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ON THE LEARNING ALGORITHM OF 2-PERSON 

ZERO-SUM MARKOV GAME WITH EXPECTED 

     AVERAGE REWARD CRITERION

       By 

Kensuke TANAKA*

                    Abstract 

   We develop a method for learning the optimal strategies of 2-person 
zero-sum Markov game with expected average reward criterion. To 
do this, at each stage the players play a modified matrix game with 
relation to each state, and then receive an information about the result 
of the game from a teacher. Using the information, the players 

generate a pair of mixed strategies with relation to each state used 
at next stage. Then, such a pair of mixed strategies generated by 
the players converges with probability one and in mean square to a 

pair of the optimal stationary strategies. Further, when the learning 
is stopped at some stage by the teacher, the probability of error is 
estimated.

   1. Introduction 

   This paper is a continuation of our paper [5] with the title "On the learning algo

rithm of 2-person zero-sum Markov game" and is concerned with a learning algorithm. 
In [5], we showed that a sequence of the mixed strategies generated by some learning 

algorithm converges to a pair of the optimal stationary strategies of the Markov game 

with a discount factor under an assumption of incomplete information relating to reward 

functions and transition probabilities of a system. 
   However, in some practical problems, it is necessary that we make use of such an 

algorithm to 2-person zero-sum Markov game with expected average reward criterion. 
For this reason, it is tried to apply the learning algorithm to such a game under an 

absence of complete information relating to reward functions and transition probabilities 

of the system. To construct the learning algorithm under this situation, at each stage 

two players play the modified matrix game corresponding to all states of the game 

system and make use of the information about the games in the form of realization of 

the random variables given by a teacher. Then, we can show that, under some assump
tion, a pair of the mixed strategies of the players generated by the learning algorithm 

utilized efficiently the given information converges with probability one and in mean 
square to a pair of the optimal stationary strategies of the original Markov game. 

Further, when the teacher makes the players to stop learning at some stage, the pro
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bability, such that the difference of the mixed strategies at this stage from the optimal 

strategies of the Markov game is greater than e  >  0, is estimated. In the proof of such 

convergence, the idea of regularization for supplying the lack of the strict convexity 

of the payoff functions in the modified matrix game and an assumption for ensuring 

the convergence of an approximate game value generated sequentially by the teacher 

play important roles. 

   This paper consists of four sections. In section 2, we shall give the knowledge 

about a 2-person zero-sum Markov game with expected average reward criterion neces

sary in the paper. In section 3, we shall state the regularization of the modified matrix 

game and show the properties of optimal mixed strategies by form of the lemmas. In 
section 4, we shall give the formulation of learning system and show that a pair of the 

mixed strategies generated by the learning algorithm converges with probability one and 

in mean square to a pair of the optimal stationary strategies under some conditions. 

Further, when learning is stopped at some stage, the probability of error is estimated.

   2. Preliminaries 

   In this section, we consider a 2-person zero-sum Markov game with the expected 

average reward criterion defined by a set of five objects (S, A, B, P, r). Here, S is a 

                                                                                                                   s finite set labeled {1, 2, • • • , s} , called the state space of the game system ; A= U Al is 
1=1 

called the action space for player I and Al is a finite set {a, a!, • • • , a!'1}, from which 

player I will choose his action when the state of the game system is l E S ; B= U B1 
1=1 

is called the action space for player II and B1 is a finite set labeled {bi, b!, ••• , 

from which player II will choose his action at state /E S, P is a transition probability 

which governs the law of the motion of the system, that is, for each triple (1, a1, b1) 

         3 

 S xU AlxUB1, corresponds to a probability on S; r, a reward function of player I, 
    1=11=1 

            s S 

is a function r(1, al, b1) on S xUAixU B1 and —r is a reward function of player II. 
1=1 1=1 

   In such a game, player I and II observe the state of the system at each stage and 

classify it to one of the possible states l E S and then, player I and II choose independently 

actions (LIE Al and b1 E B1 by the mixed strategies, respectively, without any collabora

tion with any others. Then, as a consequence of the present state 1 E S and the actions 

a1 E Al and b1 E B1 chosen by the players, player II pays player I reward r(l, al, b1) and 
the game system moves to a new state l' E S according to the transition probability 

P(1'11, a1, b1). 

