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PROPERTIES OF PARTIALLY EFFICIENCY

       BALANCED DESIGNS

               By 

Sanpei KAGEYAMA* and P. D. PURI**

                    Abstract 

   We consider a class of partially efficiency-balanced (PEB) designs 
which can be constructed in varying replicates and/or varying block 
sizes. These designs may be particularly useful for bioassays, com

parative varietal trials and factorial experiments. This paper gives 
some bounds on design parameters, some parametric relations, dual 
designs, complementary designs and some simple construction-methods 
for PEB designs.

   1. Introduction 

   Block designs are widely used in many fields of research. A wide range of "Bala

nced" and "Partially Balanced" incomplete block designs are available in literature. 

However, most of the known designs are restricted to equal numbers of replications 

and block sizes. The practical considerations often dictate the use of varying replicate 

and varying block-sized designs. We shall here consider a class of incomplete block 
designs called "Partially Efficiency balanced designs" introduced by Puri and Nigam 

[6]. These designs are available in varying replicates and/or varying block sizes, and 
thus give experimenters more freedom in designing experiments in unconventional cir

cumstances. These designs have simple analysis and also allow the important contrasts 

to be estimated and tested with desired efficiency. 

   Consider a block design D(v, b, r, k) with v treatments arranged in b blocks such 

that the i-th treatment is replicated ri times (i=1, 2, • • • , v) and j-th block is of size 

k;(j=1, 2, ••• , b) with r'—(r1, r2, , r„) and k'=(k1, k2, ••• , kb). In particular, if ri=r 

for all i, the design is said to be equireplicated and it is said to be equiblock-sized if 
k;= k for all j. 

   Let N=((ni;)) be the v x b incidence matrix, where ni; denotes the number of times 

i-th treatment occurs in j-th block. When ni;=0 or 1 for all i, j, the design is said to 

be binary, and it is said to be p-ary if n i; takes p distinct integral values. 

   For the analysis of block designs in general Tocher [10] has defined 12-1matrix as 

21=R—NK-1N'+(1/n)rr' where R and K are diagonal matrices with diagonal ele
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ments ri, r2, • • • , r„ and I?,  k 2, • • • , kb, respectively, and n denotes the total number of 
v b 

experimental units (i. e., n= ri= E k,). The main task of analysis of design is to 
i=1j=1 

obtain the inverse of Q-'matrix. An iterative method of inverting Q-1matrix is given 

by Calinski [1] in terms of eigenvalues of "Information matrix" 

M0=M—(1/n)lr' 

where M=R1NK-1N'. Here 1 is a column vector of units. 

   A design D(v, b, r, k) is called a partially efficiencybalanced (PEB) design with in 

efficiencyclasses if there exists a set of v-1 mutually orthogonal contrasts {s1,} which 

can be partitioned into in disjoint classes such that all the ai contrasts of i-th class are 

estimated with relative loss of information pi, i. e., they satisfy 

Mosi;=pisi;; i=1, 2, ... , ni; j=1, 2, ... , ai. 

   The parameters of a PEB design can be written as v, b, r, k, pi, ai, Li; 1=1, 2, • • , 

m. It is clear from the definition that a PEB design can be characterized as an in

cidence matrix N, satisfying the spectral expansion 

(1.1) piLi 
i=o 

or 

M0(=M—(1/n)lr')= 
a=1 

such that"E Li=I where po=1 and Lo=(1/n)lr'. Here I is the identity matrix of 
i=0 

appropriate order. For a PEB design, the Qmatrix takes the simplified form 

                                                      {pi/(1—pi)} Li] R-1 i-1 

   A particular class of PEB designs where pi takes only two distinct values, pi 0 

and p2=0, with multiplicities a1 and a2(=v—a1-1), respectively, is of special interest, 
as a set of a2(> 0) contrasts is estimated with full efficiency. Such a class of designs 

has very simple analysis and is termed as simple (S-PEB) designs by Puri and Nigam 

[6]. If pi=p for all i, the design is called an Efficiency Balanced (EB) design. For 
such a design, M0 has only one non-zero eigenvalue p with multiplicity v-1, and every 
contrast is estimated with the same efficiency. 

