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PATTERN MATCHING MACHINES FOR REPLACING 

      SEVERAL CHARACTER STRINGS

               By 

Setsuo ARIKAWA* and Shuji SHIRAISHI**

                    Abstract 

   This paper presents a pattern matching machine which detects all 

occurrences of the longest possible keywords in a text and replaces 

them with the corresponding keywords. The pattern matching machine 

of this type is a generalized sequential machine and is constructed in 

nearly the same way as AhoCorasick's pattern matching machine to 

locate all occurrences of keywords. We show algorithms to construct 

our pattern matching machine and to make the machine run on a given 

text string, and show the validities of them. We also consider the 

time complexity of the algorithms and evaluate the running time of 

the algorithms. Finally we discuss some applications of our pattern 

matching machines.

   1. Introduction 

   In textediting we often need to replace some strings with other strings. Usually 

this job is carried out by repeated uses of an edit command 

CHANGE/x/y/ALL , 

or something like that, which works to change all occurrences of the string x in the 

text by the corresponding string y. Thus if we have n pairs of (x, y) we must use the 
command n times (2 n —1 times, in the worst case) and the computer also must scan the 

text n times (2n-1 times). 

   We present in this paper a new pattern matching machine to do such n to 2n —1 
replacements in just one scanning the text. More precisely the new pattern matching 

machine detects all occurrences of the longest keywords in a text and replaces them 

with the corresponding keywords. 

   As concerns the pattern matching of strings, three approaches by KnuthMorris-Pratt 

[1], Boyer-Moore [2] and AhoCorasick [3] are widely known. These are all merely to 
detect all occurrences of keywords in a text. The first two approaches are for a single 

keyword, and the third one is for a finite set of keywords, and is extensively used in a 

practical system [4, 5]. Hence we base our approach on the third one.
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   In our pattern matching machine occurs a new problem to be solved. Keywords 

may overlap with one another and in the worst case the overlaps may propagate up to 

the end of text. We avoid this propagation by finding the longest possible keyword 
from the left. 

   We make the problem clearer in Section 2. Our pattern matching machine consists 
of three functions of goto, failure and output like AhoCorasick's machine. The algo

rithms to construct these functions and to make the constructed machine run on texts 

are given in Section 3. The validity and complexity of these algorithms are discussed 

in Sections 4 and 5. An optimization of the algorithms is discussed in Section 6. 
Applications of our pattern matching machine are briefly referred to in the final section.

   2. Problem Description 

   By a keyword or a text we mean a finite string of characters. Let 

                       K= {(x1,  yi), (x2, Y2), ••• , (xk, .Yk)} 

be a finite set of keyword pairs, where xi is non-empty but y; is possibly empty. 

Then our problem is to find an efficient algorithm which searches a text z from left to 

right for the longest possible keyword xi in 

Kx= {xi j (xi, yi) in K} 

and replaces it with the paired keyword yi, and repeats this process from the character 
next to the detected keywords x i until the text z is read through. More precisely the 

algorithm works at the search stage as follows. Even if it has detected a keyword xi 

in the text z, it tries to find a longer keyword in K which contains xi as a substring 

until any longer keyword than the longest one so far detected is no longer expected in z. 
   EXAMPLE 1. Let us consider the situations in Fig. 1, where the line denotes a text 

and xi, , x4 are keywords in Kx. The algorithm we are constructing detects, for 

example, a keyword xi at point Zi. However the xi is contained in x2. Hence if the 
text is [OC], then the algorithm replaces the occurrence of x2 with the corresponding 

312 when it has read character next to Z2. If the text is [OF], then it replaces x4 with 

y4. Thus we can summarize these inputoutput relation on the texts in Table 1, where 
by [OZi) we mean a substring starting at 0 and ending just before Zi, and (ZZ3) 

and (ZE] are analogous to the notations for intervals of real numbers.