   A strategy 7 for player I is a sequence of 7ro, 7r1i • • • , in which each 7rn specifies a 

probability 77 n(' I hn) on Al. under the given history hn=(lo, ao, bo, ••• , an_1i bn_1i ln) of 
the system, where 11i at and b1 are the t-th state, the t-th action chosen by player I 
and t-th action chosen by player II, respectively. Especially, if each element 7rn of 

7z = (70, 71, 7r2, • • •) depends only on the n-th state of the system, the strategy 7r is said to 

be Markov strategy. Moreover, if each element 7rn of Markov strategy 7r = (7ro, 7r,, • • ', 

is independent of n, the strategy 7r is said to be stationary. In this case, there is a
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map f from S into  P(A) such that 7rn=f for all n=0, 1, 2, •• and is denoted by f, 

where P(A)= U P(A1) and P(A1) is the set of all probailities on At. H denotes the t=1 

class of all strategies for player I. Strategies, Markov strategies and stationary stra

tegies for player II are defined analogously. I' denotes the class of all strategies for 

player II. 
   Now, we define the expected average gain for player I. When the game system 

starts from a state IoES and a pair of the strategies (rr, a) is used, then the total ex

pected gain for player I up to the n-th transition is defined to be 

                     In(71,a)=Ea, a[i r(lt, at, bt) I xo=lo], 
t=o 

where Er a[• I x0=l0] denotes the conditional expectation given xo=10 related to a pair 
of strategies (7r, a). Then, player I wants to maximize 

                             In(rr,a)(lo)                          li
m

n+1                                                         n--~ 

and player II wants to minimize 

I (7r, a)(10)  li
m 

n+1 

From a point of view of this criterion, an optimal strategy 7r* for player I can be 

defined as follows : for all strategies a' for player II and all to E S, 

                  inf sup limI n(r, a)(10) ~_limI n(7*, a')(10)  
                   anP,rElln-•oon+1n,00n+1 

Similarly, for all strategies ir' for player I and all loES, an optimal strategy a* for 

player II can be defined as 

                          In(7r, a)(10)in                                            (e, (r•', a*)(l0)  
             sup inf lim>_lim 

7rEll o'er n+1 —n n+1 

Further, we shall say that the Markov game has a value if for all initial state 1,ES 

              inf suplim I n('r' 0)(10)=sup inf limI n(7r' 6)(10)  
                  aEP1rElln-'°° n+1,rEr sell n-•°° n+1 

This common quantity as a function on S is called the value function of the game. 

   Let X' be an sdimensional vector space. For each P t = (p t (1), p(2), • • • , P t(m t)) E 

P(A1) and qt=(q1(1), q1(2), ••• , 91(n1))EP(B1), we define an operator L(pt, q1): Xs_*Xs 
as follows: for each lES and u=(u1, u2, •••, us)EXs, 

L(pt, gt)ut=r(1, Pi, q1)+ utP(t'Il, pt, q1), 
t' =1 

where 

mt nt 

r(l, pt, qt)= E E r(1, al, b't)pt(l)gt(i) 
                                                    i=1 j=1 

and 
m n1 

P(1' 11, Pi, qt)= E E P(//1 /, af, bi)pt(i)gt(i) 
                                                             =1 J=1
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Then, since for each  l  E  S and u E X S L(p1, g1)u1 is continuous on P(A1) x P(B1) and 

P(A1)xP(B1) is compact, there exist the probabilities p*EP(A1) and q*EP(B1) such 
that, for each u E XS, 

minL(p*, Q1)u1=maxminL(p1, g1)u1 
         q1PI ql 

=minmaxL(p1 , g1)ul 
ql Pl 

=max L(pl, q*)u 
P1 

=L(p*, q*)u1 

we can prove the following theorem. 

   THEOREM 2.1. If there exist a vector v* E X S and a constant d such that, for all l E S, 

d+v*=maxmin L(pl, q1)v*,(2.2) 
P1 q1 

then, the Markov game has a value d, i.e., for all l0ES,                       

I---------------n(7r,a)(10)I"(r,(7)(10)o)           d =maxminlim= minmaxlim 
r.E17 aEP n-•00 n+1 a a n oo n+1 

and there exist the optimal stationary strategies p* and q* of the players satisfying (2.1) 

with v* EX' instead of u E X8. 

   The proof of the theorem is given in [2]. 

   Under the following assumption, a solution to (2.2) is determined by the method of 
successive approximations. 

   ASSUMPTION. There exist an integer u�0, 0, a constant a(0 < a <_ 1) and a state l * E S 

such that, for all (u+1)-step Markov strategies 2rut1=(f0i f1i •••, fu) and au+1= 

(go, gl, • • • , gu) of the players and all initial states 10 E S, 

pu+1(1* 110i 7ru+1, a.0+1) 

  SS 

= P(ll I lo, .f o(lo), go(l0)) ... P(lu I lu-1, f u1(lu-1) , 
       11=11 u=1 

gu1(lu1))p(1* 11u, f u(lu), gu(lu)) 

                >_a>0. 

    THEOREM 2.2. Under the assumption, make a sequence {(d 1'1', v')}.-1 ,2,..,  according 
to the following algorithm: 

Vin) =maxmin {r(l, pl, q1)+ vi"-1) p(l' 11, pl, qt)} 
P1 q1 l' =1 

d(n)=VP) 

                          vin)=Vin)—d(71), n>1 

, then {(d(n', v(n')} converges uniformly and exponentially fast to a solution (d, v*) of (2.2), 

where vt0' EXS and 1* is given in the assumption. 