   Since a design uniquely determines its incidence matrix and conversely, both the 

design and its incidence matrix are denoted by the same symbol throughout this paper. 

   In this paper, we shall investigate various fundamental properties of PEB designs. 

Some bounds on parameters and some parametric relations of PEB designs are given. 

Dual design, complementary design and some simple methods of construction are also 

presented.
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   2. Eigenvalues of Information Matrix 

 Efficiency-factors 1—pi associated with the ai contrasts of i-th class are very im

portant for PEB designs. In this section, we shall investigate some behavior about the 
eigenvalues pi of the matrix M. At first we have the following. 

   PROPOSITION 2.1. For a connected PEB design, the maximum eigenvalue p0=1 is 
simple, and other eigenvalues pi satisfy 0<pi<1 for i=1, 2, ••• , m. 

   PROOF. It is well-known (cf. Yamamoto and Fujikoshi [121) that the eigenvalues 

Oi of R'(R—NK-°N') satisfy 0<Oi<_1, and, for a connected design, the minimum 

eigenvalue, 0, is simple. Now, it follows from the definition of a PEB design that 

(2.1)R1(R—NK-1N')= (1—pi)Li 
i=0 

which, from the above observation with Oi=1—pi, completes the proof. 

   The original definition of a PEB design is not so clear about statements of eigen

values pi. From Proposition 2.1, we can state that in the expression of M= piLi 
i=0 

for a connected PEB design, 

(i) the figure "m" (in in efficiencyclasses) is equal to the number of distinct eigen
values of Mo ; 

(ii) /10=1 with multiplicity 1; 

   (iii) for other eigenvalus for i�1,  0_<<,ui <1. 
   We deal only with connected designs throughout this paper. Next, we shall evaluate 

extreme eigenvalues, i. e., pmax=max {Pi, Po, • • • , Pm} and /Tnin = min {pi, p2, • • • , p.}. 

But, ;umin may be zero for PEB designs. If ;/min is not zero, we can evaluate it too. 

PROPOSITION 2.2. For a PEB design with ,/min 0, 

f-emax? [tr(R1NK1N')1]/(v1)?,/min 

both equalities holding if and only if ,/i= a2= ••• =pm(i. e., the design is an EB design). 
   PROOF. From the definition of a PEB design, we have 

(2.2)R1NK1N'—(1/n)lr'= ,/iLi, 
i=i 

where rank(Li)=ai, i=1, 2, •••, m. By taking the trace of the both sides of (2.2), it 

holds that 

(2.3)tr(R1NK1N')-1= 2 //jai 

<(v1)Pmax , 

since ai=v-1. On the other hand, since ,/min#0, (2.3) yields the required bound on 
i=i 

,/min. This completes the proof. 
   When the design is binary, we have the following. 

   COROLLARY 2.2.1. For a binary PEB design with Umin t 0, 

                  pmax>=Li~,i Yi( 
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both equalities holding if and only if non-zero pi's are constant. 

   COROLLARY 2.2.2. For an equireplicated binary PEB design with min0, 

pmax~(b—r)l [r(v-1)] [tmin • 

   COROLLARY 2.2.3. For an equiblock-sized binary PEB design with pmin�0, 

umax?(v—k)l [k(v-1)] f min. 

   REMARK. When the design is equireplicated and equiblocksized, (b—r)/[r(v-1)]= 

(v—k)/[k(v-1)]. 
   For a PEB design with parameters v, b, r, k, pi, ai, Li, i=1, 2, • • • , m, the eigen

values fit's are loss of information associated with the ai contrasts of i-th class. In 

this sense, we can call ,uiai to be the total loss of information for this design, where 
i=1 

ai--= rank (L1). From the information matrix, as in (2.3) 

                                piai=tr(R-1NK1N')-1. 
i=1 

In particular, if the design is binary, then 

mV b
_ (2.4) piai=1niJ1                          1=11=1 ri ;=1k; 

In this case, we can present a bound on the total loss of information. 

PROPOSITION 2.3. For a binary PEB design, 

m 

v--------—1< a tiai< min k—1,        max k
;; 

where max k;=max{k1, k2, ••• , kb} and min k;=min {k1, k2, ••• , kb}. 

