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Abstract

A category of relational models and its quotient category are defined
and their basic properties are discussed. Moreover a categorical join
dependency and a category of adjoint models, which dualize the notion
of relational models, are studied.

1. Introduction

Theory of categories [1, 8] founded by S. Mac Lane and S. Eilenberg can be applied
to various fields of mathematics and has the advantage that it serves a global point of
view for logical structures of many mathematical objects. For instance category theory
has.been a useful tool in studying theories of automata, mathematical languages, systems,
graphs and programmings [1, 2, 3, 4, 5] as mathematical foundations of computer science.

The purpose of this paper is to investigate a categorical aspect of relational detabase
models. This categorical viewpoint for theory of detabase models was initiated by the
work of A. Kato [6, 7]. Given an image factorization system (&, #) of a category C
and a functor X:X—C, we define relational models and their morphisms in section 2.
Then we can naturally obtain a category R(X) of relational models and morphisms be-
tween them. Also we show some basic properties of the category R(X) of relational
models and consider an equivalence relation on the class of all morphisms in R(X) to
obtain a quotient category R[X] of R(X). In section 3 a join dependency associated
with a family of natural transformations k,: X—X, (e 4) is introduced. The categor-
ical join dependency is a reasonable abstraction of the usual join dependency and it
induces a left adjoint functor from R(X) into a full subcategory D(X) of R(X) consist-
ing of all join dependent models. As in Kato [6] it turns out that the join dependency
of a relational model is regarded as a notion in the quotient category R[X]. In the
final section we introduce a notion of adjoint models as a dual of relational models and
their morphisms in case that a functor X:X—¢C has a right adjoint functor Y :C—2¥
and ¥ has an image factorization system (&*, #*). Then the category R{Y} of adjoint
models is naturally constructed and we extend Kato’s result [6] that R{Y} is equivalent
to R[X] as categories.

2. Categories of Relational Models

Relational database models due to E.F. Codd are defined as subsets of a cartesian
product of sets indexed by a set of atributes. In this section we will generalize the
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notion of relational database models and define a category consisting of them. Through-
out the rest of the paper we assume that an image factorization system (&, <) in a
category € and a functor X:2X—C are given.

DEFINITION 2.1. A (relational) model (with respect to X:¥—C) is defined to be a
pair (Q, ¢) of an object Q in % and a monomorphism ¢:Q—XQ in ¢ such that g€ .
A morphism f:(Q, ¢)—(R, r) of a model (Q, ¢) into another model (R, r) is defined to
be a morphism f:Q—R in X such that there exists a morphism f: Q—R in C rendering
the following square commutative :

1l

I?—>——r—>XR.

(The uniqueness of 7:(—R follows from the injectivity of »: R->XR. An arrow “-”
represents a monomorphism in H.)

Let R(X) be the category of all models and all morphisms between them. Identity
morphisms and the composition of morphisms in R(X) are given in a trivial fashion.

LEMMA 2.2. A morphism f:(Q, ¢)—(R, r) is an isomorphism in R(X) if and only if
f:Q—R is an isomorphism in ¥ and f:Q—R is an epimorphism in .

By analogy with A. Kato [6] we define an equivalence relation on the class of all
morphisms in category R(X) as follows:

DEFINITION 2.3. Let fi, f2:(Q, ¢)—(R, r) be two morphisms in R(X). We say that
f, is equivalent to f,, denoted by fi~f,:(Q, ¢)=(R, ), if fi:Q—R and f:Q—R (in
Definition 2.1) are identical, that is, fi=f

It is obvious that the relation “~” is an equivalence relation. The next proposition
states that this equivalence relation “~” is preserved by the composition of morphisms
in R(X).

PROPOSITION 2.4. If fi~f2:(Q, ¢)—(R, r) and g, ~g,: (R, r)=(S, s) in R(X) then
g1f1i~gaf21(Q, (S, s).

We are now ready to obtain a quotient category [8; p. 511 of R(X) classifying
morphisms by the equivalence relation “~” defined above. We denote the quotient
category by R[X7]. That is, objects in R[X] are the same ones as in R(X) and a
morphism [f]:(Q, ¢)—(R, ») in R[X] is an equivalence class of a morphism f:(Q, ¢)—
(R, r) in R(X).

PROPOSITION 2.5. Let f:(Q, q)—(R, r) be a morphism in R(X). If f:Q—R is an
isomorphism in X and if there exists a morphism g:(R, r)—(Q, q) with fg~1g, then
7:(Q, ¢)—(R, r) is an isomorphism in R(X).

In the above proposition the existence of a morphism g: (R, r)—(Q, ¢) with fg~1g:
(R, )—(R, 7) means that [f]:(Q, ¢)—(R, #) is a retraction [5; p. 19] in R[X].