   This theorem is proved by a similar argument in [3]. 

   We state more detailed results for the learning algorithm used in this paper. Let
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                            0(n) (v)=  min  [vin+1)  —vin) 
leS 

                           Q(n)(v)=maxwln+l)—vtn)] 
1ES 

D (n) (v)=A(n) (v)—V (n) (v) 

and 
U(n)(v)=maxjvin+1)—yin) I. 

lES 

For any n=Nu+nt (1<_<_m<u), 

           U(n+1)(V)<U(n)(v)<D(n)(v)<(1—a)N Don) (v)c(1—a)NA, n�1, 

where 
A=max{D(1)(v), D(2)(v), ••• , D(u)(v)} 

Then, from the above facts, it follows that 

max(vin) — E U(t)(v) 
lESt=n 

<(1—a)N uA  

a <(1—a)NB ,(2.3) 

where n=Nu±in, 1<m<u, and B=uA/a. 

   As mentioned in Theorem 2.1 and Theorem 2.2, it is important to consider a 2

person zero-sum game, which may be called a modified matrix game at each state l E S 
with the following payoff function : for all ale Al and VIE B1, 

                                                                   3 V i (ai, b'l)=r(1, ai, b'a)+± v*P(1'11, al, Vt), 
                                                                      l' =1 

where v* _ (v*, v*, • • • , vs) is the vector given in Theorem 2.1. The optimal strategies 

pi and qi for player I and II in this modified game at each state l E S correspond to 
them for the players in the original Markov game with the expected average reward 

criterion. And the constant d given in Theorem 2.1 is the value of the original Mar

kov game.

   3. Regularization of the Modified Matrix Game 

   From the fact mentioned in section 2, it is important that the players search for 

the optimal stationary strategies at each state 1 of the modified matrix game. Here, 

under an absence of complete information about reward functions and transition proba

bilities of the game system, the players have to search for the optimal stationary stra

tegies by a teacher's guidance. Then, the teacher gives the players the information 

related to the optimal strategies by making them play the modified matrix game at each 

state l E S. To do this, the gradient method is used as the learning algorithm for solv

ing such an optimization problem. But, there exist several difficulties that are connected 

with the lack of strict convexity of the payoff functions. One method of avoiding these 

difficulties is to introduce an idea of regularization in this modified matrix game.
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    Suppose that, in the regularized game at each state  1  n  S, when the strategies al 

and b'j for the players are chosen by the mixed strategies p1=(pl(1), p1(2), ••• , pl(ml)) 

and q1=(ql(1), q1(2). , Q1(nl)), the payoff functions of the players are 

V*(al, b'1)—2`(pl(i)—ql(j)) 
and 

—Vi(al , b'1)—2`((MB-pl(z)), 

respectively, 1=1, 2, • • • , nit, j=1, 2, • , n1, where ó>O is a regularization parameter at 
state I and 

h*(ai,b'z)=r(l, al, b'L)+iv* P(l' 11, ai, b'z) 

Then, the expected gain of the regularized game for player I at each state I is given by 

V*ol(pl, q1)=V*(pl, 41)`2(Ilplll2—Ilglll2) 

and, similarly, the expected gain for player II is given by 

—V * a1(pl, 91) , 

where II • II is Euclidean norm and 

Vi (pl, q1)=L(pl, ql)v* 

   Moreover, we assume that the mixed strategies available to the players at each 
state 1 are in E1simplices. i.e., pl E Sml and ql SEI, where 

S"`= {X=(xi, x2, ... , xn,,), xi>E, i=1, 2, •.• , m, 

1 xti=1, (O<e<ml}. 
                        1=1 

In view of this point, V*al(pl, qi) is strictly convex for any fixed 3l>0. Thus, the 

game has a unique saddle point (p*(El, dl), q*(El, 51)) for any fixed El E [0, El], El= 
min {1/ml, 1/n l} , such that for all pie Sjl and q1 E S,7 

Vl ol(p*(El, dl), ql)Va ol(p*(Ei, do, q*(El, do) 

>V*Sl(pl, 4*(E1, dl)) 

pi (El, di) and q*(e1i dl) are the optimal strategies for the players in the game at state 
IS restricted by E l> 0 and d l> 0. 

   The following two lemmas play an important role in our learning algorithm. 
   LEMMA 1. If, for each state 1, the sequence {e1(n)} and {51(n)} satisfy 

El(n)E(0, El), &l=min{-----1 ,1} 
                                        m1 nl 

dl(n)>O,minst(n)=mindl(n)=0 
-.con-.00 

and
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                         st(n)   
 min d
t(n)=ft E [0, 00) ,                        n—

then, at state 1, the sequence {pp(et(n), di(n)), gp(st(n), ot(n))} converges to a saddle point 
(pp, qp) of the modified matrix game (depending, generally, on pi). 

