represented by instrument (find (charming, cinderella), shoe-1) which is

a true description in Cinderella Story (CS, for short). Thus the relation names are
treated as function symbols when the situation as a system is represented in the first

order language. In what follows, we use the predicate symbol "erel" to denote the true

extensible relations in a given situation. For example, consider Romeo and Juliet Story

(RJ, for short) which has "romeo" and "juliet" as situation parts and "love", "kiss" and
"cause" as relations . By using the erel, a portion of RJ is discribed as follows :

 SRJ= {erel (love (romeo, juliet)), erel (kiss (romeo, juliet)),

 erel (cause (love (romeo, juliet), kiss (romeo, juliet))),

 boy (romeo), girls (juliet), strong (romeo), beautiful (juliet)},

where "boy", "girl", "strong" and "beautiful" are predicate symbols to denote the pro

perties of situation parts. The extensiblerelation representation which corresponds to
SRJ has two reference nodes. One of them refers love (romeo, juliet) and the others

refers kiss (romeo, juliet).

 Given two extensiblerelation representations of situations, Winston's analogy is a

pairing of parts with the agreements of relations which he calls "evidences" of the

pairing. For example, consider an analogy between CS and RJ. A portion of CS is
described by :

SC5= { prince (charming), strong (charming), beautiful (cinderella),

 erel (love (charming, cinderella)), erel (kiss (charming, cinderella)),
 erel (cause (love (charming, cinderella), kiss (charming, cinderella))),

 erel (instrument (find (charming, cinderella), shoe-1))} .

Similarly to SR,, the extensiblerelation representation which corresponds to Scs have
three reference nodes to define cause and instrument relations. There are five evidences

of the pairing

{<romeo, charming, <juliet, cinderella}

For instance, SRJ and Scs agree in love and kiss relations. This establishes two evi

dences, which correspond two identities of facts :

 erel (love (X, Y)), and erel (kiss (X, Y)), where

 X<romeo, charming> and Y<juliet, cinderella.

Then the reference nodes which refer the love relation are paired. Similarly, the refe
rence nodes which refer the kiss relation are paired. These new pairs of reference

Towards a mathematical theory of analogy37

nodes are added to the pairing of parts. Then, under this new paring , SR, and Scs
agree in cause relation. This establishes an evidence of the original pairing . Note
that, since the paired reference nodes refer the identical relations under the original

paring, this evidence corresponds to the identity of fact :

 erel (cause (love (X, F), kiss (X, Y)), where

 X-<romeo, charming> and Y-< juliet, cinderella>

Consequently, we have the set of five evidences. The set is defined by P.----(TV, u), where

TV= {erel (love (X, Y)), erel (kiss (X, Y)), strong (X) , beautiful (Y),
 erel (cause (love (X, Y), kiss (X, Y)))1,

u=< {romeo/X, juliet/Y}, {charming/X, cinderella/Y}>

Although we have not strictly described Winston's method to compute the evidences

of a given pairing of parts, we have shown that a set of evidences under the paring of

parts is described by a set of identities of facts. Hence Winston's analogy turns out to
be a partial identity between two sets of facts, and hence it is defined by our formal
analogy.

 3. An Ordering of Analogies

 In general, there may exist many analogies for a given pair of sets of facts . Hence
we need to determine whether one analogy is superior to another or not. For this pur

pose, we also need an ordering of analogies. The orderings of analogies so far con
sidered are numerical ones [14, 15], so that it is impossible to find structural relation

ships between analogies. Thus the ordering should be a structual one .
 3.1. Definition of ordering of analogies

 We need the following definition to consider the structural ordering of analogies .
 DEFINITION 3.1. (Plotkin [9, 10]) For given clauses C1 and C2, if a clause C ui

subsumes Ci for some substitution U. (i=1, 2), then C is called a generalization of Cl and

C2. We call the pair (C, u) a generalization diagram of C1 and C2, where u is the pair

(u1i u2).

 Fig. 3. 1 Generalization diagram.

 The following proposition is obvious.

PROPOSITION 3.1. If (W= {A1, • • • , An} , u) is an analogy under Si = { Bi .1, • • •, B1, m (i) }
(i=1, 2), then (A1 V • • • V An, u) is a generalization diagram of Bi, l V • • • V B ci, (i=1, 2).

 From this proposition, we represent an analogy (W, u) by the corresponding gene

38 M. HARAGGCHI

Fig. 3.2 Two generalization diagrams as analogies.

ralization diagram. Now consider the following example to define our ordering of

analogies.
 EXAMPLE 3.1. Fig. 3.2 are two generalization diagrams for two analogies (TV, u)

and (W', u') with u= {X—;a, a'>, Y—<b, b'>} and u'= {A—<a, a'>}, where the dotted

arrow is a substitution v= {X/A} . The pair <a, a'> defined by the variable A in W'

is also defined by the variable X=Av in W. This implies that the above diagram is

commutative and that PT of (W', u') is defined by PT of (W, u) and the substitution

v. We require this commutativity to define our ordering. Moreover, since W' vsubsumes

W, PIF of (W, u) includes PIF of (W', u'). Thus, (TV, u) is better than (TV', u') with

respect to both PIF and PT.
 DEFINITION 3.2. For given Si (i=1, 2), we say that an analogy (A, u) is superior

to an analogy (B, v), if there exists a substitution s such that Bs _C A and that Xv=Xsu

for any variable X in B. In this case we denote (A, u)?(B, v), and say that (A, u)>

(B, v) holds by the substitution s. We also define an equivalence (A, u)—(B, v) if (A, u)
�(B, v) and (A, u) _ (B, v).

 From the definition, we have
 PROPOSITION 3.2.

 (1) If (A, u)> (B, v) then Au Q. Bv.

 (2) The ordering of analogies is a quasiordering, that is, a reflexive and transitive
binary relation.

 In what follows, we identify (W, u) and (W', v) if (W, u Var(w)) and (W', v I Var«V ,)

are the same except for a renaming of variables, where u I var(W) = {t/x E u : x E Var(W)}

In this case we denote (W, u)=(W', v).

 3.2. Analogy operators and characterizations of ordering

 We have introduced the quasiordering <_ to compare analogies. Therefore, if we

improve an analogy, then the improved analogy should be superior to the original one.

we carry out such improvements by using the operators Merge, Refine and And. They
take analogies under preconditions, and return a superior analogy if they succeed.

Moreover we characterize the quasiordeing <_ in terms of these operators.

 (01) Merge operator : For an input analogy P=(W, u),

precondition : there exists a non-empty set V of variables

xi (1<i<nz, 2cm) with xiu=x;u for all i, j.

Towards a mathematical theory of analogy39

 output : a pair P'=(Ws, u), where s= {x1/x, : 2<_<_ j <_m}, and the pair P' is
 denoted by Merge [P; V].