COROLLARY 2.6. Let f:(Q, ¢)—(R, r) be a morphism in R(X). If f:Q—R is an
isomorphism in % and if [f]:(Q, ¢9—(R, r) is an isomorphism in R[X], then f:(Q, @)
—(R, r) is an isomorphism in R(X).

By using the diagonal fill-in lemma [1, p. 397 we have the following lemma.
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LemMmaA 2.7. Let f:(Q, ¢)—(R, r) be a morphism in R(X). If there exists a morphism
g:R—Q with gf=1gand if 7:Q—R is in &, then [f1:(Q, ¢)—(R, r) is an isomorphism
in R[X].

EXAMPLE 2.8. Let C be a category with products and A a set. A is regarded as a
discrete category. Denote by ¢4 the functor category of all functors from A into C,
i.e., C* is a product cotegory of A copiesof . Let T,:C4—C be the product functor
({Se>aea—T Sa). Then the category R(T,) of relational models is obtained and the
case C=Set was considered by Kato [6].

3. Generalized Join Dependencies

In [6] Kato described that observations of join dependencies about relational models
as stated in Example 2.8 are sufficient if they are considered in quotient category R[X].
This section generalizes the result due to Kato [6] for the category of relational models
defined in the previous section.

As in the section 2, we assume that an image factorization system (&, ) in a
category C and a functor X:X—C are given. Moreover supposed that category ¢ has
products and pullbacks, and supposed that a family of functors X,: X—C (a= ) and a
family of natural transformations %, : XX, (ae ) are given.

Let (Q, ¢) be an object of category R(X). Then consider an (&, .H)-factorization of
the composite 2,9 : §r>XQ—X,Q (a=A), which is rendered by the commutative square

I

(Notice that k.=kaq:XQ—X,Q. An arrow “—»” represents an epimorphism in &.)
Let pro: ToXoQ—XoQ (@) and pr,: T,Q,—Q, (acA) be systems of projections of
products T,X,Q and T,Q., respectigely. We denote by Taka : XQ—T.X,Q aunique
morphism with pr,(Takas)=k, for each a4 and by T.m.: ToQ,—~T.X,Q a unique
morphism with pr.(Tama)=m.pr. for each «= 4. Construct a pullback of two morphisms
Taoka and T,m, with common codomain.

A g*

Q -~ > XQ
Tae’al (PB) lTaka
TraQa — TraXaQ
T o

Trivially ¢* is in < [1, Exercise 2.4.11; 2, Proposition 2.11] since m, is in # for
each a=/4. Hence we have a new object (Q, ¢*) in R(X). By the universal property
of pullbacks there exists a unique morphism 7 : —@Q in % making the following daigram
commute.



96 Y. KawaHARA

TaQe > > TXoQ
T oMg

This implies that 14:(Q, ¢)—(Q, ¢*) is a morphism in R(X). Note that 15:Q—@Q is an
identity morphism in X but 15:(Q, ¢)—(Q, ¢*) is not always an identity morphism in
R(X). It follows at once from the construction of ¢* that ¢g**=g* since ¢, is in & for
each as /.

PROPOSITION 3.1. Let (Q, q) and (R, 7) be two objects in R(X). If f:(Q, ¢)—(R, r*)
is a morphism in R(X), then so is [ :(Q, ¢*)—(R, r*).

COROLLARY 3.2. If f:(Q, ¢)—(R, v) is a morphism in R(X), then so is f:(Q, ¢%)
—(R, r*).

The last corollary shows that * gives a functor called the join functor:

*: R(X) — R(X)

Q, 9 (@, ¢%)
flo— s
(R, 7) (R, 7%) .

During the rest of this section we assume that Tk, : XQ— T ,X,Q is a monomorphism
for each object  in . The following results are basic properties of the join functor
*: R(X)-»R(X).

LEMMA 3.3. Let f, g:(Q, ¢)—(R, ») be two morphisms in R(X). If f~g:(Q, ¢9—
(R, 7), then f~g:(Q, ¢*)—(R, ).

COROLLARY 3.4. An object (Q, q) in R(X) is join dependent (JD), that is, g=q¢* as
a subobject of XQ if and only if [1g1:(Q, 9)—(Q, ¢*) is an isomorphism in R[X].

THEOREM 3.5. Let (Q, ¢) and (R, r) be two object in R(X). If (R, r) is isomorphic
to (Q, ¢) in RLX] and if q=g* (JD), then r=r* (JD).