   LEMMA 2. For each state 1, there exists of E (0, co) and constants Kil), Ki2) and Ki3) 
such that

/,II__/~                IIpp(r1, 51)-0(E2, 52)II+Ilgp(r1, o1)gp(s2, 62)II 

_Kil) I El— S2I +Kt2) I U1—o2I +Ki3) 5SS182 
                                                               U_U2 

for any r1i 52E[0, st] and 61, 62E(0, 5D, where 11.11 is Euclidean norm. 
   The proofs of these lemmas are given in [1].

   4. Formulation and Convergence of the Learning Algorithm 

   In this section, the teacher does not know the value of the original Markov game 

and the players do not know the reward functions and the transition probabilities of 
the system. As the method of learning, at each stage , the teacher makes the appro
ximate value of the original game by the successive method in Theorem 2.2 and the 

players receive the information about the reward functions in the form of realization 
of some random variables. And the players construct the mixed strategies used at next 

stage by a pseudogradient method. 

   For our aim, we describe the learning algorithms in detail. 
   At the first stage, the teacher chooses any initial vector v")----,--(v1",  v2°), • • • , v;°)) 

E X'. Player I and II play a game at each state l E S using any mixed strategies pi°) 

and qi°), respectively. 

   Now, let v (n) _ (vin), v2n), • • • , vSn)) E X s be an sdimensional vector constructed by 

the teacher at the n-th stage. Let pin) and gin) be the mixed strategies of each state 

1 constructed by the players at the n-th stage, respectively. Then, at the (n+1)-th 
stage, the players play the modified matrix game at each state l E S using the mixed 

strategies pin) and gin) and suppose that at this game, the players choose the pure 

strategies xin+1) and y<+1), respectively. So the teacher gives the players the informa

tion about the payoff function in the form of realization of the random variables Vin+1)(1) 

and Vin+1) (2) such that 

              E[Vin+1)(1) 1 xin+1),yin+1)]=Vin+1)(xin+1), yin+1))     \\\
(4.1a) 
               a2[Vin+1)(\\1)I xin+1)' yin+1)]=l~Di1)(xin+1),yin+1))<co 

andYY 
              E[V t(n+l)(2) I xt(n+1),yin+1)1=_Vin+1)(xin+1), yin+1))        \\ 

(4.1b) 

                                 t 

                0.2EVn+1)(2)x(n+1),yin+1)1=Ri2)(xin+1), yin+1))<00 , 

                             where for vin) given in Theorem 2.2, 

                Vin+1)(xin+1), yin+1)1=r(l,xin+1), yin+l)) 

           J 

} vcn>P l' l xcn+1), ytcn+1)) 
                                                         V=1 

                    t(Ic
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Using this information given by the teacher and a projection operator  HF  { • } on a closed 

bounded set F, player I and II construct the mixed strategies used in each state l E S at 
the next stage as follows : 

             pin+1)=sn1el(n+1)J[pin)+)Ai(n+1,1)(x~n+1),yin+1))](4.2a) 
and 

qin+1)=11 Sm (n+1)[gin)+rl(n)B(n+1, 1)(xin+1), .yin+1))](4.2b) 

where {s1(n)}, {51(n)} and {re(n)} are the sequences of numbers and for alEAI and VI 
EB1, i=1, 2, , m1, j=1, 2, , n1, A(n+1,1)(0, ) is an m1dimensional vector whose 

k-th element is 

Vin+1) (1)/pin) (i)31(n), k = al 
               AV+1'' (a~, b')= V 1n+1)(1)/pin)(i) —Oi(n) 

k# al 
ml-1 

and B(n+1'')(ai, b'j) is an n1dimensional vector whose k-th element is 

{Vin+1)(2)/On)(j)-31(n),k=b'l                Bkn+1,1)(ai, b;1)= Vin+')(2)/
qln)(j)-51(n) k#b'

c                                                 n
1-1 

the projection operator HF { • } has the following property represented by the Euclidean 

norm : 

IIF{x} E and IIx—yfl?Jl"F{x}—yll for all x(4.3) 

and all y E F. 

   Next, the teacher constructs an sdimensional vector v (n+1) used at the next stage 

as follows : at each state /ES, 

                       Vin+1) =maxmin {r(l, pi, qi)+ vi7)P(l' 11, pi, q1)} 
p1 41 Z'=1 

d (n+1) =V if +1) 

vin+1) =Vin+1) — d (n+1) 

Moreover, the learning of the players is, sequentially, continued by the guidance of the 
teacher. 

   Then, the following theorems assure the purpose of learning, because a pair of the 

mixed strategies generated by the above algorithm converges with probability one and 

in mean square to a saddle point (pr, qi) at each state l E S of the original Markov 

game. For simplicity, we use the notations pin)*=p*(sl(n), o1(n)) and qin)*=q*(s1(n), 51(n)). 
   Now, throughout the paper, we assume the assumption. 

