
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

PATTERN MATCHING MACHINES FOR REPLACING SEVERAL
CHARACTER STRINGS

Arikawa, Setsuo
Research Institute of Fundamental Information Science, Kyushu University

Shiraishi, Shuji
Department of Information Systems, Intedisciplinary Graduate School of Engineering Sciences,
Kyushu University

https://doi.org/10.5109/13361

出版情報：Bulletin of informatics and cybernetics. 21 (1/2), pp.101-111, 1984-03. Research
Association of Statistical Sciences
バージョン：
権利関係：

Bulletin of Informatics and Cybernetics Vol. 21, No. 1—,2, 1984

PATTERN MATCHING MACHINES FOR REPLACING

 SEVERAL CHARACTER STRINGS

 By

Setsuo ARIKAWA* and Shuji SHIRAISHI**

 Abstract

 This paper presents a pattern matching machine which detects all

occurrences of the longest possible keywords in a text and replaces

them with the corresponding keywords. The pattern matching machine

of this type is a generalized sequential machine and is constructed in

nearly the same way as AhoCorasick's pattern matching machine to

locate all occurrences of keywords. We show algorithms to construct

our pattern matching machine and to make the machine run on a given

text string, and show the validities of them. We also consider the

time complexity of the algorithms and evaluate the running time of

the algorithms. Finally we discuss some applications of our pattern

matching machines.

 1. Introduction

 In textediting we often need to replace some strings with other strings. Usually

this job is carried out by repeated uses of an edit command

CHANGE/x/y/ALL ,

or something like that, which works to change all occurrences of the string x in the

text by the corresponding string y. Thus if we have n pairs of (x, y) we must use the
command n times (2 n —1 times, in the worst case) and the computer also must scan the

text n times (2n-1 times).

 We present in this paper a new pattern matching machine to do such n to 2n —1
replacements in just one scanning the text. More precisely the new pattern matching

machine detects all occurrences of the longest keywords in a text and replaces them

with the corresponding keywords.

 As concerns the pattern matching of strings, three approaches by KnuthMorris-Pratt

[1], Boyer-Moore [2] and AhoCorasick [3] are widely known. These are all merely to
detect all occurrences of keywords in a text. The first two approaches are for a single

keyword, and the third one is for a finite set of keywords, and is extensively used in a

practical system [4, 5]. Hence we base our approach on the third one.

* Research Institute of Fundamental Information Science
, Kyushu University 33, Fukuoka 812,

 Japan.
** Department of Information Systems

, Interdisciplinary Graduate School of Engineering Sciences,

 Kyushu University 39, Kasuga, Fukuoka 816, Japan.

 101

102S. ARIKAWA and S. SHIRAISHI

 In our pattern matching machine occurs a new problem to be solved. Keywords

may overlap with one another and in the worst case the overlaps may propagate up to

the end of text. We avoid this propagation by finding the longest possible keyword
from the left.

 We make the problem clearer in Section 2. Our pattern matching machine consists
of three functions of goto, failure and output like AhoCorasick's machine. The algo

rithms to construct these functions and to make the constructed machine run on texts

are given in Section 3. The validity and complexity of these algorithms are discussed

in Sections 4 and 5. An optimization of the algorithms is discussed in Section 6.
Applications of our pattern matching machine are briefly referred to in the final section.

 2. Problem Description

 By a keyword or a text we mean a finite string of characters. Let

 K= {(x1, yi), (x2, Y2), ••• , (xk, .Yk)}

be a finite set of keyword pairs, where xi is non-empty but y; is possibly empty.

Then our problem is to find an efficient algorithm which searches a text z from left to

right for the longest possible keyword xi in

Kx= {xi j (xi, yi) in K}

and replaces it with the paired keyword yi, and repeats this process from the character
next to the detected keywords x i until the text z is read through. More precisely the

algorithm works at the search stage as follows. Even if it has detected a keyword xi

in the text z, it tries to find a longer keyword in K which contains xi as a substring

until any longer keyword than the longest one so far detected is no longer expected in z.
 EXAMPLE 1. Let us consider the situations in Fig. 1, where the line denotes a text

and xi, , x4 are keywords in Kx. The algorithm we are constructing detects, for

example, a keyword xi at point Zi. However the xi is contained in x2. Hence if the
text is [OC], then the algorithm replaces the occurrence of x2 with the corresponding

312 when it has read character next to Z2. If the text is [OF], then it replaces x4 with

y4. Thus we can summarize these inputoutput relation on the texts in Table 1, where
by [OZi) we mean a substring starting at 0 and ending just before Zi, and (ZZ3)

and (ZE] are analogous to the notations for intervals of real numbers.

