CATEGORICAL RELATIONAL DATABASE MODELS

Kawahara，Yasuo
Department of Mathematics，Kyushu University
https：／／doi．org／10．5109／13360

出版情報：Bulletin of informatics and cybernetics． 21 （1／2），pp．93－99，1984－03．Research Association of Statistical Sciences
バージョン：
権利関係：

CATEGORICAL RELATIONAL DATABASE MODELS

By
Yasuo Kawahara*

Abstract

A category of relational models and its quotient category are defined and their basic properties are discussed. Moreover a categorical join dependency and a category of adjoint models, which dualize the notion of relational models, are studied.

1. Introduction

Theory of categories [1, 8] founded by S. Mac Lane and S. Eilenberg can be applied to various fields of mathematics and has the advantage that it serves a global point of view for logical structures of many mathematical objects. For instance category theory has. been a useful tool in studying theories of automata, mathematical languages, systems, graphs and programmings [1,2,3,4,5] as mathematical foundations of computer science.

The purpose of this paper is to investigate a categorical aspect of relational detabase models. This categorical viewpoint for theory of detabase models was initiated by the work of A. Kato [6, 7]. Given an image factorization system (\mathcal{E}, \mathscr{M}) of a category \mathcal{C} and a functor $X: \mathfrak{X} \rightarrow \mathcal{C}$, we define relational models and their morphisms in section 2. Then we can naturally obtain a category $R(X)$ of relational models and morphisms between them. Also we show some basic properties of the category $R(X)$ of relational models and consider an equivalence relation on the class of all morphisms in $R(X)$ to obtain a quotient category $R[X]$ of $R(X)$. In section 3 a join dependency associated with a family of natural transformations $k_{\alpha}: X \rightarrow X_{\alpha}(\alpha \in \Lambda)$ is introduced. The categorical join dependency is a reasonable abstraction of the usual join dependency and it induces a left adjoint functor from $R(X)$ into a full subcategory $D(X)$ of $R(X)$ consisting of all join dependent models. As in Kato [6] it turns out that the join dependency of a relational model is regarded as a notion in the quotient category $R[X]$. In the final section we introduce a notion of adjoint models as a dual of relational models and their morphisms in case that a functor $X: \mathscr{X} \rightarrow \mathcal{C}$ has a right adjoint functor $Y: \mathcal{C} \rightarrow \mathscr{X}$ and \mathscr{X} has an image factorization system ($\left.\mathcal{E}^{*}, \mathscr{M}^{*}\right)$. Then the category $R\{Y\}$ of adjoint models is naturally constructed and we extend Kato's result [6] that $R\{Y\}$ is equivalent to $R[X]$ as categories.

2. Categories of Relational Models

Relational database models due to E.F. Codd are defined as subsets of a cartesian product of sets indexed by a set of atributes. In this section we will generalize the

[^0]notion of relational database models and define a category consisting of them. Throughout the rest of the paper we assume that an image factorization system $(\mathcal{E}, \mathcal{M})$ in a category \mathcal{C} and a functor $X: \mathscr{X} \rightarrow \mathcal{C}$ are given.

Definition 2.1. A (relational) model (with respect to $X: \mathscr{X} \rightarrow \mathcal{C}$) is defined to be a pair (Q, q) of an object Q in \mathscr{X} and a monomorphism $q: \bar{Q} \rightarrow X Q$ in \mathcal{C} such that $q \in \mathscr{M}$. A morphism $f:(Q, q) \rightarrow(R, r)$ of a model (Q, q) into another model (R, r) is defined to be a morphism $f: Q \rightarrow R$ in \mathscr{X} such that there exists a morphism $\bar{f}: \bar{Q} \rightarrow \bar{R}$ in \mathcal{C} rendering the following square commutative:

(The uniqueness of $\bar{f}: \bar{Q} \rightarrow \bar{R}$ follows from the injectivity of $r: \bar{R} \rightarrow X R$. An arrow " \rightarrow " represents a monomorphism in \mathscr{M}.)