   THEOREM 4.1. Suppose that the sequences {e1(n)}, {51(n)} and {rl(n)} satisfy the 

following conditions: for each state IES, 

(a) rz(n)>0, 51(n)>O, e1(n)E(3, '1), n=0, 1, ••• 

s1(n) --> 0 and 31(n) —> 0 as n —> CO ,
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where -/(n)=min{  1 1   } 
 m1' n1 

(b) lim sl(n)  = a ~ ~O, co) , 51(n) 

(c) E r1(n)51(n)=co, 
n=0 

(d) E ri(n)l sl(n) <°° 
n=o 

(e) E I sl(n)—st(n-1) I <co, 
          n=1 

(f) E 151(n)31(n-1)1 <co, 
          n=1 

(g) E I s1(n)lo1(n)—s1(n1)l51(n-1) I <c° 
         n=1 

Then, at each state lES the sequence (pin), qin)) generated by the learning algorithm (4.2) 
converges with propability one as n co to a pair of optimal stationary strategies (pr, q*) 
of the Markov game for a pair of any initiall mixed strategies (pi°), qi°))ES'E1(0) xS7'40)• 

   REMARK 1. Since E ri(n)/s1(n)<co and e1(n) >0 as n –4 00, E ri(n)<°°. So 
n=on=o 

E ri(n)oi(n) <0°• 
n=o 

   PROOF. By (4.2a) the (4.3), we get for n�0, 

                                         II pin+1)—pin+1)*112~II pin)+ii(n)A(n+1,1)(xin+1), yin+1))— pin+1)*112 

=llpin)—pin+1)*I12+2r1(n)<pin)—pin+1)*, A(n+1, 1)(xin+1), yin+1))> 

               +r21(n)IIA(n+1,l)(xin+1), yin+1))112,/ (4.4) 

where <•, • > denotes inner product and 11.11 denotes Euclidean norm. 

   Further, it follows that 

Iipin'—pin+1)*112=11 pin)—p(n)*+, pin)*—pin+1)*112 

(IIpin)—pin)*II + II pin)*— pin+1>*11)2 

Din)—pin)*112_I-'3'V 2 II pin)*—pin+1)*11 
and 

27'1(n)<pin)—pin+1)*, A(n+1,1)(xin+1), yin+1))> 

=2r1(n)<pin)—pin)*, A(1+1.1)(xin+1), yin-1-1))> 

+271(n)<pin)*— pin+1)*, A(n+1,1)(xin+1), yin+1))> 

�2r1(n)<pin), A(n.+1.°(4n+1), yin+i))> 

+,8/ lI pin)*— pin+i)*Il +rl(n)II A(n+1, 1)(xln+1), yin+1))112. (4.6) 

By inserting (4.5) the (4.6) into (4.4), we can obtain 

11Yin+1>—pin+1)*112< II pin) —pin)*I12+4'V 2 Il pin+i)*—pin+l)*11
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 +271(n)<pin'—pin)*, ,q(n+1, l)(xin+1), y,in+1))> 

                        +2r1(n)IIA(m+1,1)(x(n+1), yin+1))II2(4.7) 

Taking conditional expectation of (4.7) for given pin' and qin', we get 

          ECIIpin+1)—Qin+1)*II21 pin', Qin)  

Ilpin'—pin)*112+4A/ 2 Ilpin)*_pin+1)*II 

+2Y1(n)EC<pin'—pin)*, A(n+l,l)(xin+1), y,in+1))>I pin', gin)] 

              +2ri(n)E[II A(n+1, 1)(xin+1), yin+1))II21 pi', gin)] •(4.8) 

Here, from the definition of A(n+1,1)(xin+1), .yin+1)), it follows that 

EC<pin'—pin)*, A(n+1, l)(xin+1), yin+1))> I pin', gin)1 

=E[E[<pin)—pin)* , A(n+1,1)(xin+1), yin+1))>I xin+1), yin+1)1I pin), gin)] 
             vi n1 

_ E E {(pin)(i)—pin)*(i))(Vin+1)(ai, bjl)1pin'(i)51(n)) 
                  1=1 j=1 

+ E (pin'(k)—pin)*(k)(_ m1-11 (Vin+1)(al, b'1)/pin'(i)—o1(n))}pin)(i)qn)(~) 
l 7n1  {v(pi Q                        n' ,in')—51(n) (Ilpin'112—IIQin)112)   m1-12 

         —Vin+1)(pin)*, Qin')+---------o1(211) (11pin)*112—Ilgin'l12) 51(2n)  Ilpin'112 

_  3l2 Il pin)*112+o1(n)<pin)*, Pin)›} 

           2 

----------{vn+1)Z1()(pin',Qin')—Vi+1)(n)*Qin')—612n) 11pin)—pin)*112} 
         7n1(n)(n)*( n)(n)))                   {(v(n+1)1,S1(n)(pl ,Ql)Vl,Sl(n)(pl,Q1             ml-1 