Let D(X) be the full subcategory of R(X) consisting of all objects (@, ¢) with ¢g=¢*
(JD). Then Proposition 3.1 indicates that the inclusion functor I:D(X)CR(X) is a
right adjoint of the join functor *: R(X)—D(X):

f
Q, 9 — I(R, )
@, ¢%) ? (R, r*) ~

EXAMPLE 3.6. Let {A.|as 4} be a family of sets with A=\J,A.. Moreover, let
T : Set4-—Sst be a functor ({Sadaca—Taea,Sa) and k. : T 4T, a natural transforma-
tion of projections (a=A4). Under this situation the join dependency discussed in the
present section is the usual join dependency [6].
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4, Categories of Adjoint Models

In this section we will define a category of adjoint models in case that a functor
X:2—C has a left adjoint functor Y : C—%. Also a sufficient condition for the category
of adjoint models to be isomorphic to the quotient category R[X] of relational models
will be given. In addition we assume that Y —X:C—% is an adjunction [8, p. 78] and
that (€*, *) is an image factorization system of C.

DEFINITION 4.1. An adjoint model (with respect to an adjunction Y —X:C—%) is
defined to be a pair <@, > of an object § in ¢ and an epimorphism §:YJ—Q in ¥
such that §=&* and an adjoint ¢: Q—XQ of §:YJ—Q is in % A morphism 7:<Q, ¢>
—(R, #> of an adjoint model <@, §> into another adjoint model <R, #> is defined to be
a morphism f:Q—R in ¢ such that there exists a morphism f:Q—R in X rendering
the following square commutative :

P

‘i

YI?—‘;;—»R.

(The uniqueness of f:Q—R follows from the surjectivity of §:YQ—Q. Arrows “—”
and “—” in X represent monomorphisms in #* and epimorphisms in &* respectively.)
Let R{Y} be the category of all adjoint models and all morphisms between them.
Identity morphisms and the composition of morphisms in R{Y} are given as usual.
Taking an adjoint of the last commutative square we have the following commuta-
tive diagrams:

~ S _
Q, o ——— <R, #>
V7
YQ —f> YR
7 L7
Q — R
f
7R
7 | 7
XQ XR
Thus we naturally obtain a functor
F:R{Y} R(X)
Q, 9 Q9
Flo— ] s

(R.7 (R 7)
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The functor F: R{Y}—R(X) is called the Armstrong functor because it corresponds to a
construction [9] of characteristic relations (data models) from data models defined by
first order predicates satisfying equivalence laws.

Let (R, ) be an object in R(X) and let

a

R-——————>R

A

be an (&*, M*)-factorization of an adjoint # of ». Consider an adjoint of the last com-
mutative triangle :

- 7
YR—>R

Since Xm-e=re M by definition of (R, r) it follows that e=.# and hence we obtain an
object <R, &> in R{Y}. It is trivial that FKR, &>=(R’, ¢) and m:(R’, e)—(R,7) is a
morphism in R(X), where #i=1z The next lemma shows that morphism m : FXR, é)—
(R, r) in R(X) is a universal arrow [8] from F to (R, r) and the object <R, &> in
R{Y} is cofree [1] over (R, 7).

LEMMA 4.2. Let <Q, §> be an object in R{Y} and (R, r) an object in R(X). For
any morphism f:FKQ, $>—(R, r) in R(X) there exists a unique morphism g:<Q, ¢>—
(R, & in R{Y} such that the triangle

D, & FQ,
1 1
1 1
3 Fg! !
! i
Y Y
<R, & KR, &——F >R 1)

15 commutative.

COROLLARY 4.3. Armstrong functor F:R{Y}—R(X) has a right adjoint functor
G :R(X)>R{Y} (R, r)={R, &) and m:(R’, e)—(R, ) is a component of count FG—1g x,
of adjunction F—G: R{Y}—=R(X).

Denote by F:R{Y}—R[X] the composite of Armstrong functor F:R{Y}—->R(X)
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followed by quotient functor P:R(X)—R[X] (cf. §2). From definition of functor G
there exist a unique functor G : RLX]—R{Y} rendering the triangle of functors

R(X)
G
P
RLX] -=---57===> R{Y}

commutative. Since GF=I1gx, (the identity functor of R{Y}), it is immediate that GF
=lgy). The totality of all morphisms [m] :F~§(R, r)=(R’, e)—(R, r) for all object (R, #)
in R(X) constitutes a natural transformation [m]:ﬁ 5—_»13[,(3.

THEOREM 4.4. If every monomorphism in M* is a split monomorphisms [8; p. 197,

then R{Y} is equivalent to R[X], i.e., [m]: F 5—,>lR[X] is a natural isomorphism.

The functor T,:C4—C in Example 2.8 has a left adjoint 4,:C—C% since ¢ has

products. In the case C=Set, the category of nonempty sets, we have Set, [ T, J=
Set, {44} (an equivalence of categories) because every monomorphism in H*=<{Mon)gc,
is a split monomorphism. This case was initially observed by Kato [6, Theorem 5.17.

£2]
£3]
[4]

(5]
(6]

L7]
£8]
£9]
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