Fig. 1 Texts and keywords

Pattern matching machines for replacing several character strings 103

Table 1. Input texts and output texts

input textoutput text

 [OA][0A]
[OB][OZ1) yl (Z 1B]

[OC]E0 Z2)y2 (Z G]
 [OD][0 Z2)y2 (Za'D]

[OE]E0 Z2)y2 (Z Z3)y3 (Z ;E]

 [OF][OZ4) y4 (Z4F]

 3. Algorithms

 We now realize the algorithm to solve our problem as a pattern matching machine

of AhoCorasick type. Our pattern matching machine for replacing character strings

(rpmm for short) consists, like AhoCorasick's machine, of a goto function g, failure
function f and output function output. We denote the rpmm by M=(K, g, f, output).

Thus we need two main algorithms ; one is for constructing rpmm and the other is for

making the rpmm run on texts.
 First we show Algorithm 1 to construct goto functions and partially computed output

functions. This algorithm is the same as AhoCorasick's one except the assignment of

values to output functions.

Algorithm 1. (Construction of the goto function)

 Input. Set of keyword pairs K= {(x1, yl), • • • , (x k, y k)} .

 Output. Goto function g and a partially computed output function output.

 Method.

 begin
newstate :=0

 for i :=luntil k do enter(x1, yi)

 for all a such that g(0, a)=fail do g(0, a) :=0

 end

 procedure enter(ala2 ••• am, y)
 begin

state :=0 ; j :=1

 while g(state, a1)= fail do

 begin
 state :=g(state, a;)

:=i+1

 end
 for p :=j until m do

 begin
newstate :=newstate-+

 g(state, ap) :=newstate
 state :=newstate

 end
output(state) := y

 end

104S. ARIKAWA and S. SHIRAISHI

 b) output function

Fig. 2 Goto function and output function by Algorithm 1 for input
 K= { (ABCDE, a) , (CDE, 18), (BC, r) }

 EXAMPLE 2. For an input K= {(ABCDE, a), (CDE, Ii), (BC, r)} , Algorithm 1 produces

a goto function in Fig. 1(a) and a partially computed output function in Fig. 2 (b), where

the 7 {A, B, C} denotes any character not in {A, B, CI.
 The output function will be made total by the following algorithm, main work of which

is to compute failure function.

Algorithm 2. (Construction of the failure function and completion of the output function).

 Input. Goto function g and output function output from Algorithm 1.

 Output. Failure function f and output function output.
 Method.

 begin

 queue :=empty
 for each a such that g(0, a)=s�0 do

 begin

Pattern matching machines for replacing several character strings 105

 queue : =queue. s

f (s) :=0
 if output(s) is undefined then output(s) :=a

 end

 while queue�empty do
 begin

 let queue=r. tail

 queue :=tail
for each a such that g(r, a)=s# fail do

 begin

 queue :=queue. s
 if output(s) is defined then f(s) :=0 else

 begin

 state := f (r)

output(s) :=output(r)

 while g(state, a)=fail do
 begin

 state := f (state)

 output(s) :=output(s). output(st ate)

 end

f(s) :=g(state, a)
 if f(s)=0 then output(s) :=output(s). a

 end

 end
 end

end

 EXAMPLE 3. Algorithm 2 receives the goto function and partial output function of

Fig. 2, say, and then it produces a failure function and computes the output function as

in Fig. 3. The broken arrows in the figure mean failure transitions and broken arrows

to the states 0 from all the states but the states 0, 2 and 3 should be added. Note that

the undefined value for output (0) will be assigned when the rpmm runs on texts.
 Now we give the algorithm to make the rpmm run on texts.

Algorithm 3. (Pattern matching machine for replacing strings)

 Input. A text z=aia2 ••• an and a pattern matching machine with functions g, f

 and output.

 Output. A replaced text string w =bib2 • • • bt.
 Method.

 begin

 state :=0

for i:=1 until n do

 begin

 while g(state, ai)=fail do
 begin

 print output(state)

106S. ARIKAWA and S. SHIRAISHI

a) Goto function and failure function

 b) Output function

Fig. 3 Completion of rpmm by Algorithm 2

 state := f (state)

 end

 state :=g(state, ai)

 if state=0 then print a

 end
 while state �0 do

 begin

 print output(state)
 state := f (state)

 end

 end

 The rpmm M=(K, g, f, output) prints outputs whenever it changes states by failure

transitions. When it reads through the text, it makes a series of failure transitions

from the current state back to the initial state 0 printing the corresponding outputs.

