ON A FUNDAMENTAL BOUND OF BALANCED ARRAYS

Kageyama，Sanpei
Department of Mathematics，Faculty of School Education，Hiroshima University

https：／／doi．org／10．5109／13354

出版情報：Bulletin of informatics and cybernetics． 21 （1／2），pp．37－39，1984－03．Research Association of Statistical Sciences
バージョン：
権利関係：

ON A FUNDAMENTAL BOUND OF BALANCED ARRAYS*

By

Sanpei Kageyama**

Abstract

Balanced arrays of strength t in N assemblies with m constraints and s symbols are useful in the construction of fractional factorial designs and to various combinatorial areas of design of experiments. To construct such arrays with the maximum possible number, m, of constraints is a very important problem both in the statistical design of experiments and combinatorial mathematics. In this note, balanced arrays satisfying a bound $m \leqq N$ are completely characterized.

1. Introduction

Let A be an $m \times N$ matrix whose elements are $0,1, \cdots$, or $s-1$. Consider the s^{t} t-vector, $X=\left(x_{1}, x_{2}, \cdots, x_{t}\right)^{\prime}$, which can be formed where $x_{i}=0,1, \cdots, s-1$ for $i=$ $1,2, \cdots, t$, and associate with each vector X a positive integer $\lambda\left(x_{1}, x_{2}, \cdots, x_{t}\right)$ which is invariant under any permutations of ($x_{1}, x_{2}, \cdots, x_{t}$). If, for every t-rowed submatrix of A, the s^{t} distinct vectors X occur as columns $\lambda\left(x_{1}, x_{2}, \cdots, x_{t}\right)$ times, then the matrix A is called a balanced array of strength t in N assemblies with m constraints, s symbols and index parameters $\lambda\left(x_{1}, x_{2}, \cdots, x_{t}\right)$. For short, this is denoted by $B A(m, N, s, t)$.

Rafter and Seiden [1] noticed that $m \leqq N$ holds for all balanced arrays. It appears that this statement is not correct in general. The inequality $m \leqq N$ is the fundamental bound on the number of constraints, and can also be derived by considering the meaning of an s^{m} factorial design. In this note, we shall characterize completely balanced arrays of validating the bound $m \leqq N$.

2. Discussions

Let $O_{a \times b}$ and $J_{a \times b}$ be $a \times b$ matrices whose elements are all zero and unity, respectively. Let I_{a} be the identity matrix of order a. In this case, we can show the following theorem :

Theorem. In a $B A(m, N, s, t)$ with $t \geqq 2$ except for any juxtaposition of $O_{m \times l_{1}}, J_{m \times l_{2}}$, $2 J_{m \times l_{3}}, \cdots$, or $(s-1) J_{m \times l_{s}}$ satisfying $N \geqq l_{i} \geqq 0$ and $\sum_{i=1}^{s} l_{i}=N$, an inequality $m \leqq N$ always holds.

[^0]Proof. Let A be a $B A(m, N, s, t)$ with $\lambda\left(x_{1}, x_{2}, \cdots, x_{t}\right)$ for $t \geqq 2$. Then it is well known that A is also a $B A(m, N, s, 2)$ with appropriate index parameters $\lambda^{*}\left(x_{1}, x_{2}\right)$. In this case, it can be shown that

$$
\begin{aligned}
\left|A A^{\prime}\right| & =\left|\left(a_{1}-a_{2}\right) I_{m}+a_{2} J_{m \times m}\right| \\
& =\left(a_{1}-a_{2}\right)^{m-1}\left\{a_{1}+(m-1) a_{2}\right\}
\end{aligned}
$$

with

$$
\begin{aligned}
& a_{1}=\sum_{x_{2}=0}^{s-1} \sum_{x_{1}=1}^{s-1} x_{1}^{2} \lambda^{*}\left(x_{1}, x_{2}\right) \\
& a_{2}=\sum_{x_{2}=1}^{s-1} \sum_{x_{1}=1}^{s-1} x_{1} x_{2} \lambda^{*}\left(x_{1}, x_{2}\right)
\end{aligned}
$$

and $a_{1} \geqq a_{2} \geqq 0$. If $\left|A A^{\prime}\right| \neq 0$, then it follows that

$$
m=\operatorname{rank}\left(A A^{\prime}\right)=\operatorname{rank}(A) \leqq N
$$

i. e., an inequality $m \leqq N$ holds. Thus, we now investigate the possibility of $\left|A A^{\prime}\right|=0$ by considering two cases. Note that if $a_{2}=0$, then $a_{1} \geqq 0$. In this case if $a_{1}>0$, then $\left|A A^{\prime}\right| \neq 0$, and if $a_{1}=0$, then the following case (I) comes out.