 From the definition, it is clear that P' is an analogy which is superior to P. Merge
operator is said to be applicable to P if there exists a set V satisfying the precondition.
Note tlhat Merge removes a redundancy in the uses of variabes which define the same

pairing of terms.
 For an analogy (W, u), assume that there exists a variable x which defines the pair

xu=<f(g(a), b), f(g(a'), b')>. Then it is natural to decompose the pair xu to pairs

<a, a'> and <b, b'>. For this purpose, new variables x1 and x2 are introduced, and the
variable x is replaced by the term f(g(x1), x2). Thus and so Refine simplifies the PT.

 (02) Refine operator : For an input analogy (W, u),

precondition : there exists a non-empty set V of variables
xi in TV (1 <i <m) with
xiu =<ternii(ti, 1, • • • , ti, n (i)), terini(Si, 1, ... , Si, n (i))>, where
termi(z1, • • • , zn ci)) is a proper term with variables z1, • , zn (i)•

 output pair : P'=(Wv, w), where
v= {ternii(zi,1, ••• , zi>n(i))lxi : 1<i<m},
zi,,i (1<_j_<n(i), 1<i<m) are new variables, and
w=u I Var(W)\VU {Zi,j—<ti,,, si,,> : 1< j <n(i), 1<i<m} .

 From the definition, u=vw on Var(W)\V. For any variable x in V with xu=
<term(t1i • • • , tn), term(s1, • • • , sn)>, we have xvw1=term(t1, • • • , tn)=xu1. Similarly, xvw2
•xu 2 holds. Hence u=vw holds on Var(W). Hence, if the output pair P' is an analogy,
then P'>_P by v and their PIFs are equal to each other. Since Var(Wv)w may not be
one-to-one, P' is not necessarily an analogy. Hence we define

 P'if P' is an analogy
Refine[P; V]=

1 (undefined) otherwise.

Moreover, when P' is an analogy, we say that we can refine P (with respect to V) and
that Refine operator is applicable to P.

 The third operator is And. And operator is the most important of the three. In a
word, And operator tries to combine two analogies into one.

 (03) And operator :
 For given two analogies P= (W, u) and P' _ (W', u'),

output : a pair P"= (W UW', v), where
 we rename the variables in W and TV' so that Var(W)(Var(W')=c,

v = <v1, v2>, and
vi= {xui/x : x E Var(W)} U {xui/x : x E Var(W')} .

 And operator thus has no precondition. From the difinition, we have (WUW')v=
WuUTVu' and Var(WUW')v=Var(W)uUVar(W')u'. Similarly to Refine, the output pair

40M. HARAGLCHI

P" may not be an analogy. So we define

 P" if P" is an analogy
And[P; P']=

I otherwise.

Moreover, we say that And operator is applicable to P and P' if P" is an analogy.
 EXAMPLE 3.2. Let us recall Example 2.1, where

P1=({parent (X, Y), father (Y, Z), groundfather (X, Z)},

{X<makoto, james>, Y<fumiko, frank>, Z-<soichiro, edward>})

is an analogy. Also

P2=({ father(K, L)}, K-< fumiko, james>, L<soichiro, frank>})

is an analogy. Since the set

{< father (fumiko, soichiro), father (frank, edward)> ,
 <father (fumiko, soichiro), father (james, frank)>}

is not one-to-one, the output pair of And for P1 and P2 is not an analogy,
 If P=And[P1; P217--L I then Pi<P holds by the empty substitution yh or a renaming

of variables. The converse does not hold in general.
 EXAMPLE 3.3. Let

S1= {r1(f(a)), r2(f(a))},
 S2= {r1(f(a')), r2(b')},

P=({r1(f(Y)), r2(Z)}, {Y—<a, a'>, Z—<f(a), b'>}),
P1=({r1(X)}, {X—<f(a), f(a')>}),
P2=({r2(Z)}, {Z—<f(a'), b'>}).

Then we have

P1_P by If(Y)1X1 and P2<P by ¢.

Since the set {<f(a), f(a')>, <f(a), b'>} is not one-to-one, And[P1 ; P2]= 1. However,
by refining P1, we have

And[Refine[P1 ; {X}]; P2]# 1.

 Example 3.3 shows that And operator is applicable to two analogies by refining if

necessary, when they have the same superior anology. In fact we have the following
theorem which characterizes the superiority of one analogy over two analogies in terms
of Refine and And operators.

 THEOREM 3.1. For analogies Pi, P2 and P, Pi _< P holds for i =1, 2 if and only if
there exists Pi, which is either Pi or Refine[Pi ; V i] � 1 for some V i, such that P?
And[Pi ; Pl � 1 holds.

 We need a proposition and a lemma to prove this theorem. In what follows, we
call a substitution, which replaces variables by variables, vsubstitution.

 PROPOSITION 3.3. Let PB=(B, s) and Pi=(Ai, ui) be analogies such that PB>Pi by
a vsubstitution vi. Then PB>_And[PJ; P2]# 1 holds.

Towards a mathematical theory of analogy41

 PROOF. Since vi replaces variables by variables, we have Var(Ai)ui c Var(B)s.
Also we have AiuicBs. Since both Var(B)s and Bs are one-to-one, Var(A1)uiU
Var(A2)u2 and A1u1UA2u2 are one-to-one. Hence And[P1 ; P2]� 1 . It is clear that
PB>_And[P1i P2] holds by 1): =v1`Jv2.

 LEMMA 3.1. Let PB=(B, s) and PA=(A, u) be analogies with PB>_PA by w. If
V= {x E Var(A) : xw is a proper term} #0, then we have Refine [PA ; V1# 1 and PB>
Refine [PA; V] by a vsubstitution.

 PROOF. Assume that V is not empty. For each x in V, let xw=t(z1i ••• , zr) for
some term t and some variable z; in B. The commutativity u=ws implies

xu=<t(z1S1, ••• , zns,), t(z1s2, .. • , zns2)> •

Hence, V satisfies the precondition of Refine. Refine operator produces the following
output pair PC = (C, q) :

 C=Aw', w'= {t(x1i ••• , xn)/x : xEV} ,
x; is the new variable corresponding to z; (for each x E V) ,

q=u I Var(A)\VU {xJ—<zjs1, 2.7S2>} •

For a variable y in Var(A)\V, we have yq=yu=ywsE Var(W)s, since yw is a variable
in B. For the new variable x; for x, we have x;q=z;sE Var(B)s. Hence Var(C)gC
Var(B)s. Since w'q=u holds on Var(A), Cq=Aw'q=Au holds. Since Var(B)s and Au
are one-to-one, and since w'q=u holds, (C, q) is an analogy which is superior to PA=

(A, u) by w'. Let

w"= {yw/y : yE Var(A)\V}
x; is the new variable for x in V} .

It is now clear that P•<PB by w". Since yw is a variable whenever y Var(A)\V, w"
is a vsubstitution.