Let $R(X)$ be the category of all models and all morphisms between them. Identity morphisms and the composition of morphisms in $R(X)$ are given in a trivial fashion.

Lemma 2.2. A morphism $f:(Q, q) \rightarrow(R, r)$ is an isomorphism in $R(X)$ if and only if $f: Q \rightarrow R$ is an isomorphism in \mathscr{X} and $\bar{f}: \bar{Q} \rightarrow \bar{R}$ is an epimorphism in \mathcal{E}.

By analogy with A. Kato [6] we define an equivalence relation on the class of all morphisms in category $R(X)$ as follows:

Definition 2.3. Let $f_{1}, f_{2}:(Q, q) \rightarrow(R, r)$ be two morphisms in $R(X)$. We say that f_{1} is equivalent to f_{2}, denoted by $f_{1} \sim f_{2}:(Q, q) \rightarrow(R, r)$, if $\bar{f}_{1}: \bar{Q} \rightarrow \bar{R}$ and $\bar{f}_{2}: \bar{Q} \rightarrow \bar{R}$ (in Definition 2.1) are identical, that is, $\bar{f}_{1}=\bar{f}_{2}$.

It is obvious that the relation " \sim " is an equivalence relation. The next proposition states that this equivalence relation " \sim " is preserved by the composition of morphisms in $R(X)$.

PRoposition 2.4. If $f_{1} \sim f_{2}:(Q, q) \rightarrow(R, r)$ and $g_{1} \sim g_{2}:(R, r) \rightarrow(S, s)$ in $R(X)$ then $g_{1} f_{1} \sim g_{2} f_{2}:(Q, q) \rightarrow(S, s)$.

We are now ready to obtain a quotient category [8; p. 51] of $R(X)$ classifying morphisms by the equivalence relation " \sim " defined above. We denote the quotient category by $R[X]$. That is, objects in $R[X]$ are the same ones as in $R(X)$ and a morphism $[f]:(Q, q) \rightarrow(R, r)$ in $R[X]$ is an equivalence class of a morphism $f:(Q, q) \rightarrow$ (R, r) in $R(X)$.

Proposition 2.5. Let $f:(Q, q) \rightarrow(R, r)$ be a morphism in $R(X)$. If $f: Q \rightarrow R$ is an isomorphism in \mathfrak{X} and if there exists a morphism $g:(R, r) \rightarrow(Q, q)$ with $f g \sim 1_{R}$, then $f:(Q, q) \rightarrow(R, r)$ is an isomorphism in $R(X)$.

In the above proposition the existence of a morphism $g:(R, r) \rightarrow(Q, q)$ with $f g \sim 1_{R}$: $(R, r) \rightarrow(R, r)$ means that $[f]:(Q, q) \rightarrow(R, r)$ is a retraction [5; p. 19] in $R[X]$.

Corollary 2.6. Let $f:(Q, q) \rightarrow(R, r)$ be a morphism in $R(X)$. If $f: Q \rightarrow R$ is an isomorphism in \mathscr{X} and if $[f]:(Q, q) \rightarrow(R, r)$ is an isomorphism in $R[X]$, then $f:(Q, q)$ $\rightarrow(R, r)$ is an isomorphism in $R(X)$.

By using the diagonal fill-in lemma [1, p. 39] we have the following lemma.

LEMMA 2.7. Let $f:(Q, q) \rightarrow(R, r)$ be a morphism in $R(X)$. If there exists a morphism $g: R \rightarrow Q$ with $g f=1_{Q}$ and if $\bar{f}: \bar{Q} \rightarrow \bar{R}$ is in \mathcal{E}, then $[f]:(Q, q) \rightarrow(R, r)$ is an isomorphism in $R[X]$.