Case (I). $\quad a_{1}=0$, which then implies $a_{2}=0$. Then $\left|A A^{\prime}\right|=0$. It is obvious that $a_{1}=0$ iff there only exist $\lambda^{*}\left(0, x_{2}\right)$ for some $x_{2}(=0,1, \cdots$, or $s-1)$. Furthermore, since $\lambda^{*}\left(0, x_{2}\right)=\lambda^{*}\left(x_{2}, 0\right)$ from the definition of balanced arrays, it holds that $\lambda^{*}\left(0, x_{2}\right)=0$ for all $x_{2}=1,2, \cdots, s-1$. Hence, there is the only possibility of the positive value of $\lambda^{*}(0,0)$, that is, the original array is of form $O_{m \times N}$.

Case (II). $a_{1} \neq 0, a_{2} \neq 0$ and $a_{1}-a_{2}=0$. In this case, since $\lambda^{*}\left(x_{1}, x_{2}\right)=\lambda^{*}\left(x_{2}, x_{1}\right)$, it follows that

$$
\begin{align*}
a_{1}-a_{2} & =\sum_{x_{2}=0}^{s-1} \sum_{x_{1} \neq x_{2}=1}^{s-1}\left(x_{1}^{2}-x_{1} x_{2}\right) \lambda^{*}\left(x_{1}, x_{2}\right) \tag{*}\\
& =\sum_{x_{2}=0}^{s-1} \sum_{x_{1}>x_{1}=1}^{s-1} b_{x_{1} x_{2}} \lambda^{*}\left(x_{1}, x_{2}\right)
\end{align*}
$$

where $b_{x_{1} x_{2}}$'s are positive constants depending on values of x_{1} and x_{2}. The relation (*) implies that if $a_{1}-a_{2}=0$, then there only exist some $\lambda^{*}(x, x)$ for $x=0,1,2, \cdots, s-1$. Thus, the original array will be only of form

$$
\left[O_{m \times l_{1}}: J_{m \times l_{2}}: 2 J_{m \times l_{3}}: \cdots:(s-1) J_{m \times l_{s}}\right]
$$

for non-negative integers l_{i} satisfying $\sum_{i=1}^{s} l_{i}=N$. Other cases about a_{i} 's always yield that $\left|A A^{\prime}\right| \neq 0$. Thus, the proof is completed.

When $s=2$ (two-symbol), the theorem yields the following.
COROLLARY. In a $B A(m, N, 2, t)$ with $t \geqq 2$ except for a type $\left[O_{m \times l}: J_{m \times(N-t)}\right]$ satisfying $N \geqq l \geqq 0$, an inequality $m \leqq N$ always holds.

REMARK. When $l=0$ and N, the two-symbol original balanced array will be $J_{m \times N}$ and $O_{m \times N}$, respectively.

A type of some juxtaposition of $O_{m \times l_{1}}, J_{m \times l_{2}}, 2 J_{m \times l_{3}}, \cdots$, or $(s-1) J_{m \times l_{s}}$ is a trivial
balanced array for integers l_{i} satisfying $N \geqq l_{i} \geqq 0$ and $\sum_{i=1}^{s} l_{i}=N$. In this sense, it follows that, in a non-trivial balanced array, the number of assemblies is always bounded below by the number of constraints.

Acknowledgement

The author wishes to express his thanks to Dr. G. M. Saha, Indian Statistical Institute, Calcutta, for his suggestion of a problem of this note, and to Dr. M. Kuwada, Hiroshima University, for his useful comments.

References

[1] Rafter, J. A. and Seiden, E.: Contributions to the theory and construction of balanced arrays, Ann. Statist. 2 (1974), 1256-1273.

Communicated by Ch. Asano
Received April 16, 1983

[^0]: * Prepared while the author was visiting the Indian Statistical Institute, Calcutta, India, during August 1982 to March 1983.
 ** Department of Mathematics, Faculty of School Education, Hiroshima University, Shinonome, Hiroshima 734, Japan.