   PROOF. It generally holds that for a block design 

ri/(max k;)< E nii/k;<ri/(min k;) for all i 
=1 

which yield 

(2.5)V1 b n••                     max k
2i=iri----=-----k;   min k; • 

Since the design is binary, (2.4) and (2.5) complete the proof. 
   As special cases of Proposition 2.3, we have the following. 

   COROLLARY 2.3.1. For an equireplicated binary PEB design, the total loss of in

formation is b/r-1. 
   COROLLARY 2.3.2. For an equiblock-sized binary PEB design, the total loss of in

formation is v/k-1. 
   REMARK. Jones [2] derived essentially the same results as Corollaries 2.3.1 and 2.3.2 

for equireplicated and equiblock-sized designs. 

   As a special type of PEB designs, we now consider an S-PEB design which has 

the only one non-zero eigenvalue p with multiplicity a1 for the information matrix. In this 

case we have the following. 

   PROPOSITION 2.4. For an S-PEB design with v>_3,
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 [tr(R-1NK1N')1]/(v-1)<  p<[tr(R1NK'N')-1]/2, 

(i) the equality at the left-hand side holding if and only if a1=v-1(i. e., the design is 
an EB design), and (ii) the equality of the right-hand side holding if and only if a1=2. 

   PROOF. For an S-PEB design with 1>p>0, (2.3) yields tr(R1NK1N')1=ua1i 

where a1=rank(Li) and, in general, 1<a1<v-1. When a1=v-1, it follows that the 

S-PEB design becomes an EB design. When a1=1, it follows from (2.1) that for an 

S-PEB design 

(2.6)rank (R—NK-1N')=rank [(1—p)L1]=rank (L1)=1. 

Since the design is connected, rank (R—NK1N9=v-1 which, from (2.6), yields v=2. 

This is a contradiction to an assumption of v>3. Hence, a12. This completes the proof. 

   REMARK. When v=3, Proposition 2.4 gives an exact expression on p. 

   For binary designs, this proposition yields the following. 
   COROLLARY 2.4.1. For a binary S-PEB design with v>_3, 

[ 2'------—1]/(v1)p<<[ ±  1ki;  -1]/2. i=1 ri j=1 k ji; 

   COROLLARY 2.4.2. For an equireplicated binary S-PEB design with v>_3, 

(b—r)/[r(v-1)] <p<(b/r-1)/2. 

   COROLLARY 2.4.3. For an equiblock-sized binary S-PEB design with v>3, (v—k)/ 

[k(v-1)] < p<(v/k-1)/2. 
   REMARK. When the design is equireplicated and equiblocksized, Corollaries 2.4.2 

and 2.4.3 are the same.

   3. Bounds on the Number of Blocks 

   Some discussions about the expression of lower bounds on the number of blocks for 

a block design are available in literature. Similarly, we can produce a lower bound on 

the number of blocks for a PEB design by following Kageyama's approach [3]. 
PROPOSITION 3.1. For a PEB design, b>v-3 holds, where 5 is the multiplicity of 

zero eigenvalue of the Mmatrix. In particular, the equality sign holds if and only if 

the projection corresponding to zero eigenvalue of K1N'R-1N is a zero matrix. In this 

case, 

K=N1(1/n)lr'+ E (1/,ai)Li]R-1N 

where the summation extends over all the integers i satisfying pi>0 for i=1, 2, ••• , m. 

   PROOF. Let o be the multiplicity of zero eigenvalue of the relation (1.1), which yields 

(3.1) v—o=rank(R1NK-1N')=rank(NK1N')=rank(N)<b, 

i. e., an inequality b>v—b holds. Furthermore, from (1.1) we have a spectral expansion 

of K-1N'R-1N as 

           K-1N'llD1N=K1N'LoR-1N+ EteiC(1/pi)K-1N'T,R1N]±0•Q,                                                                                               1.
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where Q is the projection corresponding to zero with rank(Q)=b—(v—o) and the sum
mation E extends over all the integers i satisfying pi > 0 for 1=1, 2, • • • , m. Hence it 

follows that b=v—o if and only if Q is a zero matrix, in which case 

Ib=K1N/LoR-1N+ E (1/ti)K1N/LZR 1N. 

