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      By 
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                    Abstract 

   A category of relational models and its quotient category are defined 
and their basic properties are discussed. Moreover a categorical join 
dependency and a category of adjoint models, which dualize the notion 
of relational models, are studied.

   1. Introduction 

   Theory of categories [1, 8] founded by S. Mac Lane and S. Eilenberg can be applied 
to various fields of mathematics and has the advantage that it serves a global point of 

view for logical structures of many mathematical objects. For instance category theory 

has, been a useful tool in studying theories of automata, mathematical languages, systems,. 

graphs and programmings [1, 2, 3, 4, 5] as mathematical foundations of computer science. 
   The purpose of this paper is to investigate a categorical aspect of relational detabase 

models. This categorical viewpoint for theory of detabase models was initiated by the 
work of A. Kato [6, 7]. Given an image factorization system (8, .510 of a category C 

and a functor X : : —>C, we define relational models and their morphisms in section 2. 

Then we can naturally obtain a category R(X) of relational models and morphisms be

tween them. Also we show some basic properties of the category R(X) of relational 
models and consider an equivalence relation on the class of all morphisms in R(X) to 

obtain a quotient category R[X] of R(X). In section 3 a join dependency associated 

with a family of natural transformations k a : X>Xa (a E A) is introduced. The categor

ical join dependency is a reasonable abstraction of the usual join dependency and it. 

induces a left adjoint functor from R(X) into a full subcategory D(X) of R(X) consist

ing of all join dependent models. As in Kato [6] it turns out that the join dependency 

of a relational model is regarded as a notion in the quotient category R[X]. In the 

final section we introduce a notion of adjoint models as a dual of relational models and 

their morphisms in case that a functor X: 2C->C has a right adjoint functor Y : C—>2' 

and a' has an image factorization system (6*, ,52*). Then the category R {Y} of adjoint 
models is naturally constructed and we extend Kato's result [6] that R {Y} is equivalent 

to R[X] as categories.

   2. Categories of Relational Models 

   Relational database models due to E. F. Codd are defined as subsets of a cartesian 

product of sets indexed by a set of atributes. In this section we will generalize the 

   * Department of Mathematics , Kyushu University 33, Fukuoka 812, Japan. 

                           93



94Y. KAWAHARA

notion of relational database models and define a category consisting of them. Through

out the rest of the paper we assume that an image factorization system (e,  5l) in a 
category C and a functor X: '-*C are given. 

   DEFINITION 2.1. A (relational) model (with respect to X : .X -*C) is defined to be a 

pair (Q, q) of an object Q in a' and a monomorphism q: Q—*XQ in C such that q E .n. 
A morphism f :(Q, q)--~(R, r) of a model (Q, q) into another model (R, r) is defined to 

be a morphism f :Q-->1? in a' such that there exists a morphism f : Q---*R in C rendering 

the following square commutative :

(The uniqueness of f:0,R follows from the injectivity of r : R-->XR. An arrow ">->" 
represents a monomorphism in it. ) 

   Let R(X) be the category of all models and all morphisms between them. Identity 
morphisms and the composition of morphisms in R(X) are given in a trivial fashion. 

LEMMA 2.2. A morphism f :(Q, q)-*(R, r) is an isomorphism in R(X) if and only if 
f : Q—R is an isomorphism in and 7: a--->R is an epimorphism in 8. 

   By analogy with A. Kato [6] we define an equivalence relation on the class of all 
morphisms in category R(X) as follows : 

DEFINITION 2.3. Let f1, f2: (Q, q)-->(R, r) be two morphisms in R(X). We say that 
f 1 is equivalent to f2, denoted by f 1"i f 2 : (Q, q)->(R, r), if fl : Q-->R and 12: Q->R (in 
Definition 2.1) are identical, that is, 11=12. 

   It is obvious that the relation is an equivalence relation. The next proposition 
states that this equivalence relation "—" is preserved by the composition of morphisms 
in R(X). 

PROPOSITION 2.4. If f 1E% f 2 : (Q, q)-->(R, r) and g,'--'g2: (R, r)-->(S, s) in R(X) then 
glf l—g2f 2 • (Q, q) (S, s). 

   We are now ready to obtain a quotient category [8 ; p. 51] of R(X) classifying 
morphisms by the equivalence relation ",,," defined above. We denote the quotient 
category by R[X]. That is, objects in R[X] are the same ones as in R(X) and a 
morphism [f] : (Q, q)—*(R, r) in R[X] is an equivalence class of a morphism f : (Q, q)-4 
(R, r) in R(X). 

PROPOSITION 2.5. Let f :(Q, q)-->(R, r) be a morphism in R(X). If f :Q->1? is an 
isomorphism in a and if there exists a morphism g : (R, r)--*(Q, q) with fg-1R, then 
f :(Q, q)-*(R, r) is an isomorphism in R(X). 