 PROOF OF THEOREM 3.1. If-part is trivial.
 Only-if part : Let Pi = (Ai, u i) and P = (B, v) be analogies with Pi <P by w i for

i=1, 2, where ui=<ui1, u22>. Since A1u1UA2u2C Bv, And[P1 i P2]� 1 if Var(A1)uiU
Var(A2)u2 is one-to-one. Hence, we verify only the case that Var(A1)u1ti Var(A2)u2 is
not one-to-one. Since each Var(Ai)ui is one-to-one. there exist variables xi in Var (Ai)

(i=1, 2) such that

x1u11=x2u21 and x11112# x2u22, or
(3.1)

x1u11#x2u21 and x1u12=x2u22.

Let V,,= ix E Var(A1) : x w i is a proper term} (i=1, 2).If both V, and V, are empty,
then, for the variable xi in (3.1), we have

x1w1v1=x2w2v1 and x1w1v2� x2w2v2i or
(3.2)

x1w1v1�x2w2v1 and x1w1v2=x2w2v2.

Since xiwi is a variable in P, (3.2) implies that P is not an analogy. Hence, at least one
V i is not empty. We verify only the case that V 1 � O and V2=0. Other cases are

42M. HARAGCCHT

similarly verifiable. From Lemma 3.1, we have Pi=(A1i ui)=Refine [P1; 1711� 1 and

P>_ P i >_ P1. Note that P > P i holds by some vsubstitution w i. Moreover, since we
assume that V2 is empty, w2 is also a vsubstitution. Hence, according to Proposition

3.3, we completes the proof.

 Theorem 3.1 characterizes the superiority of one analogy over two analogies, while

the following theorem characterizes the superiority of an analogy over another one.
 THEOREM 3.2. For two analogies P1 and P2, P1 P2 holds if and only if P2 is

obtained from P1 by a finite number of applications of Refine, Merge and And operators.

 PROOF. Let PA=(A, u)<PB=(B, v) by w. PB is constructed from PA by the fol

lowing steps.

 Step 1 : For the set V = {x E Var(A) : xv is a proper term}, if V is empty then go

to Step 2. Otherwise, according to Lemma 3.1, we have an analogy Pc,-(C, s) with

Pc = Refine [PA ; V] � 1 and PA — Pc < PB •

Especially, Pc<PB holds by a vsubstitution s'. Set PA: =Pc and w : =s', respectively.

 Step 2: We can merge two variables x and y in PA with xw=yw, since xu=xwv
=ywv=yu holds. By the definition of Merge, clearly Merge [PA ; {x, y}] <PB by w.

Hence, by repeating the applications of Merge until such a pair of variables is removed

from A, we have an analogy PB, =(B', v') with PA<PB._<PB by W' ---=U) I Var(B•), which is
a renaming. Hence, without loss of generality, we can assume

(3.3)B'CB and v' =VI Var(B') •

 Step 3 : Since (3.3) holds, we have P=And [PB' ; (B\B', v)1# . From the defini

tion of And, some variables in PB may be realized by distinct variables in P. Hence,

it suffices to apply Merge in order to obtain PB from P. This completes the proof.

 Theorem 3.1 is concerned with the comparability of analogies. Theorem 3.3 asserts

that superior analogies are always constructed from their inferior analogies by applying

analogy operators. Hence the theorems become important, when we consider optimal
analogies, which will be discussed more in detail.

 4. Canonical Analogy

 Our formal analogy may have redundancies in defining a PIF under a PT. For

instance, if there exist variables which define the same pair of terms, then one of the

variables is redundant in defining the pair. However, we can remove this kind of

redundancy by applying Merge operator, as we have discussed in Section 3. Similarly,.

if there exist atoms which define the same identity of facts, then one of the atoms is

redundant. An analogy without this kind of redundancy is called canonical. In this

section, we first show that we can always construct the canonical analogy by removing

the redundancy from a given analogy. Moreover, we convert the canonical analogies

into literals. Although this conversion is mathematically simple, it gives us an effective

search space of analogies. Therefore, our canonical analogies play a key role to find

optimal analogies in Section 5.

Towards a mathematical theory of analogy43

 4.1 Canonical analogy and unification

 Let D and D' be two atoms in an analogy (W, u). If the following condition (4.1)

holds, then one of the atoms is redundant in defining PIF.

(4.1) Du=D'u

Our canonical analogy (CA, for short) is defined so that (4.1) does not hold.
DEFINITION 4.1. An analogy (W, u) is called canonical if the mapping ' DEW • Du:

W --* S1 x S2 is one-to-one.
 Note that Merge operator can remove some redundancies in the sense of (4.1). For

example, an analogy ({p(X), p(Y)}, {X—<a, a'>, Y—<a, a'>}) under {p(a)} and {p(a')}

is not canonical. By merging X with Y, we have ({p(X)}, {X—<a, a'>}), which is

canonical. By combining the applications of Merge and Refine, we can remove more

complicated redundancy. For instance,

P=({p(f(X), Y), p(Y, AX))1, {X—<a, a'>, 1 —<f(a), f(a')>;)

is a noncanonical analogy under {p(f(a), f(a))} and {p(f(a'), f(a'))}. Merge is not

applicable to P. However, by refining Y to f(X1), and then by merging X1 with X,

we have a CA ({p(f(X), f(X))}, {X—<a, a'>}), which is superior to P.

 The condition (4.1) implies unifiabilities of atoms. So we first show that each CA
is constructed by unifications, and then show that it is also constructed by applying

Merge and Refine operators.
 LEMMA 4.1. For any analogy P, there exists a CA Pc which is superior to P and

whose PIF is exactly that of P.

 COROLLARY 4.1. Let P and Pc be analogies stated in Lemma 4.1. Then Pc is ob
tained from P by applying Merge and Refine operators.

 PROOF OF LEMMA 4.1. Assume that (4.1) holds for some D and D' in P=(W, u).

Since Du=<Du1, Du2~=<D'u1, D'u2>=D'u, both u1 and u2 are unifiers of D and D'.
Let s be the most general unifier (mgu, for short) of D and D'. Then there exists a

pair w=<w1i w2> of substitutions with swi=ui. Hence, if a pair P'=(Ws, w) is an
analogy, then P'>P holds, and the redundancy on D and D' is removed. Let us verify

that P' is really an analogy. Remind the (standard) unification algorithm described as

follows :
 begin

U1 : =D1 (i=1, 2) ; v : =empty substitution;

 while do

 begin
 find disagreement {x, t} such that

4.2)x is a variable not occurring in t;

 if such {x, t} is not found then return "fail" ;

Ui : =Ui {t/x} ;

v : =v {t/x}

 end

 return v as the desired mgu s
 end

44M. HARAGUCHI

 Assume t/x s. Then there exists a while-loop stage in which t'/x is added to

v= {t1/y1i • • • , tn/ y n} with x y; (1< j <n). Since x does not appear in t' by the condi

tion (4.2), x disappears from both U1 and U2 and v becomes {t1Q/y1, ••• , tnq/yn, t'/x},

where q= {t'/x} . Since t', t;q, and Ui never contain the variable x, x does not appear
in t" whenever t"/y E s for some y. Hence, if t/x m s for some t then x EE Var(Ws).