Example 2.8. Let \mathcal{C} be a category with products and A a set. A is regarded as a discrete category. Denote by C^{A} the functor category of all functors from A into \mathcal{C}, i. e., \mathcal{C}^{A} is a product cotegory of A copies of \mathcal{C}. Let $\pi_{A}: \mathcal{C}^{A} \rightarrow \mathcal{C}$ be the product functor $\left(\left\langle S_{a}\right\rangle_{a \in A} \rightarrow \pi_{a} S_{a}\right)$. Then the category $R\left(\pi_{A}\right)$ of relational models is obtained and the case $\mathcal{C}=$ Set was considered by Kato [6].

3. Generalized Join Dependencies

In [6] Kato described that observations of join dependencies about relational models as stated in Example 2.8 are sufficient if they are considered in quotient category $R[X]$. This section generalizes the result due to Kato [6] for the category of relational models defined in the previous section.

As in the section 2, we assume that an image factorization system $(\mathcal{E}, \mathscr{M})$ in a category \mathcal{C} and a functor $X: X \rightarrow \mathcal{C}$ are given. Moreover supposed that category \mathcal{C} has products and pullbacks, and supposed that a family of functors $X_{\alpha}: \mathscr{X} \rightarrow \mathcal{C}(\alpha \in \Lambda)$ and a family of natural transformations $k_{a}: X \rightarrow X_{\alpha}(\alpha \in \Lambda)$ are given.

Let (Q, q) be an object of category $R(X)$. Then consider an $(\mathcal{E}, \mathcal{M})$-factorization of the composite $k_{\alpha} q: \bar{Q}_{>} \rightarrow X Q \rightarrow X_{\alpha} Q(\alpha \in \Lambda)$, which is rendered by the commutative square

(Notice that $k_{\alpha}=k_{\alpha, Q}: X Q \rightarrow X_{\alpha} Q$. An arrow " \rightarrow " represents an epimorphism in \mathcal{E}.) Let $p r_{\alpha}: \pi_{\alpha} X_{\alpha} Q \rightarrow X_{\alpha} Q(\alpha \in \Lambda)$ and $\overline{p r}{ }_{\alpha}: \pi_{\alpha} \bar{Q}_{\alpha} \rightarrow \bar{Q}_{\alpha}(\alpha \in \Lambda)$ be systems of projections of products $\pi_{\alpha} X_{\alpha} Q$ and $\pi_{\alpha} \bar{Q}_{\alpha}$, respectiqely. We denote by $\mathrm{T}_{\alpha} k_{\alpha}: X Q \rightarrow \pi_{\alpha} X_{\alpha} Q$ a unique morphism with $p r_{\alpha}\left(T_{\alpha} k_{\alpha}\right)=k_{\alpha}$ for each $\alpha \in \Lambda$ and by $\pi_{\alpha} m_{\alpha}: \pi_{\alpha} \bar{Q}_{\alpha} \rightarrow \pi_{\alpha} X_{\alpha} Q$ a unique morphism with $p r_{\alpha}\left(\pi_{\alpha} m_{\alpha}\right)=m_{\alpha} \overline{\bar{p}}{ }_{\alpha}$ for each $\alpha \in \Lambda$. Construct a pullback of two morphisms $\mathrm{T}_{\alpha} k_{\alpha}$ and $\pi_{\alpha} m_{\alpha}$ with common codomain.

Trivially q^{*} is in \mathscr{M} [1, Exercise 2.4.11; 2, Proposition 2.11] since m_{α} is in \mathscr{M} for each $\alpha \in \Lambda$. Hence we have a new object $\left(Q, q^{*}\right)$ in $R(X)$. By the universal property of pullbacks there exists a unique morphism $\bar{\eta}: \bar{Q} \rightarrow \hat{Q}$ in \mathscr{X} making the following daigram commute.