Fig. 1 Texts and keywords
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Table 1. Input texts and output texts 

input textoutput text 

 [OA][0A] 
[OB][OZ1) yl (Z 1B] 

[OC]E0 Z2)y2 (Z G] 
  [OD][0 Z2)y2 (Za'D] 

[OE]E0 Z2)y2 (Z Z3)y3 (Z ;E] 

  [OF][OZ4) y4 (Z4F]

   3. Algorithms 

   We now realize the algorithm to solve our problem as a pattern matching machine 

of AhoCorasick type. Our pattern matching machine for replacing character strings 

(rpmm for short) consists, like AhoCorasick's machine, of a goto function g, failure 
function f and output function output. We denote the rpmm by M=(K, g, f, output). 

Thus we need two main algorithms ; one is for constructing rpmm and the other is for 

making the rpmm run on texts. 
   First we show Algorithm 1 to construct goto functions and partially computed output 

functions. This algorithm is the same as AhoCorasick's one except the assignment of 

values to output functions. 

Algorithm 1. (Construction of the goto function) 

   Input. Set of keyword pairs K= {(x1, yl), • • • , (x k, y k)} . 

   Output. Goto function g and a partially computed output function output. 

   Method. 

   begin 
newstate :=0 

    for i :=luntil k do enter(x1, yi) 

    for all a such that g(0, a)=fail do g(0, a) :=0 

   end 

   procedure enter(ala2 ••• am, y) 
   begin 

state :=0 ; j :=1 

    while g(state, a1)= fail do 

       begin 
          state :=g(state, a;) 

:=i+1 

        end 
      for p :=j  until m do 

       begin 
newstate :=newstate-+ 

          g(state, ap) :=newstate 
           state :=newstate 

        end 
output(state) := y 

   end
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                 b) output function 

Fig. 2 Goto function and output function by Algorithm 1 for input 
     K=  {  (ABCDE, a) , (CDE, 18), (BC, r) }

   EXAMPLE 2. For an input K= {(ABCDE, a), (CDE, Ii), (BC, r)} , Algorithm 1 produces 

a goto function in Fig. 1(a) and a partially computed output function in Fig. 2 (b), where 

the 7 {A, B, C} denotes any character not in {A, B, CI. 
   The output function will be made total by the following algorithm, main work of which 

is to compute failure function. 

Algorithm 2. (Construction of the failure function and completion of the output function). 

   Input. Goto function g and output function output from Algorithm 1. 

   Output. Failure function f and output function output. 
   Method. 

   begin 

     queue :=empty 
    for each a such that g(0, a)=s�0 do 

      begin
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        queue  :  =queue.  s 

f (s) :=0 
      if output(s) is undefined then output(s) :=a 

     end 

   while queue�empty do 
    begin 

       let queue=r. tail 

       queue :=tail 
for each a such that g(r, a)=s# fail do 

       begin 

           queue :=queue. s 
        if output(s) is defined then f(s) :=0 else 

           begin 

            state := f (r) 

output(s) :=output(r) 

            while g(state, a)=fail do 
              begin 

               state := f (state) 

               output(s) :=output(s). output(st ate) 

               end 

f(s) :=g(state, a) 
            if f(s)=0 then output(s) :=output(s). a 

          end 

      end 
   end 

end

   EXAMPLE 3. Algorithm 2 receives the goto function and partial output function of 

Fig. 2, say, and then it produces a failure function and computes the output function as 

in Fig. 3. The broken arrows in the figure mean failure transitions and broken arrows 

to the states 0 from all the states but the states 0, 2 and 3 should be added. Note that 

the undefined value for output (0) will be assigned when the rpmm runs on texts. 
   Now we give the algorithm to make the rpmm run on texts. 

Algorithm 3. (Pattern matching machine for replacing strings) 

   Input. A text z=aia2 ••• an and a pattern matching machine with functions g, f 

            and output. 

   Output. A replaced text string w =bib2 • • • bt. 
   Method. 

    begin 

       state :=0 

for i:=1  until n do 

       begin 

         while g(state, ai)=fail do 
          begin 

            print output(state)
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a) Goto function and failure function

         b) Output function 

Fig. 3 Completion of rpmm by Algorithm 2

            state := f (state) 

           end 

          state :=g(state, ai) 

         if state=0 then print a 

        end 
      while state �0 do 

       begin 

         print output(state) 
         state := f (state) 

        end 

    end 

   The rpmm M=(K, g, f, output) prints outputs whenever it changes states by failure 

transitions. When it reads through the text, it makes a series of failure transitions 

from the current state back to the initial state 0 printing the corresponding outputs. 