          —(Vi S1(n)(pin)*, Qin')—Vi S1(n)(pin)*, gin')) 

        jJ*((n)_V*(())             +(1,Sl(n)(Pn)1,Ql)1 ,of(n)(pn)*l, 9n) 

                                                        l _  51(n)  (11Pin'—pin)*112)},(4.9) 
           2 where 

m1 nl 

             VlS1(n)(pin',Qin')= pin)(i)Vin+1)(al, bjl)Qin'(i) 
           1=1 j=1/ 

Ul(n)  (11 pin' II2— IIQIn) I12) 
                          2 

and 

Vi S1(n)(pin', Qin')=VP(pin', Qin')—O1(2n) (I1pin'11 —11Qin'112).
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Moreover, by (2.3) we can obtain the following  inequalities  : 

           maxIVZSl(n)(p1n), qin))—V1,1(n)(p1n), gin))1 

=max!Vin+1)(pin), qin))—V*(pin), qin))1 

<maxEE pin)(t)(ElU1n)—v*IP(1'b'l)gin)(j)) 

                     

1 1=1 j=1\1'=1 

<max I vin) —v) 

<(1—a)NB ,(4.10) 

where n =N u H-m, 1 � m _< u, for u given in the assumption, and by similar argument, 

                max IVi BI(n)(Pin)*, qin))—VZ S,(n)(p,n)*, qin))I 

                    <maxlvin)—v*I 

                                                        (4.11) 

Also, since pin)* and qin)* are the optimal mixed strategies in S'El(n) XSE11(n) of the 
regularized matrix game with payoff matrix 

{V*O,(n)(al, b'l) : ale Ai and bMMEB1} 

it follows that 

                    VZ 8l(n)(pin), qin)\—Vl 8l(n)(pin)*, g(n))C0. (4.12) 

Hence, inserting (4.9), (4.10) and (4.12) in (4.8), we arrive at the following inequality : 

       ECIIpin+1)_p1n+1)*1121 pin', gin)1 

(1—---------ml                  1Ti(n)ol(n)) II p(n)—pin) *112±4'^ 211 pin) *—p(n+1) *11 ml— 

-I 
m4m/,Tl(n)(1—a)NB+271(n) 

• ECIIA(n+1, l) (xin+1), y,n+1))II2 I pin), On)] (4.13) 

   Next, we need to get an estimate of E[IIA(n+1'')(xin+1), y1n+1))I12 pin), qin)], that is, 
from (2.3) and (4.1) 

       ECII A(n+1, l)(x,n+1), yin+1))II21 pin), On)] 

=E[E[II A(n+1,')(xin+1), y(n+1))112! xin+1), yin+1)] I , qin)] 

         =E[E[±(Akn+1,l)(xin+1), yin+1)))21xin+1), yin+1)1I pin), gin)] 
k=1\/JJ 

             ml  ECE[(Vin+1)(1)1pin)( xin+n)—al(n))21 xin+1), yin+1)I1 Pin', gin)] 
nit-1 

2ml  r it Rl1'(al, b'l)-1-(Vin+1)(ai, b'l))2 (n)l -S2 
          ml-11=1 j=1Pin)(/)gl(~)T</l(n)
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 27  n1  RP) +(max I vin) —v* I +M)2  +oi(
n)} 
       711i-1s1(n)j 

2mt  f  Ril'+2B+2M2  +o(n)}(4.14)             t —n7
1-1si(n) 

where 
m1 n1 

R11)= E E Ri1)(ai, bjt) 
i=1 j=1 

and M1 is a constant such that, for all a i At and ME Bt, 

I vi(ai, b't) I c Mt . 

Hence, from (4.14), (4.13) can be written as the following: 

E[II pin+1)—pin+1)*II2I pin), gin)] 

c(1— mt rt(n)ot(n))iI pin'—pin)*II2+4-^2IIpin)*—pin+1)*II m1 

+ 4m1B  1't(n)(1—a)' +2mt(Ri1'+2B+2M2) Xri(n)  m1-1m1-161(n) 

+     2m1,77(n)51(n). (4.15)                    m
t-1 

Similarly, we get 

E[II4in+1)4in+1)*II2Ipin', gin)] 

c(1— nt  7t(n)3t(n))II4in'4in'*II2+4^2II4in'*4in+1'*II 
nt-1 

+4n1B J't(n)(1—a).v+ 2nt(Ri2'+2B+2M2) x1i(n)  n
1-1n1-1el(n) 

        +nnt1  i (n)5/(n),(4.16) 
where 

nil nt 

E E Ri2) (ai, bjt) 
i=1 j=1 

   Now, putting that 

                                      s c[n+11 =±(II pin+1)— pin+1)*II2+II4in+1)4in+1)*IIZ) 
                                       l=1 

and 

        d[n+1]— t±(mI 1  11Pin+l)—pin+l)*II2+  nn1  II4in+1)—qin+1)*II2),    tt 

there are the constants L1 and L2 such that, for each n, 

L1d[n+1]<c[n+1]<_L2d[n+1].(4.17) 