This implies xs=x whenever x E Var(Ws). Since Var(Ws) c Var(W), we have xui=xswi
=xwi whenever x E Var(Ws). Hence Var(Ws)w c_ Var(W)u holds. Clearly (Ws)w=Wu.

Thus w satisfies PIC for Ws. When the condition (4.1) still holds for P'=(Ws, w),

we repeat the above process until the condition does not hold. The resulting analogy

is clearly canonical, superior to P, and its PIF is that of P.

 PROOF OF COROLLARY 4.1. Since Pc=(B, v)?P=(W, u), P can be improved to P'=

(B', v') by using Refine and Merge operators, where B' c B and v'=v I Var(B') (refer to
Step 1 and Step 2 in the proof of Theorem 3.2). Since Refine and Merge preserve PIF,

B'v'=Wu=Bv holds. Assume that there exists an atom D in B\B'. Since Wu=Bv,

there exists an atom D' in B' with D'v=Dv. This contradicts that (B, v) is canonical.

Hence we have B'—B. This completes the proof.
 4.2. Conversion of canonical analogies into literals

 By Lemma 4.1, we can replace each analogy with the corresponding CA. We

therefore consider CAs only. Note that the set of all CAs is at most finite up to the

identical analogies. Thus we obtain a finite search space of our formal analogies. We
covert them to literals instead of considering CAs directly.

 DEFINITION 4.2.

 (1) A pair of atoms is called compatible if they have the same predicate symbol.

 (2) A set S S S1 X S2 is called a selection if S is a one-to-one relation of compatible

pairs of atoms.
 The conversion of CA (W, u) to a literal is possible for any selection S which in

cludes PIF Wu of (W, u). Arrange pairs in S in an arbitrary order :

(4.3) <A11, A21>, ... I <Aim, A2m>, where <A1;, A2;> S CS' X ,S2•

Since (W, u) is canonical, if <A1 ji A2;> E Wu then there exists unique D; in W such that

D2u=<A1;, A2;>. We place the atom D; at the j-th position. For a position j with

<A1 j, A2;> E W u, we place a reserved variable z3. z; is chosen so that z; E Var(W). In
consequence, we have an ordered list e1, • • • , en of atoms in W and the reserved

variables. Define an extention u' of u by

u'=<u;, u2>, where
u=uiU {Ai;/z; : z; is the reserved variable} .

Clearly we have

 (4.4)For each j, e; u' = <A1 ji A2,>.

The formula (4.4) is simply written as

(4.5)Tu'=<T1, T2>,

 where

Towards a mathematical theory of analogy45

 Ti=tup(Ai1, ••• , Ain),

T=tup(e1, ••• , en),

and "tup" is the reserved predicate symbol to denote the list of atoms and variables.

Note that we treat predicate symbols as function symbols when we use this tup nota

tion. Then

(4.6)Var(T)u' is one-to-one,

since Var(T) u' = V a r(W) u U {<A1;, A2;> : <A1;, A21> E T4'u} Var(W) u is a set of paired

terms, and <A1;, A2;> is a pair of atoms. The formula (4.5) is the desired literal for

the CA (W, u).

 We need following definitions to deal with the conversion systematically.
 DEFINITION 4.3. (Plotkin [9]) For two literals L1 and L2, a relation L1<_ L2 holds

if there exists a substitution u such that L1u=L2. A literal L is called a generalization

of literals L1 and L2 if L<Li holds for i=1, 2. Moreover a generalization L of Li is

called a least generalization, if L' _< L holds whenever L' is a generalization of Li.

 DEFINITION 4.4. For a given selection S--= {<A1i, A2i> : 1i<n}, a structure D(S)
=(D , <) is defined as follows : D consists of equivalence classes of generalizations of
Ti=tup(Ai1, • • • , Ain) (i=1, 2), where the order of arrangement <A11, A21>, • • • , <A1n, A2n>

is arbitrary, and the equivalence of literals is defined by renaming of variables. Let

EL] be the eqivalence class of an element L. Then [L1]<[L2] is defined by L1<L2.
 For literals L1 and L2 with L1u=L2 for some u, the substitution u is uniquely

determined by restricting u to Var(L1). This is the reason why we convert CAs to

literals. Moreover we can represent L1< L2 by a diagram L1— L2. Fig. 4.1 is an
example of D(S).

 PROPOSITION 4.1. The structure D(S) is a finite lattice.

tup (p(f(a)), p(b)) tup (p(f(a')), p(b'))

tup (p(f(X)), p(Y)) ... top

tup (p(f(X)), Z) tup (p(X), p(Y))

tup (p(X), Z) tup (Z, p(X))

tup (X, Y) bottom

Fig. 4. 1 Structure D (S) for S = { <p (f (a)) , p(f (a'))>, <p (b) , p (b') >1.

46M. HARAGUCHI

 This proposition is essentially due to Plotkin. Therefore we omit the proof. Note
that L1 V L2 and L1A L2 are obtained by unification and least generalization, respectively.
Moreover, the greatest element of D(S) is the least generalization of T1 and T2. The
following proposition is now obvious, since it restates the conversion (4.5) and its pro

perty (4.6) in terms of Definition 4.4.
 PROPOSITION 4.2. For a CA (TV, u) and a selection S= {<A1 ji A2j> : 1 < j <n} with

S~ Wu, there exists T=tup(e1i • • • , en) in D(S) such that Var(T)ur is one-to-one, and that
d(T)=(W, u) holds, where uT denotes the unique pair of substitutions such that TuT=

<T1, T2>, Ti=tup(A11, ••• , Ain) (i=1, 2), and the function d is defined by

d(T=tup(e1i ••• , en))=({ej : ej is not a variable}, UT).

 For T in D(S), Var(T)ur is not necessarily one-to-one. For this reason, we define
V(S) to be the set of all literals T in D(S) such that Var(T)ur is one-to-one. For T
in V(S), d(T) is clearly a CA. Hence we define a structure CAS(S) = (d (V (S)), <_) of
CAs whose PIFs are included in S, where <_ is the quasi-order of analogies.

 PROPOSITION 4.3. d(T)<d(T') holds in CAS(S) if and only if T<T' in V(S).
 PROOF. If-part is trivial, from the definition of d.

 Only-if part : Let T and T' be tup(e1i • , en) and tup(ei, • • • , en), respectively. Let

d(tup(el, • , en))=(W, u)_(W', u')=d(tup(ei, ••• , en)) by s.