Note that Algorithm 3 prints the input character a when the rpmm makes a transition
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by  g(0, a)=0. 

   EXAMPLE 4. The rpmm in Fig. 3 behaves on a text "DEABCCBCE" as in Fig. 4. 

When the text is read through we get an output text DEArCrE by concatenating the 
outputs produced at failure transitions.

Fig. 4 Behavior of rpmm

   4. Validity of Algorithms 

   We can say that rpmm M=(K, g, f, output) constructed by Algorithm 1 and 2 is 

valid if M replaces text with a desired output text by using Algorithm 3. Formal defini
tion follows. For our rpmm M=(K, g, f, output) and an input text w, let M(w) be 
the output string by Algorithm 3. 

   DEFINITION. For any text w, let u be the shortest string such that 

                         w=uxv and x is in Kx 

if there is such an x, and then let x be the longest string satisfying the condition above 

for the u. If there is no such x, then let u be the initial character of w and x be the 

empty string s. Then an rpmm M is said to be valid if 

M(w)=uK(x)M(v) , 

where K(x)=y for (x, y) in K and K(s)=s. 

   In order to show the validity of our rpmm's we first characterize the output func

tion. Let rep (s) be the string spelled out by the shortest path from the initial state 0 

to the state s in the goto graph. Then by Algorithm 1, 

output(s)= y , 

for any keyword pair (x, y) and x=rep(s). 

   For the other states, the output function is characterized by the failure function . 
So here we state the property of the failure function . 

   LEMMA 1 (AhoCorasick). Let f(s)=t ,  rep (s) = a l a 2 • • • am and rep (t) =blb2 • • • b..
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Then b1b2 ••• bn is the longest proper suffix of a1a2 ••• am and also a prefix of some keyword. 

   Algorithm 2 characterizes the output function as follows : 

   LEMMA 2. Let f(s)=t, rep(s)=a1a2 ••• am, rep(t)=aiai+1 •• am and rep(u)=a1a2 •• ai_1 

(When t=0, rep (t)=r and rep (s)=rep (u)). Then, 

                         output (s)=output (u) . 

   PROOF. The proof is done by induction on the depth of states s 

Basis : Suppose depth (s)=1. Then by Algorithm 2, f (s)=t=0. Since rep(s)_= a, rep (t) 
=E and rep(u)=a, we have 

output (s)=a=output (u) . 

Induction step : Assume the lemma holds for depth(s)<m. Let depth (s)=m and f (s)=t. 

Then by Lemma 1, 

rep(s)=a1a2.•• am, 

rep(t)=aiai+i... am, (1i<m-1-1). 

   Algorithm 2 defines the failure function for state s of depth (s)>_2 and the output 

function as follows : 

   First the failure function f(s)=t is defined by : 

g(ro, am)=s 

r;=J (r .i-1) , 

g(r;, am)=fail (1�j�k), 

g(rk, am)=t 

   Then the output function output (s) is defined by : 

              f(s)=t 

iff 
output(ro) • • output (rk_1).am if t=0, 

                output (s)= 
output (r0) • • • output (r k _ 1) otherwise . 

     Let rep (r31)=air;_1 ••• am,-i, rep (r;)=air; ••• am-1, where iri_1<ir;<m-1, airk=ai, 

a iro = a i. Since r; = f (r; _ 1), by the induction hypothesis, 

                      output (r;_i)=output (u3_1) , 

rep(u;-i)=air;_1 ••• air;_i (1<j<k). 

Thus we get, 

               output (ro) output (r1) • • • output (r k-1)(• am) (if t=0) 

=output (uo) output (u1) output (u k_1)(• am) (if t=0) . 