This implies that $1_{Q}:(Q, q) \rightarrow\left(Q, q^{*}\right)$ is a morphism in $R(X)$. Note that $1_{Q}: Q \rightarrow Q$ is an identity morphism in \mathscr{X} but $1_{Q}:(Q, q) \rightarrow\left(Q, q^{*}\right)$ is not always an identity morphism in $R(X)$. It follows at once from the construction of q^{*} that $q^{* *}=q^{*}$ since e_{α}^{\prime} is in \mathcal{E} for each $\alpha \in \Lambda$.

Proposition 3.1. Let (Q, q) and (R, r) be two objects in $R(X)$. If $f:(Q, q) \rightarrow\left(R, r^{*}\right)$ is a morphism in $R(X)$, then so is $f:\left(Q, q^{*}\right) \rightarrow\left(R, r^{*}\right)$.

Corollary 3.2. If $f:(Q, q) \rightarrow(R, r)$ is a morphism in $R(X)$, then so is $f:\left(Q, q^{*}\right)$ $\rightarrow\left(R, r^{*}\right)$.

The last corollary shows that * gives a functor called the join functor:

$$
\begin{aligned}
& *: R(X) \longrightarrow R(X) \\
&(Q, q)\left(Q, q^{*}\right) \\
& f \downarrow \longmapsto \downarrow \downarrow^{\prime} f \\
&(R, r) \\
&\left(R, r^{*}\right) .
\end{aligned}
$$

During the rest of this section we assume that $T_{\alpha} k_{\alpha}: X Q \rightarrow \pi_{\alpha} X_{\alpha} Q$ is a monomorphism for each object Q in \mathscr{X}. The following results are basic properties of the join functor *: $R(X) \rightarrow R(X)$.

Lemma 3.3. Let $f, g:(Q, q) \rightarrow(R, r)$ be two morphisms in $R(X)$. If $f \sim g:(Q, q) \rightarrow$ (R, r), then $f \sim g:\left(Q, q^{*}\right) \rightarrow\left(R, r^{*}\right)$.

Corollary 3.4. An object (Q, q) in $R(X)$ is join dependent (JD), that is, $q=q^{*}$ as a subobject of $X Q$ if and only if $\left[1_{Q}\right]:(Q, q) \rightarrow\left(Q, q^{*}\right)$ is an isomorphism in $R[X]$.

Theorem 3.5. Let (Q, q) and (R, r) be two object in $R(X)$. If (R, r) is isomorphic to (Q, q) in $R[X]$ and if $q=q^{*}(J D)$, then $r=r^{*}(J D)$.

Let $D(X)$ be the full subcategory of $R(X)$ consisting of all objects (Q, q) with $q=q^{*}$ ($J D$). Then Proposition 3.1 indicates that the inclusion functor $I: D(X) \subset R(X)$ is a right adjoint of the join functor ${ }^{*}: R(X) \rightarrow D(X)$:

$$
\xrightarrow[\left(Q, q^{*}\right) \underset{f}{\longrightarrow}\left(R, r^{*}\right)]{\stackrel{f}{\longrightarrow} I\left(R, r^{*}\right)} .
$$

Example 3.6. Let $\left\{A_{\alpha} \mid \alpha \in A\right\}$ be a family of sets with $A=\bigcup_{\alpha} A_{\alpha}$. Moreover, let $\pi_{\alpha}:$ Set $^{A} \rightarrow$ Sst be a functor $\left(\left\langle S_{a}\right\rangle_{a \in A^{A}} \rightarrow \pi_{a \in A_{\alpha}} S_{a}\right)$ and $k_{\alpha}: \pi_{A} \rightarrow \pi_{\alpha}$ a natural transformation of projections $(\alpha \in \Lambda)$. Under this situation the join dependency discussed in the present section is the usual join dependency [6].

4. Categories of Adjoint Models

In this section we will define a category of adjoint models in case that a functor $X: \mathscr{X} \rightarrow \mathcal{C}$ has a left adjoint functor $Y: \mathcal{C} \rightarrow \mathscr{X}$. Also a sufficient condition for the category of adjoint models to be isomorphic to the quotient category $R[X]$ of relational models will be given. In addition we assume that $Y \rightarrow X: \mathcal{C}-\mathcal{X}$ is an adjunction [8, p. 78] and that ($\mathcal{E}^{*}, \mathscr{M}^{*}$) is an image factorization system of \mathcal{C}.

