PROPERTIES OF SAMPLES FROM DISTRIBUTIONS CHOSEN FROM A DIRICHLET PROCESS

Yamato, Hajime
Department of Mathematics, Faculty of Science, Kagoshima University

https://doi.org/10.5109/13358
PROPERTIES OF SAMPLES FROM DISTRIBUTIONS
CHosen FROM A DIRICHLET PROCESS*

By

Hajime YAMATO**

Abstract

The joint distributions of samples from distributions chosen from a Dirichlet process with nonatomic parameter are given and the conditional distributions of the samples are derived, by the method different from Yamato [4]. By making use of the above result, the expectations of functions of the samples are evaluated.

1. Introduction

The Dirichlet process was introduced by Ferguson [2] for Bayesian nonparametric inference. It is well-known that a distribution chosen from a Dirichlet process is discrete with probability one. The purpose of this paper is to show properties of samples from distributions chosen from a Dirichlet process with nonatomic parameter by the method different from Yamato [4] and to give its application. The author assumes that readers are familiar with the Dirichlet process. For the definition of the Dirichlet process, see Ferguson [2].

Let R be the real line and let B be the σ-field of Borel sets. Let α be a nonnull finite measure on (R, B). $Q(\cdot)$ denotes $\alpha(\cdot)/\alpha(R)$ and M denotes $\alpha(R)$. We list some properties of the Dirichlet process for the later use.

LEMMA 1 (Ferguson [2]). Let P be a Dirichlet process on (R, B) with parameter α and let X be a sample of size 1 from P. Then for $A \in B$

$$P(X \in A) = Q(A).$$

Let X_1, \ldots, X_n be a sample of size n from a distribution P chosen from a Dirichlet process on (R, B) with parameter α. Then, as stated in Korwar and Hollander [3], we can view the observations X_1, \ldots, X_n as being obtained sequentially as follows: Let X_1 be a sample of size 1 from P; having obtained X_1, let X_2 be a sample of size 1 from the conditional distribution P given X_1; and so on until X_1, \ldots, X_n are obtained. Thus by Lemma 1 we have the following lemma, which is essentially similar to the statement of Zehnwirth [5, p. 16].

LEMMA 2. Let P be a Dirichlet process on (R, B) with parameter α and let X_1, \ldots, X_n be a sample of size n from P. Then we can view X_1 has the distribution Q

* This research was partly supported by the Grant-in-Aid for Scientific Research Project No. 58540117 from the Ministry of Education.

** Department of Mathematics, Faculty of Science, Kagoshima University, Kagoshima 890, Japan.
and for \(k = 1, \ldots, n - 1 \) the conditional distribution \(X_{k+1} \) given \(X_1, \ldots, X_k \) is given by
\[
\left(MQ(\cdot) + \sum_{j=1}^k \delta_{X_j}(\cdot) \right) / (M+k),
\]
where for \(x \in X \), \(\delta_x \) denotes the measure on \((R, B)\) giving the mass one to the point \(x \).

In Section 2, we shall give the joint distribution of samples from distributions chosen from a Dirichlet process with nonatomic parameter, by the method different from Yamato [4]. Furthermore, we shall derive the conditional distribution of the samples, which is essentially similar to Theorem 3.1 of Yamato [4].

We shall use the above result to evaluate expectation of functions of the samples for nonatomic parameter in Section 3.

2. Properties of Samples

Let \(R \) be the real line and let \(B \) be the \(\sigma \)-field of Borel sets. Let \(\alpha \) be a nonnull finite measure on \((R, B)\) and nonatomic. \(Q(\cdot) \) denotes \(\alpha(\cdot)/\alpha(R) \) and \(M \) denotes \(\alpha(R) \).