Note that Algorithm 3 prints the input character a when the rpmm makes a transition

Pattern matching machines for replacing several character strings 107

by g(0, a)=0.

 EXAMPLE 4. The rpmm in Fig. 3 behaves on a text "DEABCCBCE" as in Fig. 4.

When the text is read through we get an output text DEArCrE by concatenating the
outputs produced at failure transitions.

Fig. 4 Behavior of rpmm

 4. Validity of Algorithms

 We can say that rpmm M=(K, g, f, output) constructed by Algorithm 1 and 2 is

valid if M replaces text with a desired output text by using Algorithm 3. Formal defini
tion follows. For our rpmm M=(K, g, f, output) and an input text w, let M(w) be
the output string by Algorithm 3.

 DEFINITION. For any text w, let u be the shortest string such that

 w=uxv and x is in Kx

if there is such an x, and then let x be the longest string satisfying the condition above

for the u. If there is no such x, then let u be the initial character of w and x be the

empty string s. Then an rpmm M is said to be valid if

M(w)=uK(x)M(v) ,

where K(x)=y for (x, y) in K and K(s)=s.

 In order to show the validity of our rpmm's we first characterize the output func

tion. Let rep (s) be the string spelled out by the shortest path from the initial state 0

to the state s in the goto graph. Then by Algorithm 1,

output(s)= y ,

for any keyword pair (x, y) and x=rep(s).

 For the other states, the output function is characterized by the failure function .
So here we state the property of the failure function .

 LEMMA 1 (AhoCorasick). Let f(s)=t , rep (s) = a l a 2 • • • am and rep (t) =blb2 • • • b..

108S. ARIKAWA and S. SHIRAISHI

Then b1b2 ••• bn is the longest proper suffix of a1a2 ••• am and also a prefix of some keyword.

 Algorithm 2 characterizes the output function as follows :

 LEMMA 2. Let f(s)=t, rep(s)=a1a2 ••• am, rep(t)=aiai+1 •• am and rep(u)=a1a2 •• ai_1

(When t=0, rep (t)=r and rep (s)=rep (u)). Then,

 output (s)=output (u) .

 PROOF. The proof is done by induction on the depth of states s

Basis : Suppose depth (s)=1. Then by Algorithm 2, f (s)=t=0. Since rep(s)_= a, rep (t)
=E and rep(u)=a, we have

output (s)=a=output (u) .

Induction step : Assume the lemma holds for depth(s)<m. Let depth (s)=m and f (s)=t.

Then by Lemma 1,

rep(s)=a1a2.•• am,

rep(t)=aiai+i... am, (1i<m-1-1).

 Algorithm 2 defines the failure function for state s of depth (s)>_2 and the output

function as follows :

 First the failure function f(s)=t is defined by :

g(ro, am)=s

r;=J (r .i-1) ,

g(r;, am)=fail (1�j�k),

g(rk, am)=t

 Then the output function output (s) is defined by :

 f(s)=t

iff
output(ro) • • output (rk_1).am if t=0,

 output (s)=
output (r0) • • • output (r k _ 1) otherwise .

 Let rep (r31)=air;_1 ••• am,-i, rep (r;)=air; ••• am-1, where iri_1<ir;<m-1, airk=ai,

a iro = a i. Since r; = f (r; _ 1), by the induction hypothesis,

 output (r;_i)=output (u3_1) ,

rep(u;-i)=air;_1 ••• air;_i (1<j<k).

Thus we get,

 output (ro) output (r1) • • • output (r k-1)(• am) (if t=0)

=output (uo) output (u1) output (u k_1)(• am) (if t=0) .

But since

Pattern matching machines for replacing several character strings 109

 rep(uo)=air, •• air1-1,

rep(u1)=air, ••• air2-1,

rep (uk1)=airk-1 ••• airk_1,

where airo=ai, airk-1= ai-i, we have

rep (uo) rep (u1) ..• Yep(uk-1)=a1 ... ai-1,

and since rep(u)=a1a2 ••• ati_1i we have

output (u)=output (uo) output (u1) • • • output (u k_1)(• am) •

Therefore
 output (s)=output (u) .

 Note that by Algorithm 1, if rep(s)=x then

f (s)=0 iff output(s)=y ,
where (x, y) is in K.

 THEOREM 3. Rpmm M=(K, g, f, output) is valid when it runs according as Algo

rithm 3.

