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DISTRIBUTION FUNCTIONS AND PROCESSES*

    By 

Y. P. MACK**

                    Abstract 

   It is shown that under mild assumptions, a convolutionsmoothed 

empirical process exhibits essentially the same asymptotic properties 

as the standard empirical process such as : a pointwise law of iterated 

logarithm, weak convergence to Brownian bridge, and the Chung

Smirnov property. Some remarks of statistical and probabilistic inter

ests are made. A list of open questions is also included.

   I. Introduction 

   Let X1, X2, • • • , Xn be i. i. d. random variables with common distribution function 

(d. f.) F on the real line. Denote by Fn the standard empirical d. f., i.e., Fn(x)=propor
tion of observations < x. By now there is a rich body of literature on the study of Fn 

and the related empirical process Zn=n112(Fn—F) (see Gaenssler and Stute [8]). When 
F is absolutely continuous with density f, it is natural to look for some smooth estimates 

Fn of F. For example, Kronmal and Tarter [12] proposed using a trigonometric series 

estimate in connection with address calculation sorting. Recently, Efron [7] and Boos 
and Monahan [5] have suggested using Fn instead of Fn to generate bootstrap samples. 

Their initial Monte Carlo experiments appeared to be encouraging. 

   Typically Fn is constructed by taking an indefinite integral (if it exists) of some 

density estimates based on some "delta sequence" as studied by Walter and Blum [27]. 

Among these which are not convolution-based are, for instance, approaches based on 
orthogonal expansions (e. g., Schwartz [19], Kronmal and Tarter [12], and Walter [26]) ; 

approaches based on spline interpolations (e. g., Boneva, Kendall and Stefanov [4], Wahba 

[25], Lii and Rosenblatt [13]) ; and approaches based on nonparametric maximum likelihood 
considerations (e. g., Geman and Huang [9], Blum and Walter [3]). Another "delta 
sequence" approach is the kernel method, by far the most studied in density estimation, 

which dates back to Rosenblatt [17] in 1956. The kernel density estimates have the form 

                        J n(x)=Jbn------LG1Ejnt )dF,,t)
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1    ( x— Xi  \ 
nbn i=i  \ bn 

where iv is a density and {bn} is a socalled "bandwidth" sequence which tends to 0 as 

n tends to cc.The smoothed estimate Fn of F based on the kernel method is thus 

given by a convolution : 

(1)Fn(x)= .0 f n(u)du 
                   =~~x 1----w(utn)du dFn(t)                       °°bn 

=.CW(-----bnt )dF7,(t) 
_ 1 n (x—                                     Xi  

                      n iW(bn) 
where W (u) _  w (t) d t. Note that {----bnw(----bun)} is a "delta sequence",while-{147(-----u )} bn 
is a sequence of d. f.'s converging weakly to the d. f. of the unit mass at 0. (In the 
spirit of Walter and Blum [27], we may call such a sequence a "Heaviside sequence".) 

   While some estimates of the nonconvolution type seem to have computational appeal 
(such as the trigonometric series method), and others may have global optimality at the 
finite sample level (such as the spline estimates and MLE's), they frequently suffer from 
the drawback of not being d. f.'s themselves. In addition, many estimates based on 
global optimality are constructed implicity, making statistical analysis quite intractible. 
The convolution-based approach is easier to handle, and the computation issue is made 
less serious because of current advances in computer science, and by using fast Fourier 
transform technique as described by Silverman [21]. 

   For the remainder of this discussion, we shall concentrate our efforts on the con
volution-based estimates (1) or, more generally, 

(2)F7(x)=  Wn(x—t)dFn(t) 

                            =1 EWn(x—Xi) 
                                            n i=1 

where {WO is a Heaviside sequence. Note that there are delta sequences not of the 
kernel type. For example, the Landau sequence described in Walter and Blum [27], or 
the Fejer sequence encountered in time series. 

   A detailed listing of research on (1) or (2) is given in the references. Most results 
seem to indicate that the asymptotic behaviour of the smoothed estimates and that of 
the standard empirical d. f. are quite similar. For example, Yamato [31] showed that 

(2) has the same asymptotic covariance as Fn, while Winter [30] showed that (1) has 
the ChungSmirnov property. 

   In this article, we consider the smoothed empirical processes 

2 (x)=n112[Fn(x)—EFn(x)] 
or
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 Zn(x)=n1/2L  n(x)—F(x)] 

with Fn given by (1) or (2). We shall demonstrate that under mild conditions , a point
wise law of iterated logarithm holds for (1) by using a result of Hall [10] , and that Zn 
and Zn are uniformly close by appealing to a result of Stute [24] . Consequently, Zn 
inherits many asymptotic properties of Zn . We shall also make remarks on these results 
which have both statistical and probabilistic interests ,

   2. Main Results and Remarks 

   In what follows, 11 II will stand for the supremum norm over R1, and "w. p. 1." will 
be an abbreviation for "with probability one" . F is assumed to have a density. 