Let \(X_1, \ldots, X_n \) be a sample of size \(n \) from a distribution \(P \) chosen from a Dirichlet process on \((R, B)\) with parameter \(\alpha \). We can consider that the sample \(X_1, \ldots, X_n \) is obtained sequentially, as stated in Section 1. For nonnegative integers \(m(1), \ldots, m(n) \) with \(\sum_{i=1}^n m(i) = n \), let \((X_1, X_2, \ldots, X_n) \in C(m(1), \ldots, m(n)) \) be the event that there are \(m(1) \) distinct values of \(X \) that occur only once, \(m(2) \) that occur exactly twice, \(\ldots, m(n) \) that occur exactly \(n \) times. We denote the sample \((X_1, \ldots, X_n)\) with \((X_1, \ldots, X_n) \in C(m(1), \ldots, m(n))\) by \((X_{11}, \ldots, X_{1m(1)}, X_{21}, X_{22}, \ldots, X_{2m(2)}, X_{31}, \ldots, X_{n1}, \ldots, X_{n1})\). Note that if \(m(n) \geq 1 \) then \(m(1) = \ldots = m(n-1) = 0 \) and \(m(n) = 1 \). If \(m(1) = 2 \) and \(X_s \neq X_t \) with \(s < t \) are different from the remainders, then \(X_1 = X_s, X_2 = X_t \). Suppose that \(m(j) = m(1 < j < m) \).

For any \(A_{ij} \in B(i=1, \ldots, n, j=1, \ldots, m(i)) \),
\[
P(X_{ij} \in A_{ij}, \ldots, X_n \in C(m(1), \ldots, m(n)))
= n! M^{r(n)} \prod_{i=1}^n \prod_{j=1}^{m(i)} Q(A_{ij}) / M^{(n)} \prod_{i=1}^n (m(i) !)^{m(i)},
(2.1)
\]
where \(M^{(n)} = M(M+1) \ldots (M+n-1) \).

Before proving Lemma 3 we shall prepare Lemma 4. For nonnegative integers \(m(1), \ldots, m(n) \) with \(\sum_{i=1}^n m(i) = n \), let \((X_n, X_{n-1}, \ldots, X_1) \in C_\circ(m(1), \ldots, m(n))\) be the event that \(X_n, X_{n-1}, \ldots, X_{n-(m(1)-1)} \), in that order, are unique in the sample and occur only once; that \(X_{n-(m(1)-1)}, \ldots, X_{n-(m(1)+2m(2)-1)} \) occur twice each in the order \(X_{n-(m(1)+2m(2)-1)}, \ldots, X_{n-(m(1)+2m(2)-1)} \) and etc. We use the similar notations to Antoniak [1] with respect to \(C_\circ \) and \(C_\circ \). We denote the sample \((X_n, X_{n-1}, \ldots, X_1) \in C_\circ(m(1), \ldots, m(n))\) by \(Y_{11}, \ldots, Y_{1m(1)}, Y_{21}, Y_{22}, \ldots, Y_{2m(2)}, Y_{31}, \ldots, Y_{m(1)+2m(2)-1m(2)}, \ldots \). Similarly we denote the realization of the above sample, \(x_n, x_{n-1}, \ldots, x_1 \), by \(y_{11}, \ldots, y_{1m(1)}, y_{21}, y_{22}, \ldots, y_{2m(2)}, y_{31}, \ldots, y_{m(1)+2m(2)-1m(2)}, \ldots \). Then we have the following
Lemma 4. For any $A_{ij} \in B(i=1, \ldots, n, j=1, \ldots, m(i))$

$$P(Y_{ij} \in A_{ij}(i=1, \ldots, n, j=1, \ldots, m(i)), (X_n, \ldots, X_1) \in S_0(m(1), \ldots, m(n)))$$

$$= \prod_{i=1}^{n}((i-1)! M)^{m(i)} \prod_{i=1}^{n} \prod_{j=1}^{m(i)} Q(A_{ij}) / M^{i(n)} . \quad (2.2)$$

Proof. At first we shall prove the lemma for $n=2$. Two non-negative integers $(m(1), m(2))$ with $m(1)+2m(2)=2$ are $(2, 0)$ and $(0, 1)$. Let X_1, X_2 be a sample of size 2.