Thus, the proof is completed. 
   Letting 3=0 in Proposition 3.1, we have the following. 

   COROLLARY 3.1.1. For a PEB design, if pi > 0 for all i=1, 2, , in, then the Fisher 

inequality b>v holds. 
   An equireplicated block design is said to be aresolvable if the blocks can be sep

arated into t sets of (3 blocks each (b= 13t) such that each set contains every treatment 
exactly a times (r=at). In this case, the following is obtained. 

   PROPOSITION 3.2. For an aresolvable PEB design with b=/3t and r=at, b>v+t
3-1 holds, where 3 is the multiplicity of zero eigenvalue of the Mmatrix. 

   PROOF. From the definition of aresolvability, the sum of the columns correspond
ing to each set in the incidence matrix N must give a column consisting of a's. Hence, 
not more than b—t+1 column vectors are independent. Thus, rank(N)<—b—t+1, which, 
from (3.1), yields the required result.

   4. Dual of PEB Designs 

   We here consider a dual of a PEB design N with parameters v, b, r, k, pi, Li, i 
=0 , 1, ••• , m, having ,4=1 and Lo=(1/n)lr'. In this case, we have the relation (1.1). 
As an incidence matrix of a dual design, we can utilize N', whose Mmatrix is given by 

M*=K1N'R1N=(K1N')(R-1N) 

In this case it follows from (1.1) that 

             M*=1C1N'LoR-1N+E,aiC(1/pi)K1N'LiR1N]+0.Q 

                        T =(1/n)1k'+ E ,tiC(1/pi)K1N'LiR-1N] 

=Ltd E pi , 

where Q is the projection corresponding to zero eigenvalue of M*, the summation 
extends over all the integers i satisfying pi>0 for i=1, 2, ••• , m, and for such i L*= 

(1/;ui)K1N'LiR-1N, Lo=(1/n)1k', Q=Ib—L*— L. Hence the dual design has at 

most m+1  efl'iciencyclasses. 
   Thus, we have established the following. 

   PROPOSITION 4.1. The dual of a PEB design with parameters v, b, r, k, pi, Li, i=0, 
1, ••• , m, is a PEB design, having at most m+1 efficiencyclasses, with parameters v*=b, 
b*=v, r*=k, k*=r, a =1, pi, L* such that Lo=(1/n)lk', Lt=(1/pi)KiN'LiR-1N, Q= 
Ib-Lo E L*, the summation extending over all the integers i satisfying pi>0 for i= 

1, 2, ••• , in.
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   REMARK. If all  pi's are positive for i=1, 2, • • • , in, then the dual design has "ex

actly" m+1 efficiencyclasses. Singh [9] considered only this case for the dual of a 

PEB design. In this sense, Singh's result is a special case of Proposition 4.1. 
   Nigam and Puri [5] considered the dual of S-PEB and symmetrical PEB designs 

which are both equireplicated and equiblocksized, under some restriction of inner 

structure of the incidence matrix. Thus their results are also particular cases of Pro

position 4.1. 
   The observation in Proposition 4.1 is useful to construct some types of PEB designs. 

   5. Some Properties 

   We here present some other properties and observations on simple constructions. 

From the definition of a PEB design, we have R1NK-1N'= piLi whose determinant is i=o 

(5.1)I R1NK-W' I =p11f092 ... c'nni  

In this case, immediately we can obtain the following. 
PROPOSITION 5.1. For a PEB design, if v> b, then some eigenvalues pi must be zero. 

   REMARK. Proposition 5.1 also yields Corollary 3.1.1, and further suggests that there 

may be the possibility for a PEB design with b>v to have more many efficiencyclasses 

than a PEB design with b < v. 

   PROPOSITION 5.2. For a PEB design, if v=b, then II rikiII pp is a perfect square. 
                                                  i=17=1 

   PROOF. When v=b, (5.1) yields 

I I'V 12=rir2 ••• rvkik2 .. kytti' p«2 ••• 'I m 

which completes the proof. 

   The C(=R—NK'N')-matrix plays an important role in a block design. In this 

case, we have the following relation. 