Definition 4.1. An adjoint model (with respect to an adjunction $Y \rightarrow X: \mathcal{C} \rightarrow \mathfrak{X}$) is defined to be a pair $\langle\bar{Q}, \hat{q}\rangle$ of an object \bar{Q} in \mathcal{C} and an epimorphism $\hat{q}: Y \bar{Q} \rightarrow Q$ in \mathfrak{X} such that $\hat{q} \in \mathcal{E}^{*}$ and an adjoint $q: \bar{Q} \rightarrow X Q$ of $\hat{q}: Y \bar{Q} \rightarrow Q$ is in \mathcal{M}. A morphism $\bar{f}:\langle\bar{Q}, \hat{q}\rangle$ $\rightarrow\langle\bar{R}, \hat{r}\rangle$ of an adjoint model $\langle\bar{Q}, \hat{q}\rangle$ into another adjoint model $\langle\bar{R}, \hat{r}\rangle$ is defined to be a morphism $\bar{f}: \bar{Q} \rightarrow \bar{R}$ in \mathcal{C} such that there exists a morphism $f: Q \rightarrow R$ in \mathscr{X} rendering the following square commutative:

(The uniqueness of $f: Q \rightarrow R$ follows from the surjectivity of $\hat{q}: Y \bar{Q} \rightarrow Q$. Arrows " \rightarrow " and " \rightarrow " in \mathscr{X} represent monomorphisms in \mathscr{M}^{*} and epimorphisms in \mathcal{E}^{*}, respectively.)

Let $R\{Y\}$ be the category of all adjoint models and all morphisms between them. Identity morphisms and the composition of morphisms in $R\{Y\}$ are given as usual.

Taking an adjoint of the last commutative square we have the following commutative diagrams:

Thus we naturally obtain a functor

The functor $F: R\{Y\} \rightarrow R(X)$ is called the Armstrong functor because it corresponds to a construction [9] of characteristic relations (data models) from data models defined by first order predicates satisfying equivalence laws.

Let (R, r) be an object in $R(X)$ and let

be an $\left(\mathcal{E}^{*}, \mathscr{M}^{*}\right)$-factorization of an adjoint \hat{r} of r. Consider an adjoint of the last commutative triangle:

Since $X m \cdot e=r \in \mathscr{M}$ by definition of (R, r) it follows that $e \in \mathscr{M}$ and hence we obtain an object $\langle\bar{R}, \hat{e}\rangle$ in $R\{Y\}$. It is trivial that $F\langle\bar{R}, \hat{e}\rangle=\left(R^{\prime}, e\right)$ and $m:\left(R^{\prime}, e\right) \rightarrow(R, r)$ is a morphism in $R(X)$, where $\bar{m}=1_{\bar{R}}$. The next lemma shows that morphism $m: F\langle\bar{R}, \hat{e}\rangle \rightarrow$ (R, r) in $R(X)$ is a universal arrow [8] from F to (R, r) and the object $\langle\bar{R}, \hat{e}\rangle$ in $R\{Y\}$ is cofree [1] over (R, r).

Lemma 4.2. Let $\langle\bar{Q}, \hat{q}\rangle$ be an object in $R\{Y\}$ and (R, r) an object in $R(X)$. For any morphism $f: F\langle\bar{Q}, \hat{q}\rangle \rightarrow(R, r)$ in $R(X)$ there exists a unique morphism $\bar{g}:\langle\bar{Q}, q\rangle \rightarrow$ $\langle\bar{R}, \hat{e}\rangle$ in $R\{Y\}$ such that the triangle

is commutative.
Corollary 4.3. Armstrong functor $F: R\{Y\} \rightarrow R(X)$ has a right adjoint functor $G: R(X) \rightarrow R\{Y\}((R, r) \mapsto\langle\bar{R}, \hat{e}\rangle)$ and $m:\left(R^{\prime}, e\right) \rightarrow(R, r)$ is a component of count $F G \rightarrow 1_{R(X)}$ of adjunction $F \rightarrow G: R\{Y\} \rightarrow R(X)$.