For $(X_2, X_1) \in S_0(m(1), m(2))$ with $m(1)=2$ and $m(2)=0$, we have $Y_{11}=X_1, Y_{12}=X_2$. For any $A_1, A_2 \in B$, from Lemma 2 we have

$$P(Y_{11} \in A_2, Y_{12} \in A_1, (X_2, X_1) \in S_0(2, 0))$$

$$= P(X_2 \in A_2, X_1 \in A_1, X_2 \neq X_1)$$

$$= \int_{A_1} \left(\int_{A_2} P(X_2 \in A_2, X_2 \neq x_1| x_1) dQ(x_1) \right).$$

Since from Lemma 2, given $X_1=x_1$, X_2 has the distribution $(\alpha(\cdot)+\delta_{x_1}(\cdot))/(M+1)$ and α is nonatomic, we have

$$P(Y_{11} \in A_2, Y_{12} \in A_1, (X_2, X_1) \in S_0(2, 0))$$

$$= \int_{A_1} \alpha(A_2)/(M+1) dQ(x_1) = Q(A_1)\alpha(A_2)/(M+1)$$

$$= M^{m(1)} Q(A_1) Q(A_2) / M^{(2)}$$ with $m(1)=2, m(2)=0$.

For $(X_2, X_1) \in S_0(m(1), m(2))$ with $m(1)=0$ and $m(2)=1$, we have $Y_{21}=X_2=X_1$. For any $A \in B$, from Lemma 2 we have

$$P(Y_{21} \in A, (X_2, X_1) \in S_0(0, 1))$$

$$= P(X_2=x_1 \in A) = \int_{A} P(X_2=x_1| x_1) dQ(x_1) = \int_{A} 1/(M+1) dQ(x_1)$$

$$= M^{m(1)} Q(A) / M^{(2)}$$ with $m(1)=0, m(2)=1$.

Thus the lemma holds for $n=2$. Next we assume that the lemma holds for $n \geq 2$ and show that it holds for $n+1$. We denote the sample $X_{n+1}, X_n, \ldots, X_1$ with $(X_{n+1}, X_n, \ldots, X_1) \in S_0(m(1), \ldots, m(n)+1)$ and $\sum_{i=1}^{n+1} m'(i)=n+1$ by $Y_{11}, \ldots, Y_{1m'(1)}, Y_{21}, Y_{22}, \ldots, Y_{2m'(2)}, Y_{n+1}$. For a sample of size $n+1$ we have two cases: The one is that X_{n+1} occurs only once and the other is that X_{n+1} equals to the previous observation.

For the case that X_{n+1} occurs only once, we have $m'(1) \geq 1, m'(n+1)=0$ and for $A_{ij} \in B(i=1, \ldots, n, j=1, \ldots, m(i))$

$$p_1 = P(Y_{ij} \in A_{ij}(i=1, \ldots, n, j=1, \ldots, m(i)), (X_{n+1}, \ldots, X_1) \in S_0(m(1), \ldots, m(n)+1))$$

$$= \int_{D_1} P(X_{n+1} \in A_{11}, X_{n+1} \neq x_1, \ldots, x_n| x_1, \ldots, x_n) dH(x_1, \ldots, x_n),$$

where $H(x_1, \ldots, x_n)$ is the joint distribution of X_1, \ldots, X_n and

$$D_1 = \{(x_1, \ldots, x_n) | (x_n, \ldots, x_1) \in S_0(m(1), \ldots, m(n)), m(1)=m'(1)-1,$$ $m'(i)(i=2, \ldots, n), y_{1, j-1} \in A_{ij}(j=2, \ldots, m'(1)),$
\[
y_{ij} \in A_{ij}(i=2, \ldots, n, j=1, \ldots, m'(i)).
\]

Since from Lemma 2, given \(X_1, \ldots, X_n, X_{n+1} \) has the distribution \(\left(\alpha(\cdot) + \sum_{i=1}^{\infty} \delta_{x_i}(\cdot) \right) / (M+n) \) and \(\alpha \) is nonatomic,
\[
p_1 = \int_{D_1} \alpha(A_{11}) / (M+n) dH(x_1, \ldots, x_n)
= [\alpha(A_{11}) / (M+n)] P(X_1, \ldots, x_n) \in D_1
= [\alpha(A_{11}) / (M+n)] P(Y_{i,j-1} \in A_{ij}(j=2, \ldots, m'(1)),
Y_{i,j} \in A_{ij}(i=2, \ldots, n, j=1, \ldots, m'(i)),
(X_n, \ldots, X_1) \in \mathcal{C}_0(m'(1)-1, m'(2), \ldots, m'(n))).
\]