 PROOF. It suffices to show M(w)=uK(x), where w=ux. Let u=u1u2 ••• um, rep(s)
=u and x = x 1 x 2 • • • xn. Consider the transition of M at u x 1 x 2 • • • x i =rep (ri). Since x

is a keyword, there exists ti such as f(ri)=ti and rep(ti)=x1x2 ••• xi. Using Lemma 2,

we have output (ri)=output (s)=u1u2 • • um, since there is no keyword in u and M is not

fail in xi,. Again since x is a keyword, output (r„)=uK(x).

 5. Time Complexity

 By nearly the same discussion as in AhoCorasick [1] we have the following results

on time complexity of our rpmm's,

 THEOREM 4. Algorithm 3 makes fewer than 2n state transitions, including failure

transitions, in processing a text of length n.

 THEOREM 5. Each of Algorithm 1 and 2 takes time proportional to the sum of the

length of keywords in K.

 6. Optimization

 The rpmm constructed by Algorithm 1 and 2 has, in general, some unnecessary

failure transitions. Consider the rpmm M in Fig. 2. The failure transitions from states

2 and 3 to states 9 and 10, respectively, are unnecessary. Both of them can be changed

to the failure transitions to the state 0, and the values of output function at these states

should be changed accordingly. We can systematically eliminate such unnecessary failure
transitions just like the case of AhoCorasick's pattern matching machines. Let M=

(K, g, f, output) be an rpmm constructed by Algorithm 1 and 2. Then we define new
functions f' and output' as follows :

110S. ARIKAWA and S. SHIRAISHI

 f'(1)=0

 rf'(f(i)) if g(f(i, a)) implies g(i, a) f'(i)= f
(i) otherwise ,

and
output'(1)=output (1)

 output (i) if f'(i)= f (i)
output'(i)=
 output (i) output' (f (i)) otherwise ,

where the state i means a state of depth i counting from the root of the goto tree (graph).

 Applying the procedure above to the rpmm in Fig. 2 we have an optimized failure

function f' with

f'(s)=0 for all s

and an output function output' with

output'(2)= AB

output'(3)=AT

output'(s)=output (s) for s *2, 3 .

 The next stage of optimizing our rpmm's is to transform them into deterministic

gsm's (generalized sequential machines), as AhoCorasick did for their pattern matching
machines. As we have seen in Algorithm 3, our rpmm positively uses the essence of

the failure transitions. (Recall that outputs are emitted only when goto transitions fail.)

Thus the deterministic gsm necessarily becomes of Mealy type instead of Moore type.

So the machine size becomes nearly twice as big as the original one.

 7. Concluding Remarks

 The authors developed an information system named SIGMA and implemented it at

University Computer Center [5]. As the data treated in the system is string data, we
have developed a fast one-way sequential processor based upon AhoCorasick's pattern

matching machine. The system has REPLACE command to simultaneously replace

several character string. The command is realized by our rpmm, and is quite useful in

editing long string data. The users of SIGMA may simply list the pairs (x, y).

 The other fields of applications include

 1) ROmaji-Kana and KanaRomaji transcriptions,

 2) syntactic parsers,

 3) indexing systems to extract keywords from documents by using a set of stop

words.

 In another study [6] we have succeeded to make the AhoCorasick's pattern match

ing machine much faster holding the table for the machine in a reasonable size. To

apply the technique to our rpmm should be another practical problem.

Pattern matching machines for replacing several character strings 111

 References

 [1] KUNUTH, D. E., MORRIS, J. H. JR. and PRATT, V. R.: Fast Pattern Matching in Strings,
 TRCS74-440, Stanford Univ., (1974) .

[2] BOYER, R. S. and MOORE, J. S.: A Fast String Search Algorithm, C. ACM 20, (1977), 762-772.
[3] AHo, A. V. and CoRASIcK, M. T.: Efficient String Matching: An Aid to Bibliographic Search,

 C. ACM 18, (1975) , 333-340.

[4] ARIKAWA, S.: One-Way Sequential Search Systems and Their Powers, Bull. Math. Stat., 19,
 (1981), 69-85.

[5] ARIKAWA, S. et al.: SIGMA—An Information Systems for Researchers Use, Bull. Inform.
 Cybernetics, 20, (1982) , 97-114.

[6] ARIKAWA, S. and SHINOHARA, T.: A Time-Space Trade Off in Realizing Pattern Matching
 Machines, Proc. 27th National Conference of Inform. Processing Society, (1983), 11-12

 (Japanese).

Received October 15, 1983