From Lemma 2, (4.15) and (4.16), there exist a positive integer no and positive constants
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 K  ii'  <  co, 1=1, 2, 3, for each l E S such that, for all n >_ n o, 

E[d[n+1] I pin', gin), 1 S] 

{(1_  ml  rl(n)5t(n))(772/-1 Il Pin) —pin>*112+n1-1 Ilgln'—gzn'"II2) 1=1772/-1mln1 

+41/-2-(  ni1-1  Ilpin'*_pin+l)*II + n1111gin'*_9in+1)*II) 
    m~n1 

+8Bra(n)(1—a)N+2(Ri1)+RP) 14M2+4B2) x  71(n)  +472(n)52(n)} sc(n) 

c(1—r(n))d[n]+ i=i                     {K i1'I si(n+1)—sa(n) I +Ki2~I at(n+1)-51(n) I 

          

I-K13) 6l(n+1)  —  61(n)  +8Brc(n)(1—a)N 3
1(n+1) dc(n) 

        +2(Ri1>+RP) +4M2+4B2)X-------r`(n)+47-2(n)o2(n)},(4.18) 6i(n) 

where r(n)=min(rl(n)31(n)) and n=Nu+r, 1_<r_u, for u given in the assumption. 

   Now, (4.18) can be rewritten as follows: 

E[d[n+1] I pin', gin), leS]—<<d[n1Ip[n+1], (4.19) 
where 

48[11+1]= a±{Ki"Ise(n+1) — el(n) I+Ki2'I o1(n+1)-51(n) I 

+Ki3, 6c(n+1)  —  61(n)  +8Br1(n)(1—a)N 3
1(n+1) 51(n) 

+2(Ri1'+Ri2'+4M2+4B2)x It  +421(n)52(n)}. (4.20) 6i(n) 

Introducing the notation D[n]=d[n]+ E j3[k], (4.19) implies that 
k=n+1 

E[D[n+1] I pin), 4in), l S]_<D[n] . 

Since D[n]>_0, there is a ramdom variable D>_O such that D[n] —>D w. p.1 as n —> co. 
Hence, it holds that 

d En] --->D w. p. 1 as 92 co, 

because E j3[k]—*0 as n—>co by the conditions of the sequences {r1(n)}, {e1(n)} and 
k=n+1 

{31(n)} in the theorem and the remark. Taking the expectation of the both sides of 

(4.18) and summing the obtained inequalities with respect to n from no to co, if follows 
that 

E r[n]E[d[n]] <cc .(4.21) 
                                                   n=no 

Here, since r(n)= min (rl(n)o1(n)), by using the conditions (a) and (b) in the theorem, 

we can prove that
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Y(n)>O, n=0, 1, ••• ,(4.22) 

1(n) --> 0 as n Do, 
and 

E Y(n)=co 
n=o 

Then, from (4.21) and (4.22), there exists a subsequence In k}of {n} such that 

                         lim E[d[nk]]=0, 
k-o. 

from which, by Fatou's lemma, we can conclude that d[nk]--*0 w. p.1 as k—*oo. There

fore, D=0 w. p.1, hence also 

c[n] > 0 w. p.1 as n —> 00 . 

Thus, the theorem is proved. 

   Next, when the teacher makes the players to stop learning at (n+1)-th stage, the 
estimate of probability, such that the difference of pin+1) and qin+1) from the optimal 

mixed strategies p* and q* of the Markov game is greater than s >0, is given in the 

following theorem under the conditions in Theorem 4.1. 

   THEOREM 4.2. For any positive number s>0 and all n>n° 

P[ i (II pin+1)_ pi II+Ilgin+l)—q*II)~s] 
1-1 

(Z-Y { II (1—Yi(k)5/(k))E[Il Pino)—pino)*112 s 1=1 k=no 

                                          n+1 n 

±Ilgin0)—gino)*112]+ft   x=n° k=x(1—Yi(k)61(k))Pl(x)1-Qi(n+1)(4.23) 

where, by using N such that x=Nu+r, 1<r<u, 

Pi(x)=4A/ 2 (Kil) I sl(x)—si(x-1) I +Ki2) IV1(x)—bl(x-1) 

                   ,_ c3 
El(x) 51(x —1)  1+(  4m1B  — 422113   

 J\Yl(x1)(1—Ce)N               Klol(x)—51(x-1) ) m1-1 n1-1 

+(  2ml(Ri1'±2M2±2B2) 2nl(Ri2)±2M2+2B2)  
ml-1n1-1 

X  22(x-1)  + (  2m12nl  )2(1)2(1)(4.24) 
              sl(x-1) m1-1 n1-1 

and 

          Ql(n+1)=Ki1)sa(n+l)+KP)5,(n+1)+Ki3)sl(n+l) —tel ol(n+1)I. 
   PROOF. By using Chebyshev's inequality, we get 