Then, for each e in W, es in TV' and eu=(es)u'=<A1n, AZn> holds for some h. Let e=
ei and es=e',. Since eiu=eu=(es)u'=e;u'=<Aln, A2h> holds for some h, we have i=j=
h, that is, eis=e'i for ei E W. Since e; Er W implies that e; is a variable, we can define
s' by {e;/e; : e j E WI . Thus we have tup(e1i • • , en)s'=tup(ei, • • • , en). This com

pletes the proof.
 THEOREM 4.1. For a selection S, CAS(S) is a finite poset of all CAs whose PIFs

are included in S, and d is an isomorphism between CAS(S) and V(S).
 PROOF. From Proposition 4.2 and the definition of CAS(S), it is clear that CAS(S)

consists of all CAs whose PIFs are included in S. From Proposition 4.3. if d (T)
d(T') and d(T)>_d(T') hold, then we have T<T' and T>T'. Hence T=T', by the
definition of D(S). Thus >_ is a partial order, if analogies are restricted to those in
d(V(S)). Moreover d is an isomorphism between CAS(S) and V(S).

 5. Maximal Analogy and Greatest Analogy

 Our formal analogy is a partial identity between two sets of facts (PIF) under a

pairing of terms (PT). Hence the problem of analogy detection requires to find
(D1) the PT as simple as possible, and

 (D2) the PIF under the PT as large as possible.
We first define a maximal analogy (MA, for short) by the maximality with respect to
our ordering of analogies. We show that a canonical analogy is maximal if and only
if the operators cannot be applicable to it. Since the nonapplicability of operators
means that both (D1) and (D2) satisfied, our MAs are really what we desire.

 The next problem is how to find such MAs. One way for this is to apply the

Towards a mathematical theory of analogy47

operators to trivial analogies, whose PIFs are singleton, until any operator is not appli
cable. The search strategy is bottom-up. We do not adopt this strategy, since it finds
many nonoptimal analogies until the desired optimal ones are found. Instead we present
a top-down method to find all the MAs by using canonical analogies.

 Generally several MAs can exist for a given pair of sets of facts. Since, for two
distinct MAs P1 and P2, neither P1 <_ P2 nor P2 <_ P1 holds, we should have an additional
criterion to compare them. We leave this as a future problem. On the other hand, if
there exists the uniqui MA then it is greatest with respect to our ordering. We call
such MA the greatest analogy, and also show a necessary and sufficient condition for
the greatest analogy to exist.

 5.1. Maximal analogy and its characterization
 DEFINITION 5.1. An analogy (W, u) is called maximal if (W, u)<(W', u') then (TV, u)

—(W', u') holds for any analogy (W', u').
 In what follows, for two analogies P1 and P2i we define 13,<P2 by P1 <P2 and P1

P2, and we say that P2 is properly superior to P1. From the definition, for any MA
P, there is no analogy which is properly superior to P. Since noncanonical MA has
redundancies in describing PIF under PT, we consider CAs only in order to characterize
MAs by operators.

 THEOREM 5.1. A CA (W, u) is maximal if and only if (1) Merge and Refine are not
applicable to (W, u) and (2) there exist no atom A and no substitution v such that

Av E S1 x S2i Av E Wu, and And [(W, u) ; ({A} , v)1# 1 .

 PROOF. Assume that Merge operator is applicable to (W, u). Let (Wv, u) =Merge

[(TV, u) ; V], where V is a set of variables satisfying xu=yu whenever x and y are in
V, and v= {xo/y : y E V \ {xo} } for an arbitrary chosen variable xo in V. Let (Wv, u)�

(W, u) by a substitution s. From the definition of v, xvu=xu holds for any xE Var(W).
Hence Avsu= Avu = Au holds for any A E W. Since Avs cr W and (W, u) is canonical,

we have Avs=A for any AE W. Hence xvs=x for all xE Var(W). Hence, for distinct
variables x and y in V, we have x=xvs=xos=yvs=y. This is a contradiction. Thus

(Wv, u)>(W, u), therefore (W, u) is not maximal. For Refine operator, it is similarly
proved that refined analogy is properly superior to (W, u) if Refine is applicable.

 Conversely assume that (W, u) is not maximal. Then, according to Lemma 4.1,
there exists a CA (TV', u') with (TV, u)_<(W', u'). Let (W, u)__<(W', u') by a substitution
v, and V= {x Var(W) : xv is a proper term} . From the proof of Theorem 3.2, Refine
is applicable if V�0, and Merge is applicable if V = yh and there exist distinct variables
x and y in Var(W) with xv=yv. Hence it suffices to verify only the case that v replaces
distinct variables by distinct ones. Then, without loss of generality, W is a subset of
TV' and a=u' I Var(W). If W=W' then (W', u')<(W, u) holds. Hence W' W. Then, for
an atom A in W'\W, we have And [(W, u) ; ({A}, u')] � 1 .

 The condition (1) means that we cannot observe the PT of (TV, u) more simply.
The condition (2) means that we cannot enlarge the PIF of (W, u) by adding a new
identity of facts. Thus our maximal (canonical) analogies are optimal with respect to
both PIF and PT.

48M. HARAGUCHI

 5.2. A top-down detection of maximal analogies
 Now let us consider the problem of finding MAs. We use CAs to find MAs. First

we define a "global" structure CAS of CAs.

 DEFINITION 5.2. Let C and < be the set of all CAs (except for the equality of

analogies) and the quasi-order defined in Section 3, respectively. Then the structure

CAS=(C, <_) is called a canonical analogy structure.

 PROPOSITION 5.1. CAS is a finite poset.

 PROOF. Let (W, u) and (W', u') be two equivalent CAs. Clearly Wu=W'u' holds.
From Theorem 4.1, (W, u) < (W', u') and (W', u') <_ (W, u) holds in CAS(Wu). Thus

(W, u)=(W', u').

 THEOREM 5.2. An analogy is maximal if and only if it is equivalent to a maximal

element of CAS.

 PROOF. Let P be maximal in CAS, and P' > P for some P'. From Lemma 4.1,

there exists a CA P" with P ">_ P' >_ P. This implies P"> P in CAS. Since P is

maximal, we have P"=P. Hence P>_P'. Thus P is an MA. Conversely let P be an
MA. According to Lemma 4.1, there exists a CA P' with P' �P. By the maximality

of P, P—P' holds, It is now trivial that P' is a maximal element of CAS.
 From Theorem 5.2, in order to find all MAs, it only suffices to find all maximal

elements of CAS (up to equivalence of analogies). For this purpose, we decompose the

poset CAS to the poset CAS(S). Note that, from Theorem 4.1, for two selections S
and S' with S c S', CAS(S) c CAS(S') holds. Hence we consider maximal elements under
a largest possible selection.

 DEFINITION 5.3. A selection S is called maximal if there is no selection which in

cludes S properly.

 Since, for any selection S, CAS(S) is a full subposet of CAS, the following proposi

tion is obvious.