   In the above proposition the existence of a morphism g : (R, r)—*(Q, q) with f g~1 R : 
(R, r)—*(R, r) means that [f] : (Q, q)->(R, r) is a retraction [5 ; p. 19] in R[X]. 

   COROLLARY 2.6. Let f :(Q, q)->(R, r) be a morphism in R(X). If f :Q->1? is an 
isomorphism in a' and if [f] : (Q, q)->(R, r) is an isomorphism in R[X], then f :(Q, q) 
-4(R, r) is an isomorphism in R(X). 

   By using the diagonal fill-in lemma [1, p. 39] we have the following lemma.
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   LEMMA 2.7. Let  f  :(Q, q)->(R, r) be a morphism in R(X). If there exists a morphism 

g : R-->Q with g =1Q and if f : Q->R is in e, then [f] : (Q, q)-*(R, r) is an isomorphism 
in R[X]. 

   EXAMPLE 2.8. Let C be a category with products and A a set . A is regarded as a 
discrete category. Denote by CA the functor category of all functors from A into C, 
i. e., CA is a product cotegory of A copies of C. Let lrA : CA->C be the product functor 

(<Sa>aEAi->ll aSa). Then the category R(1rA) of relational models is obtained and the 
case C=Set was considered by Kato [6].

   3. Generalized Join Dependencies 

   In [6] Kato described that observations of join dependencies about relational models 

as stated in Example 2.8 are sufficient if they are considered in quotient category REX]. 
This section generalizes the result due to Kato [6] for the category of relational models 

defined in the previous section. 

   As in the section 2, we assume that an image factorization system (e , 5l) in a 
category C and a functor X : 2'->C are given. Moreover supposed that category C has 

products and pullbacks, and supposed that a family of functors Xa : X-+C (aE 11) and a 
family of natural transformations lea:  X_*Xa (a E A) are given . 

   Let (Q, q) be an object of category R(X). Then consider an (e , .50factorization of 
the composite le aq : Q>->XQ_*XaQ (a A), which is rendered by the commutative square

(Notice that k a = k a, (2 XQ->XaQ. An arrow "--»" represents an epimorphism in 6.) 
Let pra : lTaXaQ_*XaQ (crEA) and pra : (aBA) be systems of projections of 

products TaXaQ and 1TaQa, respectiqely. We denote by Taka : XQ41TaXaQ a unique 
morphism with pra(T a k a) = k a for each a E A and by Tr ama:-rr-rraX«Qa unique 
morphism with pra(lrama)=mapra for each aEA. Construct a pullback of two morphisms 
Taka and llama with common codomain.

Trivially q* is in 31 [1, Exercise 2.4.11; 2, Proposition 2.11] since ma is in <.53 for 
each «E A. Hence we have a new object (Q, q*) in R(X). By the universal property 

of pullbacks there exists a unique morphism : Q—Q in a' making the following daigram 

commute.
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This implies that  1Q : (Q, q)->(Q, q*) is a morphism in R(X). Note that 12 : Q--->Q is an 
identity morphism in ' but 1Q : (Q, q)-->(Q, q*) is not always an identity morphism in 
R(X). It follows at once from the construction of q* that q**=q* since ea is in e for 
each aEA. 

PROPOSITION 3.1. Let (Q, q) and (R, r) be two objects in R(X). If f :(Q, q)--*(R, r*) 
is a morphism in R(X), then so is f :(Q, q*)->(R, r*). 

   COROLLARY 3.2. If f : (Q, q)-->(R, r) is a morphism in R(X), then so is f :(Q, q*) 
->(R, r*). 

   The last corollary shows that * gives a functor called the join functor : 

                        * : R(X)  R(X) 

                        (Q, q) (Q, q*) 

f t---- f 

                            (R, r) (R, r*) . 

During the rest of this section we assume that Taka : XQ>1TaXaQ is a monomorphism 
for each object Q in I. The following results are basic properties of the join functor 
* : R(X)-R(X) . 

   LEMMA 3.3. Let f, g :(Q, q)-->(R, r) be two morphisms in R(X). If f —g : (Q, q)-4 

(R, r), then f t,-ig : (Q, q*)-->(R, r*). 
   COROLLARY 3.4. An object (Q, q) in R(X) is join dependent (JD), that is, q=q* as 

a subobject of XQ if and only if [10: (Q, q)->(Q, q*) is an isomorphism in R[X]. 
   THEOREM 3.5. Let (Q, q) and (R, r) be two object in R(X). If (R, r) is isomorphic 

to (Q, q) in R[X] and if q=q* (JD), then r=r* (JD). 
   Let D(X) be the full subcategory of R(X) consisting of all objects (Q, q) with q=-q* 

(JD). Then Proposition 3.1 indicates that the inclusion functor I : D(X)ER(X) is a 
right adjoint of the join functor * : R(X)->D(X) : 

f                             (Q
, q) ---> I(R, r*)  

                             (Q, q*) ---> (R, r*) 
f 
   EXAMPLE 3.6. Let {Aa a E A} be a family of sets with A= V a Aa. Moreover, let 

lra : SetA->Sst be a functor (<Sa>aEA'->1T aEAaSa) and ka : IT iT , a natural transforma
tion of projections (a E A). Under this situation the join dependency discussed in the 

present section is the usual join dependency [6].