Since we assume that the lemma holds for \(n \) and \(m'(n+1)=0 \),
\[
p_1 = [\alpha(A_{11}) / (M+n)] M^{m'(1)} / \prod_{i=2}^{n} ((i-1)! M)^{m'(i)}
\times \prod_{j=2}^{m'(1)} Q(A_{ij}) / M^{m'(1)}
\times \prod_{i=2}^{m'(i)} Q(A_{ij}) / M^{m'(1)}
= \prod_{i=1}^{n+1} ((i-1)! M)^{m'(i)} / \prod_{i=1}^{n+1} \prod_{j=1}^{m'(i)} Q(A_{ij}) / M^{m'(i)}.
\]

(2.3)

For the case that \(X_{n+1} \) equals to the previous observation, at first we consider the case of \(m'(n+1)=1 \) and next the case of \(m'(n+1)=0 \). In case of \(m'(n+1)=1 \) where \(X_1, \ldots, X_{n+1} \) are all equal, for \(A_{n+1,1} \in \mathcal{B} \) we have
\[
p_2 = P(Y_{n+1,1} \in A_{n+1,1}, (X_{n+1}, \ldots, X_1) \in \mathcal{C}_0(m'(1), \ldots, m'(n+1)), m'(n+1)=1)
= \int_{D_2} P(X_{n+1}=x_n | x_1, \ldots, x_n) dH(x_1, \ldots, x_n),
\]
where \(D_2 = \{(x_1, \ldots, x_n) | x_1 = \cdots = x_n \in A_{n+1,1}\} \). Since from Lemma 2 given \(X_1, \ldots, X_n, X_{n+1} \) has the distribution \(\left(\alpha(\cdot) + \sum_{i=1}^{\infty} \delta_{x_i}(\cdot) \right) / (M+n) \) and \(\alpha \) is nonatomic,
\[
p_2 = \int_{D_2} n / (M+n) dH(x_1, \ldots, x_n)
= [n / (M+n)] P(X_n = \cdots = X_1 \in A_{n+1,1})
= [n / (M+n)] P(Y_{n+1} \in A_{n+1,1}, (X_{n+1}, \ldots, X_1) \in \mathcal{C}_0(m(1), \ldots, m(n)), m(n)=1).
\]

We assume that the lemma holds for \(n \) and therefore
\[
p_2 = [n / (M+n)] (n-1)! M Q(A_{n+1,1}) / M^{m'(n)}
= (n! M)^{m'(n+1)} Q(A_{n+1,1}) / M^{m'(n+1)} \quad \text{with } m'(n+1)=1.
\]

(2.4)

Finally we consider the case that \(X_{n+1} \) equals to the previous observation and \(m'(n+1)=0 \). Since \(m'(1)=0 \), we suppose that there exists an integer \(k \) such that \(2 \leq k \leq n, m'(1)=\cdots=m'(k-1)=0, m'(k) \geq 1 \) and \(m'(n+1)=0 \).

For \(A_{ij} \in \mathcal{B}(i=k, \ldots, n, j=1, \ldots, m'(i)) \), we have...
Properties of samples from distributions chosen from a Dirichlet process

\[p_3 = P(Y_{ij} \in A_{ij}(i = k, \ldots, n, j = 1, \ldots, m'(i)), (X_{n+1}, \ldots, X_i) \in C_0(m'(1), \ldots, m'(n+1))) \]

\[= \int_{D_3} P(X_{n+1} = x_n = \ldots = x_{n-k+1} | x_1, \ldots, x_n) dH(x_1, \ldots, x_n), \]

where

\[D_3 = \{(x_1, \ldots, x_n) | (x_n, \ldots, x_1) \in C_0(m(1), \ldots, m(n)), m(i) = 0 \}

\[(i = 1, \ldots, k - 2), m(k - 1) = 1, m(k) = m'(k) - 1 \]

\[m(i) = m'(i)(i = k + 1, \ldots, n), y_{k-1}, i \in A_{k1} \]

\[y_{k, j-1} \in A_{kj}(j = 2, \ldots, m'(k)), y_{ij} \in A_{ij}(i = k + 1, \ldots, n, j = 1, \ldots, m'(i)) \].