PROPOSITION 5.2. A maximal element of CAS is also maximal in CAS(S) for some

maximal selection S.

 Let S be a maximal selection. Then by Proposition 5.2, in order to find MAs, we

find all the maximal elements of CAS(S), and then reject them if they are not maximal
in CAS. To find the maximal element of CAS(S), we may only search D(S) in a top

down manner until maximal elements of V (S) are found, since V (S) and CAS(S) = d (V (S))

are isomorphic by the function d (Theorem 4.1). The following definitions are necessary

to state our top-down search in D(S) strictly.
 Let L to, be the greatest element of D(S) for a given selection S c Sl x S2. Then

Lto, has no individual constants, since Si and S2 have no common individual constants.

For an occurrence a of a term t in the literal Lt0P, the term t is denoted by exp(a). For

two occurrences a and a' of terms. we define that a relation a<a' holds if a occurs in

a'. a<a' is defined to be a=a' or a<a'. When we represent Lt„ by a tree, the occur
rences correspond to nodes, and a<a' means that a is a successor of a'. A set F of

occurrences of terms in the literal L 20 is called a frontier if

 (1) for any a in F, exp(a) is a proper term, and
 (2) for any a and a' in F, a<a' does not hold.

For two frontiers F and F', we define the relation < by

Towards a mathematical theory of analogy49

 F<_F' if, for any a E F, there exists a' in F' with aa'.

 Moreover, with each frontier F of Lt„, we associate a literal C[F], called a con
traction, as follows :

 Each occurrence a in F is replaced by a new variable <exp(a)> in Lt„. Then the
resulting literal is C[F], and the variable <exp(o)> is called < >variable.

 EXAMPLE 5.1. Let Ltop=tup(p(f(x)), q(y, f(x))), and F={a}, where a is the right
most occurrence of f(x). Then

C[F]=tup(p(ff(x)), q(y, <f(x)>)).

 PROPOSITION 5.3.

 (1) C[F] < Ltop, therefore C[F]D(S).
 (2) F>F' iff C[F]<_C[F'].

 (3) For any literal LED(S), there exists a contraction C[F] of Lt„ such that L<
CIF]. Especially C[F]V(S) whenever L E V (S).

 PROOF. (1) is trivial by considering a substitution

u= {exp(a)/<exp(a)> : aE F} .

Note that xu=x holds for each variable x except < >variable.

 (2) For occurrences a, a1, • • • , ak such that a>_a;, t(a; a1, • • • , ak) denotes the term
which is obtained by replacing each a; in the term exp(a) by the variable <exp(a;)>.
Define a substitution v by

v= {exp(a)/<exp(a)> : aE F and there is no a' E F' such that a>a'}
U {t(a ; ai, • • • , ak)/<exp(a)> : a E F and there are

ai, ••• , ak in F'(k>0) such that a;<_a}

Then C[F]v=C[F'] whenever F>_F'. Conversely assume that

 C[F]v=C[F'] and C[F]u=C[F']u'=Ltop .
Let

C[F] =term(<exp(a1)>, .. • , <exp(a,)>, x1, ••• , xk) ,

where term(y1i • • • , y., z1, • • • , zk) is a term in which there are no multiple occurrences
of variables, and x1, ••• , xk are all the non-< >variables in C[F]. Since vu'=u holds,
we have x;=x;u=x;vu'. Therefore, x;v is not a < >variable. Note that < >variables
correspond to proper terms in Ltop. Since yu'=y whenever y is non-< >variable, we
have x; = x;vu' = x;v. Thus we have

C[F'] = term(<exp(a1)>v, • • • , <exp(a,,)>v, x1, • • • , xk) .

Hence, for any a' in F', the occurrence of <exp(a')> occurs in the j-th argument <exp(a;)>
for some j. This implies a'__<a;.

 (3) Let L be a term t(x1i • • • , x,i) with variables x1, • • • , x„„ and assume that Lu=
Lt„. Define a contraction L' and a substitution v as follows :

L'=term([x1u], • • • , [xmu]),
 v= {[x;u]/x; : 1<j<m} ,

where
[x;u] =i f x;u is a proper term then <x;u> else x;u .

50M. HARAGUCHI

Clearly Lv=L' and L' is a contraction. Moreover, since <x;u> in L' is replaced by x;u
in Ltop, L V (S) iff L' E V (S).

 Let VC(S): =V (S)f {C[F] : F is a frontier of Ltop} . Then, from Proposition 5.3

(3), maximal elements of VC(S) are those of V(S) and vice versa. Hence, it suffices to
find maximal elements of VC(S) in order to find maximal elements of CAS(S). For
this purpose, we consider a top-down generation of contractions. We frist define a one
step contraction. Let F and a be a frontier and an occurrence with a E F, respectively.
Moreover let a; be the occurrence of t; in exp(a) = f(t1i • • • , ta). If a; E F or exp(a;) = t;
is a variable, for all j, then we have a frontier F'=F\ {a3 : exp(a;) is a proper term} U

{a}. The literal C[F'] thus obtained is called a one-step contraction of C[F]. For
example, there are two one-step contractions of tup(p(f(x)), q(y, <f(x)>)):

 tup(p(<f(x)>), q(y, <f(x)>)),
tup(p(f(x)), <q(y, f(x))>).

 Procedure 5.1. The setvalued function level (n) is defined by

level(0)= {C [OD
 level(n+1)= {C[F'] : C[F'] is a one-step contraction of

 some C[F] in level(n)} •

 In what follows, for two literals L1 and L2, we define L1 <L2 by L1 < L2 and L2-Li.
 PROPOSITION 5.4.

 (1) For any L in level (n+1), there exists L' in level(n) such that L'>L.
 (2) For two distinct L and L' in level(n) if any, L and L' are incomparable, that

is, neither L<_L' nor L' �L holds.

 (3) L1 < L2 never holds whenever Li E level (ni) and n1 <n2.
 PROOF. (1) Let L =C [F], L' = C[F'], and F= F'\ {a1i • • • , an} U {a} . From the

definition of one-step contraction, a; < a for j=1, • • • , n. Hence F' _< F, therefore C[F]
 = L <C [F'] = L' holds (Proposition 5.3 (2)). Now assume that F < F'. Then , for any

a in F', there exist a' E F and a" E F' such that a <_ a' <_ a" holds. Since F' is a frontier,
we have a=a", therefore a=a'. This shows F' C F. Similarly, we have Fc F'. This
contradicts F � F'. Thus F $ F'. Hence C[F'] =L' S_ L=C [F].

 (2) We use the following function c:
 (i) for a term t,

 1+ c(ti) if t is a proper term f(t1, ••• , t,)
c(t)= i=1

 0otherwise,

(ii) for an occurrence a of term, c(a)=c(exp(a)),
 (iii) for a frontier F, c(F)= E c(a).

 aEF

Then, by using induction, it is easily verified that

 if C[F]Elevel(n) then c(F)=n holds.