But since
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 rep(uo)=air, •• air1-1, 

rep(u1)=air, ••• air2-1, 

rep (uk1)=airk-1 ••• airk_1, 

where airo=ai, airk-1= ai-i, we have 

rep (uo) rep (u1) ..• Yep(uk-1)=a1 ... ai-1, 

and since rep(u)=a1a2 ••• ati_1i we have 

output (u)=output (uo) output (u1) • • • output (u k_1)(• am) • 

Therefore 
                         output (s)=output (u) . 

   Note that by Algorithm 1, if rep(s)=x then 

f (s)=0 iff output(s)=y , 
where (x, y) is in K. 

   THEOREM 3. Rpmm M=(K, g, f, output) is valid when it runs according as Algo

rithm 3. 

   PROOF. It suffices to show M(w)=uK(x), where w=ux. Let u=u1u2 ••• um, rep(s) 
=u and x = x 1 x 2 • • • xn. Consider the transition of M at u x 1 x 2 • • • x i =rep (ri). Since x 

is a keyword, there exists ti such as f(ri)=ti and rep(ti)=x1x2 ••• xi. Using Lemma 2, 

we have output (ri)=output (s)=u1u2 • • um, since there is no keyword in u and M is not 

fail in xi,. Again since x is a keyword, output (r„)=uK(x).

   5. Time Complexity 

   By nearly the same discussion as in AhoCorasick [1] we have the following results 

on time complexity of our rpmm's, 

   THEOREM 4. Algorithm 3 makes fewer than 2n state transitions, including failure 

transitions, in processing a text of length n. 

   THEOREM 5. Each of Algorithm 1 and 2 takes time proportional to the sum of the 

length of keywords in K.

   6. Optimization 

   The rpmm constructed by Algorithm 1 and 2 has, in general, some unnecessary 

failure transitions. Consider the rpmm M in Fig. 2. The failure transitions from states 

2 and 3 to states 9 and 10, respectively, are unnecessary. Both of them can be changed 

to the failure transitions to the state 0, and the values of output function at these states 

should be changed accordingly. We can systematically eliminate such unnecessary failure 
transitions just like the case of AhoCorasick's pattern matching machines. Let M= 

(K, g, f, output) be an rpmm constructed by Algorithm 1 and 2. Then we define new 
functions f' and output' as follows :
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 f'(1)=0 

                 rf'(f(i)) if g(f(i, a)) implies g(i, a) f'(i)=                       f
(i) otherwise , 

and 
output'(1)=output (1) 

                      output (i) if f'(i)= f (i) 
output'(i)= 
                        output (i) output' (f (i)) otherwise , 

where the state i means a state of depth i counting from the root of the goto tree (graph). 

   Applying the procedure above to the rpmm in Fig. 2 we have an optimized failure 

function f' with 

f'(s)=0 for all s 

and an output function output' with 

output'(2)= AB 

output'(3)=AT 

output'(s)=output (s) for s *2, 3 . 

   The next stage of optimizing our rpmm's is to transform them into deterministic 

gsm's (generalized sequential machines), as AhoCorasick did for their pattern matching 
machines. As we have seen in Algorithm 3, our rpmm positively uses the essence of 

the failure transitions. (Recall that outputs are emitted only when goto transitions fail.) 

Thus the deterministic gsm necessarily becomes of Mealy type instead of Moore type. 

So the machine size becomes nearly twice as big as the original one.

   7. Concluding Remarks 

   The authors developed an information system named SIGMA and implemented it at 

University Computer Center [5]. As the data treated in the system is string data, we 
have developed a fast one-way sequential processor based upon AhoCorasick's pattern 

matching machine. The system has REPLACE command to simultaneously replace 

several character string. The command is realized by our rpmm, and is quite useful in 

editing long string data. The users of SIGMA may simply list the pairs (x, y). 

   The other fields of applications include 

   1) ROmaji-Kana and KanaRomaji transcriptions, 

   2) syntactic parsers, 

   3) indexing systems to extract keywords from documents by using a set of stop 

words. 

   In another study [6] we have succeeded to make the AhoCorasick's pattern match

ing machine much faster holding the table for the machine in a reasonable size. To 

apply the technique to our rpmm should be another practical problem.
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