By the similar argument to \ref{132}, we have

\[p_3 = \frac{1}{D_3(n)} \left(\frac{(k - 1)}{(M + n)} \right) (X_1, \ldots, X_n) \in D_3 \]

\[= \left(\frac{(k - 1)}{(M + n)} \right) (X_1, \ldots, X_n) \in D_3 \]

\[= \left(\frac{(k - 1)}{(M + n)} \right) P(Y_{k-1, 1} \in A_{k1}, Y_{k, j-1} \in A_{kj}(j = 2, \ldots, m'(k)), \]

\[Y_{ij} \in A_{ij}(i = k + 1, \ldots, n, j = 1, \ldots, m'(i)), \]

\[(X_n, \ldots, X_1) \in C_0(0, \ldots, 0, 1, m'(k) - 1, m'(k + 1), \ldots, m'(n)) \]

\[= \left(\frac{(k - 1)}{(M + n)} \right) \prod_{i=k+1}^{n} (i - 1) ! M^{m'(i) - 1} \]

\[\prod_{i=k+1}^{n} \prod_{j=1}^{m'(i)} Q(A_{ij}) / M^{m'(i)} \]

\[= \frac{n}{D_3(n)} \left(\frac{(k - 2)}{(M + n)} \right) \prod_{i=k+1}^{n} \prod_{j=1}^{m'(i)} Q(A_{ij}) / M^{m'(i)} \]

\[= \frac{n}{D_3(n)} \left(\frac{(k - 2)}{(M + n)} \right) \prod_{i=k+1}^{n} \prod_{j=1}^{m'(i)} Q(A_{ij}) / M^{m'(i)} \]

\[= \frac{n}{D_3(n)} \left(\frac{(k - 2)}{(M + n)} \right) \prod_{i=k+1}^{n} \prod_{j=1}^{m'(i)} Q(A_{ij}) / M^{m'(i)} \]

\[= \frac{n}{D_3(n)} \left(\frac{(k - 2)}{(M + n)} \right) \prod_{i=k+1}^{n} \prod_{j=1}^{m'(i)} Q(A_{ij}) / M^{m'(i)} \]

\[= \frac{n}{D_3(n)} \left(\frac{(k - 2)}{(M + n)} \right) \prod_{i=k+1}^{n} \prod_{j=1}^{m'(i)} Q(A_{ij}) / M^{m'(i)} \]

\[= \frac{n}{D_3(n)} \left(\frac{(k - 1)}{(M + n)} \right) \prod_{i=k+1}^{n} \prod_{j=1}^{m'(i)} Q(A_{ij}) / M^{m'(i)} \]

\[= \frac{n}{D_3(n)} \left(\frac{(k - 1)}{(M + n)} \right) \prod_{i=k+1}^{n} \prod_{j=1}^{m'(i)} Q(A_{ij}) / M^{m'(i)} \]

\[= \frac{n}{D_3(n)} \left(\frac{(k - 1)}{(M + n)} \right) \prod_{i=k+1}^{n} \prod_{j=1}^{m'(i)} Q(A_{ij}) / M^{m'(i)} \]

From the evaluations of \(p_1, p_2, p_3 \), we know that the lemma holds for \(n + 1 \) and thus proved it by induction.

Proof of Lemma 3. Lemma 4 also holds for \((X_1, \ldots, X_n) \in C_0(m(1), \ldots, m(n)) \).

The number of ways that \(n \) observations \(X_1, \ldots, X_n \) are permuted differently with \((X_1, \ldots, X_n) \in C(m(1), \ldots, m(n)) \) and \(\sum_{i=1}^{n} m(i) = n \) is \(\frac{n!}{\prod_{i=1}^{n} [m(i)! (i!)^{m(i)}]} \). To multiply the right-hand side of (2.2) with \((X_1, \ldots, X_n) \in C_0(m(1), \ldots, m(n)) \) by this number yields (2.1).