Let C[F] and C[F'] be distinct contractions in level(n) for some n. Since F= F' iff

F _< F' and F' <_ F, F� F' implies (Cl) or (C2) :

Towards a mathematical theory of analogy51

 (Cl) There exists a, in F such that there is no a in F' with a, a,
 (C2) F' F, therefore there exists a2 in F' such that there is no a in F with a2--a.

We verify (2) only for the case (C1), since it is similarly proved for the other case (C2).
Assume that F' <_ F. Let d(a) = {a' E F' : a' <a} , for each a in F. Then it is easy to

verify

(5.1)d(a),fd(a')=¢ whenever a and a' are distinct,

(5.2)c(a)> E c(a') .
a' Ed (a)

Note that the right-hand side of the inequality is defined to be 0 if d(a)=0, and also
note that the equality of (5.2) holds if aEF'. From (C1), we have

(5.3)c(a,)> E c(a') . a'Ed (a)

Since F'_<F, we have

(5.4)F'= U d(a)
 aEF

which is a disjoint union by (5.1). From (5.2) and (5.4), we have

(5.5)c(F')= E c(a)= E E c(a')
 aEF' aEFa'Ed(a)

E c(a)=c(F) .
 aEF

However, from (5.3), the equalty of (5.5) does not hold. Thus we have c(F')<c(F).
This contradicts that both C[F] and C[F'] are in level (n). Hence we have FF'
and F' F.

(3) : Assume that L,<L2 holds for Li in level(ni) and n,<n2. From (1), there exists
L3 in level(n,) such that L2<L3. Hence we have L,<L3. This contradicts (2).

 From Proposition 5.4, level(n,)nlevel(n2)=0 whenever ni�n2. Based on Proposition
5.4 and Procedure 5.1, a procedure to find all maximal elements of VC(S) for a given
selection S is described as follows :

 Let S= {<A, i, A2, i> : 1_<i<n}, Ltop=tup(t,, , tn), and t;u=<Ai,;, A2,3> for each j.
Then tup (<t1>, • • • , <tn)) is the bottom of D(S), therefore the least element of VC(S).

 Procedure 5.2.

//"level" and "succ" are setvalued variables//
 begin

 level : = {L top};
succ : =0 ;

 if Ltop E V (S) then return (d(level)) ;
 while level � 0 or level � {tup(<t1>, • • , <tn>)} do

 begin
level : =Generate (level);
level : =Prune (level)

 end
 return (d (succ))
 end

52M. HARAGUCHI

 "Generate" in the procedure above is an operation which generates all possible one

step contractions of contractions in the set level. By the procedure "Prune", we can

prune our search space. Prune behaves as follows : For each L in level, Prune first
checks if L__<L' for some L' in the set succ. If this occurs, L is removed from the set

level. Then it checks if L E V(S) or not for each L in level. If so, L is removed from

the set level and stored in the set succ.
 THEOREM 5.3. Procedure 5.2 finds every maximal element of CAS(S).

 PROOF. Let 1(n) be the set level at the n-th stage of while loop. Then it is clear

that l(n)C_level(n). Let C[Fi]Elevel(ni) (i=1, 2), C[Fi]#C[F2], and C[F1]>C[F2], that

is, C[F11>C[F21. From Proposition 5.4, we have n1<n2 and

 (*) n1<n2 whenever C[F11 >C[F21 and C[Fi]Elevel(ni).

Let L=C[F]Elevel(n) be a maximal element of VC(S). Let L<L'Elevel(n'). Then,

from (*), n' < n holds. By the maximality of L, we have L' VC(S). Hence each L'
satisfying L'> L is generated without removed from the set level. Therefore L E l (n),

and L is stored in the set succ. Moreover, by the condition (*), any maximal element
of VC(S) is generated earlier than its inferior element of VC(S). Hence such an inferior

element is pruned by Prune. Thus the set succ contains only maximal elements of VC(S).
 Even if we consider maximal elements of CAS(S) for a maximal selection S, they

are not necessarily those of CAS. For instance, consider the following example.

 EXAMPLE 5.2. Let

S1= {r2(a), r1(f(a))},

 S2= {r2(b'), r2(a'), r1(f(a'))} •

For a maximal selection

 SEL1= {<r2(a), r2(b')>, <r1(f(a)), r1(f(a'))>} ,
P1=({r1(f(y))} ; {y—<a, d>1)

and
P2=({r2(x), ri(z)} ; {x—<a, b'>, z—<f(a), f(a')>})

are maximal elements. There is another maximal selection

 SEL2= {<r2(a), r2(a')>, <r1(f(a)), r1(f(a'))>} •

For this selection, Ltop=tup(r2(x), r1(f(x))) is in VC(S), thetefore P3=({r2(x), r1(f(x))} ;

{x—<a, a'>}) is the unique maximal element of CAS(SEL2). By taking union of

Fig. 5.1 A portion of CAS in Example 2.2.

 Towards a mathematical theory of analogy53

CAS(SEL1) and CAS(SEL2), we obtain CAS, since maximal selections are just SEL1 and

SEL2. Observe that P1 is not maximal in CAS, since P3 is properly superior to P1.

 In other words, we cannot enlarge PIF of P1 under the constraint that PIF is in

cluded in SEL1. On the other hand, the enlargement of PIF is possible under SEL2.
This is a reason why P1 is not maximal in CAS. Formally we have the following

proposition.
PROPOSITION 5.5. Let a maximal element (W, u) of CAS(S) be not maximal in CAS.

Then there exists another selection S' and maximal element (W', u') of CAS(S') such that

(TV, u)< (IV', u') and Wu_W'u' hold.
 PROOF. Since (TV, u) is not maximal in CAS, there exists a maximal element (TV', u')

of CAS with (W', u') > (IV, u). Clearly W'u' D_ Wu holds. Assume Wu = W'u' c S.

From Theorem 4.1, (W', u') is also an element of CAS(S), therefore (W', u') > (W, u)

holds in CAS(S). This contradicts the maximality of (W, u) in CAS(S).
 Even if Wu IV'u' holds, it is possible that (W, u) is maximal in CAS.

 EXAMPLE 5.3. Let

 S1= {r g(a)), r2(a, g(a))}

 S2= {r1(g(a')), r2(f(b'), g(a')), r2(b', g(a'))} •

There exist two maximal selections :

SEL1= {<r1(g(a)), r1(g(a'))>, <r2(a, g(a)), r2(f(b'), g(a'))>}

 SEL2= {<r1(g(a)), r1(g(a'))>, <r2(a, g(a)), r2(b', g(a'))>} .

For SEL1, there are two maximal elements P1 and P2:

P1=({r1(g(x))} ; {x—<a, a'>1),
P2=({r1(x), r2(y, x)} ; {x—<g(a), g(a')>, y—<a, f(11)>1).