P[ ± (Il pin+1)— p*~l +llgin+l)—q*II >O)J l=l
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 E  PDIP')—p*II +II 0n+1)_q*II —E/s] 
                           1=1 

<~ S 12 ± EC(II pin+1) pII +ligin+l)—q*II)2] 
E  1=1 

_2(23—)2± {EC(II pin+1) —pin+1) * II + II qin+1) —qin+1) * II )2] 
E 1=1 

+ECCIPin+"—p*II r119P+"*—qi II)2]} .(4.25) 

Here, using a similar argument as the proof of Theorem 4.1, it follows that 

E[(Ilpin+l)—pin+1)*11 +Ilgin+l)—qin+1)*11)21 

<2ECIIpin+1)— pin+1)*112+II qin+1)—qin+1)*1121 

<2 {(1—ri(n)61(n))ECII pin)—pin)*112+IIgin)—qin)*II2]+P1(n+1)} 

          <2~(1—r1(k)o1(k))ECIIpin°)—pin°)*II +Iigin°)—qin°)*II ] 
                             k=n° 

                    n+1n          + II (1—ri(k)51(k))Pl(x)},(4.26) 
x=n° k=x 

where 

                                   n 

                  II (1—r1(k)51(k))=1 if x=n+1. 

Further, by taking m—oo in Lemma 2 withE1=st(n+1), 51=51(n+1) and E2=E1(m), 

a2=51(m), it follows that 

E[(IIpin+l)*_ p*II +Iigin+l)*—q*II)2] 

c0(n+1),(4.27) 

where Q1(ni-1) is given in the theorem. 

Thus, from (4.25), (4.26) and (4.27), the results of the theorem is obtained and the 

proof is completed. 
   REMARK 2. Under the conditions of Theorem 4.1, it is easy to show that the right

hand side of (4.23) goes to zero as n-->co. 

   To mention the convergence in the mean square, the following lemma is important. 
   LEMMA 3. If {un} is a sequence of nonnegative numbers which satisfies the following 

conditions: for all n>_n°, 

u(n)<u(n1)(12(n))+0(n), 

              2(n)E-(0, 1], E 2(n)=00and Um 6(n)  =0, 
n=non oo 2(n) 

then, the sequence {u(n)} converges to zero as n—000. 

   The proof of this lemma is shown in [1]. 

   THEOREM 4.3. If the conditions (d),,,(h) in Theorem 4.1 are replaced by the follow

ing conditions: for r(n)=m Cin(r1(n)51(n)) and each statel~S,
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 (d~)Y7(n)51(n)  0 as n —* co          r(n) 

(e')Yi(n)  ----> 0 as n co , sa(n)Y(n) 

   (f')Ti(n) (1—a)N ---> 0 (n=Nu+r,1<r<_u) as nc,         Y(n) 

(g')Y(n)I s1(n+1)—sa(n) I--~0 as n co, 
   (h')Y(n)I o`(nI1)—ba(n)--> 0 as n>00, 

   (v)1  s~(n +1)— sc(n) --~0 as n —> co , Y(n) o
a(n+1) 51(n) 

then, at each state lES, the sequence {(pin), qin))} constructed by the learning algorithm 

(4.2) converges in mean square to a pair (pr, q*) of the optimal stationary strategies of 
the Markov game. 

   PROOF. From a similar argument in the proof of Theorem 4.1, it holds that, for 

n=uN+r, 1<r<u, 

E[d[n+1]]5(1—Y(n))E[d[n]]+ {Ka' I sc(n+1)61(n)1 
a=1 

              +Ki2) Iba(n+1)—oa(n) I +Ki3>sa(n+l) — sa(n)  O
a(n + 1) Oa(n) 

+8Bri(n)(1—a)N+2(Ril) +Ri2> +4M2+4B2)  ra(n)  sa(n) 

+4Yi(n)37(n)},(4.28) 
where r(n)=min(i1(n)31(n)). 

   Then, making use of Lemma 3 and the conditions of the theorem in (4.28), the 
theorem is proved. 

   Now, we consider in detail a case when the sequences in learning algorithm (4.2) 
are such that, for all states IES, rl(n),1/na, sl(n)•1/ 31(n)^-1/n°, (sl(n)/o1(n)—p1) 
,,,1/nv for j3=6 and r\-,1/n48-" for Q>a, where the eqivalence of two sequences means 

that the ratio of their terms converges to a nonzero constant as n —> CO. From the 
conditions of Thorem 4.1 and the theorem, it follows that for the convergence of the 
learning algorithm with probability one, it is sufficient to choose 

0<a<1, p>a>0, v>0 

1/2<a+Q<_1, 2a—j3>0 

and for the mean square convergence 

                     0<a<1, j3>a>0, v>0 

ad—a�1, a— j3— i>0.
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