If we take \(A_{ij} = B \) for \(i = 1, \ldots, n, j = 1, \ldots, m(i) \) in Lemma 3, then we have the following lemma which is found in Antoniak [1].

Lemma 5. (Antoniak [1]).

\[P((X_1, \ldots, X_n) \in C(m(1), \ldots, m(n))) = n! M^{\sum_{i=1}^{n} m(i) / M(m(i))} \]

The following theorem is essentially similar to Theorem 3.1 of Yamato [4].

Theorem 1. Given \((X_1, \ldots, X_n) \in C(m(1), \ldots, m(n)), X_{11}, X_{12}, \ldots, X_{1m(1)}, X_{21}, X_{22}, \ldots, X_{2m(2)}, \ldots, X_{nm(n)} \) are independent and identically distributed with the distribution \(Q \).

Proof. For any \(A_{ij} \in B(i = 1, \ldots, n, j = 1, \ldots, m(i)) \), by Lemma 3 and 5 we have
3. Expectation of Random Functionals

By the use of Theorem 1 we shall prove the following theorem (Yamato [4]) for nonatomic parameter α. Our method of proof is different from Yamato [4]. R^n is the n-dimensional Euclidean space and B^n is the σ-field of Borel subsets of R^n for $n=2, 3, \ldots$.

Theorem 2 (Yamato [4]): Let $h(x_1, \ldots, x_n)$ be a real-valued measurable function defined on (R^n, B^n) and symmetric in x_1, \ldots, x_n. Let P be a Dirichlet process on (R, B) with parameter α. Let X_1, \ldots, X_n be a sample from P. Then

\[
E[h(X_1, \ldots, X_n)] = \sum_{m(1), \ldots, m(n)} \left(\frac{n!}{M(m(1)) \cdots M(m(n))} \frac{m(i)!}{m(i)} \right) \prod_{i=1}^{n} \frac{dQ(x_{ij})}{m(i)}
\]

provided all integrals of the right-hand side exist. Where \sum^* denotes the summation over all n nonnegative integers $m(1), \ldots, m(n)$ satisfying $\sum_{i=1}^{n} m(i) = n$ and in the arguments of the integrand of the right-hand side x_{is} appears at exactly i times for $i=1, 2, \ldots, n$ and $s=1, \ldots, m(i)$.

Proof. We give the proof for nonatomic parameter α. From Theorem 1, for nonnegative intergers $m(1), \ldots, m(n)$ with $\sum_{i=1}^{n} m(i) = n$, given $(X_1, \ldots, X_n) \in C(m(1), \ldots, m(n))$, $X_1, \ldots, X_{1m(1)}, X_{21}, \ldots, X_{2m(2)}, \ldots, X_{nm(n)}$ are independent and identically distributed with the distribution Q. h is symmetric in x_1, \ldots, x_n. Therefore we have

\[
E[h(X_1, \ldots, X_n) | (X_1, \ldots, X_n) \in C(m(1), \ldots, m(n))] = \sum_{m(1), \ldots, m(n)} \left(\frac{n!}{M(m(1)) \cdots M(m(n))} \frac{m(i)!}{m(i)} \right) \prod_{i=1}^{n} \frac{dQ(x_{ij})}{m(i)}
\]

which exists for each n nonnegative integers $m(1), \ldots, m(n)$ with $\sum_{i=1}^{n} m(i) = n$ by the assumption. Since by Lemma 5 for each n nonnegative integers $m(1), \ldots, m(n)$ with
\[\sum_{i=1}^{n} \ln(i) = n, \]

\[P((X_1, \ldots, X_n) \in \mathcal{C}(m(1), \ldots, m(n))) = n! \frac{M^{\sum_i m(i)}}{M^{\mathcal{C}(n)}} \prod_{i=1}^{n} (m(i)! i^{m(i)}), \]

taking expectation of (3.2) we have (3.1).

References

Communicated by S. Kano
Received September 21, 1983