   PROPOSITION 5.3. For a PEB design C= R[ (1—,ui)Li]. 
i=1 

   Proof is obvious from (2.1). 
   REMARK. An equireplicated PEB design has a fine structure of the Cmatrix. 

   When m=1 and pi�0, Proposition 5.3 yields a more practical result. 

COROLLARY 5.3.1. For an EB design C=(1—p1)[R—(1/n)rr']. 

   REMARK. Corollary 5.3.1 is the same result as in Kageyama [4]. 

   Now, we may define the complement of a p-ary design whose incidence matrix is 

N=((ni;)) with ni;=0, 1, ••• , or p-1, as N=((iti.i)) with ni;=(p1)—ni; for all i, j. 
In this case, we have the following. 

   PROPOSITION 5.4. The complement of a p-ary PEB design with parameters v, b, r, k, 

pi, Li, i=1, 2, ••• , m, is a p-ary PEB design with parameters v'=v, b'=b, r'=(p1)b—r, 
i=rk1i /[{(p1)b—r} {(p1)v—k}], Li, i=1, 2, •••, m. 

   PROOF. From the definition, 

(5.2)NN'=rk 2 piLi . 
i=0
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Since N(p1) ,j„xb-N where ,/„.b=1„16, it holds that 

N1=[(p1)b-r]1, 1'N=[(p1)v-k]l' 

which imply that r'=(p-1)b-r and k'=(p1)v-k. Furthermore, it follows from (5.2) 

that the information matrix of the complementary design can be given by p Li, 
i=1 

where pi=rkpi/[{(p1)b-r} {(p1)v-k}] for i>_1. Thus, the proof is completed. 

   Note that p<pi<=>b>2r/(p-1). This means that when b>2r/(p-1), the comple

mentary design is more efficient than the original design. When p=2, Proposition 5.4 

yields the following. 
   COROLLARY 5.4.1. The complement of a binary PEB design with parameters v, b, r, 

k, pi, Li, i=1, 2, ••• , m, is a binary PEB design with parameters v'=v, b'=b, r'=b-r, 

k'=v-k, a=rk,ui/[(br)(v-k)], Li, i=1, 2, •-• , in. 

   We will present a number of methods of constructions for PEB designs in other 

subsequent papers. However we here state some new fundamental methods of construc

tions of PEB designs. For some available constructionmethods, refer to Puri and Nigam 

[6], Puri, et al. [7] and Nigam and Puri [5]. 
   Let N1 be two PEB designs with parameters v, b1, r1, k1, /IV', Li, i=0, 1, -• , m for 

1=1, 2. Then we consider the juxtaposition of these designs, [Nl : N2], whose Mmatrix 

can be given by 

(5.3)M*=(R1+R2)-1 (pV) R1+ ti2)R2)Li i=0 

where R 11=r1i 1=1, 2. In this case, we have the following. 
   PROPOSITION 5.5. When N1 are PEB designs with parameters v, b1, r, k1, le, Li, 

i=1, 2, ••• , in and 1=1, 2, [N1: N2] is a PEB design with parameters v*=v, b*=b1+b2, 

r*=2r, k*'=[k~, k2], p4=("~1)+ (2))/2, L*=Li, i=1, 2, ••• , m. 

                                            m 

   PROOF. When r1=r2=r, (5.3) yields M*=[(fti1)+1a2))/2]Li which yields the i=0 

required result. 

   PROPOSITION 5.6. When N1 are PEB designs with parameters v, b1, r1=r11, k1, 
Li fori=1, 2, ••• , m and 1=1, 2,,

__''[N1 : N2] is a FEB designwith parameters v*=v, b* =b1-Fb2, r*=(ri+k2],                r2)1, k*'=[ki, 4=(ripP)+r2ri2))/(r1d-r2), L4=Li, i=1, 2, •.• , m. 
   PROOF. When r1=r11 for 1=1, 2, (5.3) yields 

                     M*= [(ritiV)+rq-112))/(r1+r2)]Li 
i=0 

which yields the proposition. 
   REMARK. In Propositions 5.5 and 5.6, pt <[eV) 4pi2) < r4' , and 44<,c2,2)  <=>,uil) < i2) 