Categorical relational database models97

   4. Categories of Adjoint Models 

   In this section we will define a category of adjoint models in case that a functor 
 X: r'-->C has a left adjoint functor Y : C—>'. Also a sufficient condition for the category 

of adjoint models to be isomorphic to the quotient category R[X] of relational models 
will be given. In addition we assume that Y—+X : C X is an adjunction [8, p. 78] and 
that (e*, a*) is an image factorization system of C. 

DEFINITION 4.1. An adjoint model (with respect to an adjunction Y-iX : C—X) is 
defined to be a pair <Q, q> of an object Q in C and an epimorphism 4:37-0-*Q  in 
such that 4Ge* and an adjoint q : Q—>XQ of 4:YQ-,Q is in iii. A morphism 1:<Q,  q> 
—><R, PP> of an adjoint model <Q, q> into another adjoint model <R, r> is defined to be 
a morphism f : Q—R in C such that there exists a morphism f :Q—q? in a' rendering 
the following square commutative :

(The uniqueness of f follows from the surjectivity of 4:Y-0-,Q.  Arrows ">-->" 
and "--»" in a' represent monomorphisms in a* and epimorphisms in e*, respectively.) 

   Let R {Y} be the category of all adjoint models and all morphisms between them. 
Identity morphisms and the composition of morphisms in R {Y} are given as usual. 

   Taking an adjoint of the last commutative square we have the following commuta
tive diagrams : 

<Q, 4> --------- > <R, Y> 

Yf 
YO-------> YR 

q 1 Ir 
        W W 

Q --------> R 
f  

f  

                                                         > 

           9 v I r 
                 XQ------> XR . 

Xf 

Thus we naturally obtain a functor 

F: R {Y} ---------> R(X ) 

{<Q, 4> (Q, q) { 

<R, r> (R, r) .
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The functor  F: R {Y} -g?(X) is called the Armstrong functor because it corresponds to a 

construction [9] of characteristic relations (data models) from data models defined by 

first order predicates satisfying equivalence laws. 

   Let (R, r) be an object in R(X) and let

be an (e*, 3t*)factorization of an adjoint of r. Consider an adjoint of the last com

mutative triangle :

Since Xm • e =r E n by definition of (R, r) it follows that e E .52 and hence we obtain an 

object <R, e> in R {Y} . It is trivial that F<R, e>=(R', e) and m : (R', e)-*(R, r) is a 

morphism in R(X), where in =1R. The next lemma shows that morphism m : F<R, e>--* 

(R, r) in R(X) is a universal arrow [8] from F to (R, r) and the object <R, e> in 
R {Y} is cofree [1] over (R, r). 

   LEMMA 4.2. Let <Q, q> be an object in R {Y} and (R, r) an object in R(X). For 

any morphism f : F<Q, q>—+(R, r) in R(X) there exists a unique morphism g : <Q, q>—+ 

<R, e> in R {Y} such that the triangle

is commutative. 

   COROLLARY 4.3. Armstrong functor F: R{Y}- R(X) has a right adjoint functor 

G : R(X)-*R {Y} ((R, r)H<R, e>) and m : (R', e)-->(R, r) is a component of count FG-*1R(x) 
of adjunction F IG : R {Y}—R(X). 

               N 

   Denote byF : R {Y} --->R[X] the composite of Armstrong functor F : R {Y} -->R(X)
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followed by quotient functor P:R(X)—>R[X] (cf. § 2). From definition of functor G 
there exist a unique functorG: R[X ]—>R {Y} rendering the triangle of functors

commutative. Since GF=1 R{x} (the identity functor of R {Y} ), it is immediate that GF 
=1R,y}. The totality of all morphisms [m] : FG(R , r)=(R', e)—*(R, r) for all object (R, r) 
in R(X) constitutes a natural transformation [m] : FGA -REx3• 

   THEOREM 4.4. If every monomorphism in .t* is a split monomorphisms [8 ; p. 19], 
then R {Y} is equivalent to R[X], i.e., [m] : FG*1R[x3 is a natural isomorphism. 

   The functor 1T A : CA—C in Example 2.8 has a left adjoint dA : C->CA since C has 

products. In the case C=Seto, the category of nonempty sets, we have Seto [T-A]= 
Seto {4A} (an equivalence of categories) because every monomorphism in .41*=<Mon>¢EA 
is a split monomorphism. This case was initially observed by Kato [6, Theorem 5.1].
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