For SEL2, there exist maximal elements P1 and P3, where

P3=({r1(x), r2(y, x)} ; {x—<g(a), g(a')>, y—<a, b'>1).

In contrast with Example 5.2, P1, P2 and P3 are incomparable, and the PIF of P1 is
included in that of Pi for i=2, 3.

 Thus, for two maximal elements (IV, u) and (TV', u') under some selections, the

condition TV'u' Wu is not sufficient to reject (W, u). However, it can be used as pre

condition. From Proposition 4.3 and Proposition 5.5, it is clear that the following pro
cedure 5.3 correctly reject (W, u) if it is not maximal in CAS.

 Procedure 5.3.

 for a given P=(W, u),

 begin

 for each maximal selection S' with S' � S do

 for each maximal element P'=(W', u') of CAS(S')

 such that WuW'u' CS' do
 begin

 convert P and P' to literals T and T' in V(S')

 (such that d(T)=P and d(T')=P') ;

54M. HARAGUCHI

 check if T <_ T' or not ;
 if T <_ T' holds then return ("P is not maximal")

 end
 return ("P is maximal")

 end
 5.3. Greatest analogy and its characterization

 We have developed a top-down method to find all the maximal analogies by using
canonical analogy structure. As we have observed, there exist several maximal analo

gies. Maximal analogies are optimal and distinct ones are incomparable. On the other
hand, if the maximal analogy exists uniquely, then the problem to decide the best analogy
becomes very easy.

 DEFINITION 5.4. An analogy (W, u) is called greatest if (W, u)>_(W', u') holds for
any analogy (W', u').

 The following proposition is obvious, so we omit the proof.
 PROPOSITION 5.6. For S1 and S2 for which at least one analogy exists, there exists the

greatest analogy if and only if maximal analogies are unique up to equivalence of analogies.
 The existence of greatest analogy essentially depends on the superiority of one

analogy over two analogies. Since this superiority is characterized by And and Refine
operators in Section 3, the existence of greatest analogy relates to these analogy operators.
In fact, we have the following theorem :

 THEOREM 5.4. For Sl and S2 for which at least one analogy exists, there exists the

greatest analogy if and only if And operator is applicable for any two analogies, by
refining if necessary.

 PROOF. Since any greatest analogy dominates all the analogies, only-if part is a
direct consequence of Theorem 3.1. Conversely let P1i • • • , P, be all the maximal ele
ments of CAS. By the assumption of if-part, there exists P? (i=1, 2), which is either
Pi or a refined version of Pi, such that

P12. =And[Pi; Pl� 1.

Similarly we have

P11: =And [Pi(J-1)' ; P;]T 1, for 2�j <n,

where

Pk is either Pik or its refined version.

Clearly P17, >_ P', >_ Pi holds. It follows from Lemma 4.1 that P1„ is the greatest analogy.

 6. Concluding Remarks

 We have presented some formal definition of analogy and then we have formalized
the problem of analogy detection which should play a key role in analogical reasoning.
There still remain many problems to be solved.

 (1) Formal analogy with an equivalence of terms.
 By the present definition, our formal analogy is a syntactic partial identity of formal

descriptions represented by sets of facts. Therefore, due to invalid description, we may

Towards a mathematical theory of analogy55

lose a good analogy. Moreover, for an analogy (W, u), pairings of terms may not be

those of elements in a domain in question, since distinct terms may define the same

element. In order to overcome such difficulties, it suffices to introduce an equivalence

of terms and a partial identity condition for the eqivalence classes of terms.

 (2) Use of deduction or abstraction.
 In order to extract useful analogy, we should positively make use of information

about system, which are related to the use of deduction.

 (3) Analogical problem solving.
 In general, problem solving needs a mechanical method to find solution in a solution

space, given problems in a problem space. The study of analogy started with applying

the concept of analogy to the problem solving. Now we have a mathematical frame

work of analogy, as we have developed in this paper. In order to cope with the ana
logical problem solving, based on our theory, there are two problems to be answered.

First we must have a translator which transforms each problem in the problem space

into our description. After this translation, we take a formal analogy between the pro

blems, and then we obtain a partial solution of one problem, which corresponds that of
another problem. Then our second problem arises. When problems in the problem

space are analogous, are the corresponding solutions also analogous? This concerns the

applicability of analogical problem solving. Some theoretical investigations are necessary

to answer this problem and to utilize the analogical problem solving. Especially it is

important to find classes of problem solving for which we positively answer our second

problem.

 Acknowledgements

 The author would like to thank Prof. Seiiti Huzino for his constructive comments

and encouragement. The author also wishes to express his sincere thanks to Prof. Setsuo
Arikawa for many useful discussions on the problem of analogy.

 References

[1] BLUM, L. and BLUM, M. : Toward a mathematical theory of inductive inference, Informa
 tion and Control, 38 (1975), 125-155.

[2] CARBONELL, J. G. : A computational model of analogical problem solving, IJCAI-81 (1981),
 147-152.

3]CHANG, C. and LEE, R. C.: Symbolic logic and mechanical theorem proving, Academic Press,
 London (1973) .

[4] CHAPMAN, D. : A programming testing assistant, CACM, 25 (1982), 625-634.
[5] HARAGUCHI, M. and ARIKAWA, S.: An application of analogical reasoning to knowledge

 information system, Proc. of the Summer Symposium on Knowledge Understanding Systems,
 IIASSIS (1984) , 161-164 (Japanese) .

[6] KLING, R. E. : A paradigm for reasoning by analogy, Artificial Intelligence, 2 (1971), 147
 178.

[7] KLIx, R. E. and MEER, F. D.: Analogical reasoning-an approach to mechanisms underlying
 human intelligence performances, Human and Artificial Intelligence, NorthHolland, New

 York (1979), 193-212.
[8] PLAISTED, D. A. : Theorem proving with abstraction, Artificial Intelligence, 16 (1981), 47

56M. HARAGUCHI

 108.

 [9 [PLOTKI\, G. D. A note on inductive generalization, Machine Intelligence, 5 (1970), 153
 216.

[10] PLOTKI~1, G. D. A further note on inductive generalization, Machine Intelligence, 6 (1971),
 101-124.

[11] POLYA, G. : Induction and analogy in mathematics, Princeton University Press, Princeton
(1954).

[12] SHAPIRO, E. Y. : Inductive inference of theories from facts, Research Report 192, Yale
 Univ. (1981) .

[13[SHAPIRO, E. Y. : Algorithmic program debugging, Research Report 237, Yale Univ. (1982).
[14] TANGWONGSAN, S. and Fu, K. S. : An application of learning to robot planning, Int. J. of

 Computer and Information Science, 8 (1979), 303-333.

[15] WINSTON, P. H. : Learning and reasoning by analogy, CACM, 23 (1980), 689-703.

Communicated by S. Arikawa
Received July 25, 1984
Revised September 29, 1984