Denote by $\tilde{F}: R\{Y\} \rightarrow R[X]$ the composite of Armstrong functor $F: R\{Y\} \rightarrow R(X)$
followed by quotient functor $P: R(X) \rightarrow R[X]$ (cf. §2). From definition of functor G there exist a unique functor $\tilde{G}: R[X] \rightarrow R\{Y\}$ rendering the triangle of functors

commutative. Since $G F=1_{R|X|}$ (the identity functor of $R\{Y\}$), it is immediate that $\tilde{G} \tilde{F}$ $=1_{R|Y\rangle}$. The totality of all morphisms [m]: $\tilde{F} \tilde{G}(R, r)=\left(R^{\prime}, e\right) \rightarrow(R, r)$ for all object (R, r) in $R(X)$ constitutes a natural transformation $[m]: \tilde{F} \tilde{G} \rightarrow 1_{R[X]}$.

THEOREM 4.4. If every monomorphism in \mathcal{M}^{*} is a split monomorphisms [8; p.19], then $R\{Y\}$ is equivalent to $R[X]$, i.e., $[m]: \tilde{F} \tilde{G} \rightarrow 1_{R[X]}$ is a natural isomorphism.

The functor $\pi_{A}: \mathcal{C}^{A} \rightarrow \mathcal{C}$ in Example 2.8 has a left adjoint $\Delta_{A}: \mathcal{C} \rightarrow \mathcal{C}^{A}$ since \mathcal{C} has products. In the case $\mathcal{C}=\operatorname{Set}_{0}$, the category of nonempty sets, we have $\operatorname{Set}_{0}\left[\pi_{A}\right] \cong$ Set $_{0}\left\{\Lambda_{A}\right\}$ (an equivalence of categories) because every monomorphism in $\mathscr{M}^{*}=\langle\mathbf{M o n}\rangle_{a \in A}$ is a split monomorphism. This case was initially observed by Kato [6, Theorem 5.1].

References

[1] Arbib, M. A. and Manes, E. G.: Arrows, structures, and functors, The categorical imperative, Academic Press, New York, 1975.
[2] : Foundations of system theory: The Hankel matrix, J. Comput. System Sci., 20 (1980), 330-378.
[3] : Generalized Hankel matrices and system realization, SIAM J. Math. Anal., 11 (1980), 405-424.
[4] Ehrig, H., Kreowski, H.-J., Maggiolo-Schettini, A., Rosen, B. K. and Winkowski, J.: Transformations of structures: an algebraic approach, Math. Systems Theory, 14 (1981), 305-334.
[5] Huzino, S.: Foundations of mathematical programmings (Japanese), Asakura Shoten, Tokyo, 1979.
[6] Kato, A.: A categorical approach to the representative independency of relational data models and their application to dependencies (Japanese), Kyoto Univ. Sûrikaisekikenkyûsho Kôkyûroku No. 423 (1981), 275-293.
[7] -: An abstract relational model and natural join functors, Bull. Infromatics and Cybernetics, 20 (1983), 95-106.
[8] Mac Lane, S.: Categories for the working mathematicans, Springer-Verlag, New York, 1971.
[9] Takeshima, T.: On a generalization of relational data model dependencies by first order predicates satisfying equivalence laws (Japanese), Kyoto Univ. Sûrikaisekikenkyûsho Kôkyûroku No. 423 (1981), 257-274.

Communicated by S. Arikawa
Received October 12, 1983

[^0]: * Department of Mathematics, Kyushu University 33, Fukuoka 812, Japan.