   The methods in Propositions 5.5 and 5.6 provide practical criterions for the juxta

position of PEB designs to become a PEB design, and can easily be generalized to a 
case of the juxtaposition of a finite number of PEB designs. As special cases of Pro

position 5.6, we have the following. 
   COROLLARY 5.6.1. When N is a PEB design with parameters v, b, r, k, pi, Li, i= 

1, 2, ••• , m, [N: I„] is a PEB design with parameters v*=v, b*=b±v, r*=r+1, k*'= 

[V, 1'], ft4=(rtei+1)/(r+1), i=1, 2, ••• , m.
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   REMARK. In Corollary  5.6.1, t4 > pi for i�1. 1. 

   COROLLARY 5.6.2. When N is a PEB design with parameters v, b, r, k, pi, Li, i= 

1, 2, ••• , m, [N: JLX1] is a PEB design with parameters v*=v, b*=b+1, r*=r-F-1, k*'= 

[k', vl'], p'=rii/(r+l), Li, i=1, 2, ••• , in and 1>_1. 
   REMARK. In Corollary 5.6.2, p* <pi for i > 1, and so the resultant design may 

always be more efficient. Corollaries 5.6.1 and 5.6.2 suggest that PEB designs having 

more large numbers of experimental units may be more efficient. 

   COROLLARY 5.6.3. When N is a PEB design with parameters v, b, r, k, pi, Li, i= 
1, 2, ••• , in, [N: J—I] is a PEB design with parameters v*=v, b*=b+v, r*=r+v-1, k*' 
=[V, (v1)1'], p*=[(v1)rii+1]/[(v1)(r+v-1)], Li, i=1, 2, ••• , m. 

   REMARK. In Corollary 5.6.3, ,u*<i ai>1/(v-1)2 for i>_1. 

   From Corollary 5.4.1 and Proposition 5.6, we have the following. 

   COROLLARY 5.6.4. When N is a binary PEB design with parameters v, b, r, k, pi, 

Li, i=1, 2, ••• , in, [N: N] is a PEB design with parameters v*=v, b*=2b, r*=b, k*'= 

[k1', (v—k)1'], 14=kai/(v—k), Li, i=1, 2, ••• , m. 
   REMARK. In Corollary 5.6.4, p* < pi v> 2k. Furthermore, Corollaries 5.4.1 and 

5.6.4 imply that for an equireplicated, equiblock-sized PEB design N with v>2k, N or 

EN: N] should be utilized as experimental plans, provided such practical change is 
allowed. 

   Since the dual of a PEB design is a PEB design (see Proposition 4.1), by taking the 

dual of the designs given in Propositions 5.5 and 5.6, and Corollaries 5.6.1 to 5.6.4, we 

can produce supplemented PEB designs. These discussions about constructions will be 

given in other papers. 
   Finally, we can draw the relationship amomg "notions" of some block designs.

[PEB design with in efficiency-class] 

                                       m=2 and Ju2=0 
                 m=1 

               with[S-PEB design] [Cdesign] 
pi�0 

ai=v-1 
v 

[Totally balanced  
 design][EB design][inassociate PBIB design] 

                       equi                            eQ06b~~                        replicated~bfOCksyJ '~i=~2==Am
(binary)  

Zeo' 
                                               W 

            [Variancebalanced design]> [BIB design] 
                                   equiblock-sized

Symbol "A—>B" means that A implies B under C; "A B" means that A is equivalent 

to B; "A(=>13" means that A and B are equivalent under C. 
   REMARK. Cdesigns are named by Saha [8], and totally balanced designs are first 

considered by Jones [2] and Calinski [1]. (i) A partially balanced incomplete block
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(PBIB) design is an equireplicated, equiblock-sized binary PEB design (cf. Puri and Nigam 

[6]). (ii) A supplemented block design, (partially) balanced factorial experiment, linked 
block design, and a block design having a general balance property of Wilkinson [11] 

are special cases of PEB designs. (iii) It is clear from the definition of a PEB design 

that any connected block design is a special case of a PEB design with at most v-1 

efficiencyclasses, where v is the number of treatments. In this sense, a PEB design is 
so much general.
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