   THEOREM 1. The following pointwise law of iterated logarithm holds for Zn with 
En given by (2) : 

(3)lim±[2 log log n •F(x)(1—F(x))]1/2Zn(x)=1 
n-•00 

w. p. l for each x such that F(x)�0 , 1. 
   PROOF OF THEOREM 1. We verify that the hypothesis of Theorem 1 in Hall [10] is 

satisfied. Let 

6,nn=cov [Wm(x—X1), Wn(x—X1)] 

an,—ann • 

Since {Wn} is obviously a sequence of functions of bounded variation on R1, it remains 
to check that 

(4)amn/a-->l as in, n -›oo with n/m->1 

and that 

(5)(log n)4[dWn(t)]2/na" log log n 0 as n co . 
Now as mentioned earlier, a ,—>F(x)(1—F(x)) as n —> co (see Yamato [31]), so clearly (5) 
holds. To see that (4) holds, it is enough to show that I amu—a;,H- 0, or equivalently, 
that 

(6) E[Wm(x—X1) •Wn(x—X1)]—E[Wgx—X1)] I ----> 0 

as m, n—>00.  Writing the expression in (6) as 

E {Wn(x—X1)[Wm(x—X1)—Wn(x—X1)]} 1 

we see that the result follows easily since Wn is bounded and that EWn(x—X1) and 

EWm(x—Xi) both tend to F(x) in the limit as n, m —>co. 

   THEOREM 2. As in Stute [24], let {an} be a sequence of positive real numbers satis

fying condition 

     (i) anl 0 as n-“oo 

(A) (ii) logan =o(nan)
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                  1      (iii) log log n=o(log ) . 
 an 

Let T.n=dWn(t) and en=(anlog 1  )1/2.Then 
  Itl>an an 

(6)II2n—Znl1=O[en+Tn(log log n)112] 

w. p.1. 

   COROLLARY 1. Suppose {an} satisfies (A) (i )-(iii) and 1W .1satisfies the tail condition 

(T)rn=o((log log n)-112) . 

Then Zn converges weakly to the rescaled Brownian bridge B°(F). 
   COROLLARY 2. Under condition (A) (i )(iii), on a rich enough probability space (a 

la Komlos, Major, Tusnady [11]), there exist a version of Zn and a sequence of Brownian 
bridges Bn such that 

(7) IIZn—B;(F)II=O[n1I2log n+IIZn—Znll] 

w. p.1, where IIZn—Z II is given by (6). 

(There is a similar result using a Kiefer process instead of Brownian bridges.) 
   COROLLARY 3. Suppose {an} satisfies (A) (i )-(iii) and suppose Z'n=o(1) 

Then 

(8)lirn (log log n)-112112.11=2-1/ 2 

W. p.1. 

(This result is in particular an improvement over Theorems 3.2 and 3'3 of Winter [30] 
on the ChungSmirnov property of Zn with Fn defined by (1).) 

   PROOF OF THEOREM 2. Write 

12n(x)—Zn(x) I = Zn(x—t)dWn(t)—Zn(x)JdWn(t) 

                       <_~ I Zn(x—t)—Zn(x) I dln(t) 

                        —JIti~an+.)Itl>a, 

               JCsupIZn(x—t)—Zn(x) I'dWn(t)               tI a n itI a nItiS a n 
,a11 x 

=O(en) 

w. p. 1. by Theorem 0.2 of Stute [24], while 

                        C21IZnII'JdWn(t) 

                          

Itl>anI ti>an 

=O[rn(log log n)112]
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w.  p.  1. by the law of iterated logarithm of Zn. Thus (6) is prorved. The corollaries 

follow by standard results on Zn (see for example Billingsley [2] or Csorgo and Revesz 

[6].) 
    REMARKS. 

   (a) a=n  2 log n, 0 < A <1, is an example of {an}  satisfying (A) (i)-(iii) in Theorem 2. 

   (b) For kernel-type smoothers (1), if W (as a d. f.) has absolute k t h moment, k>0, 
                                                                      and is symmetric about 0, then 

                           bndW(v)<O[()k] 

 . 

Ivl>an/bn an 

   So we can choose, for example, 

bn=o[an(log log n)-112k] 

in order to satisfy condition (T). Various combinations of choices of {an}, {bn} and k 
are possible for the corollaries to hold. As an illustration , take k=1, a n = n -1 / 10, b.= 
n-115, then Corollary (3) holds. 

   For kernels W with compact support, we can allow a=c bn with 0<c<00  chosen 

so that w vanishes outside [—c, c]. In this case Tn=0 and {bn} should satisfy the same 

condition as {an}. 

   (c) There are refinements on the oscillation behaviour of Zn (see Shorack and 
Wellner [20].) For example, let a n = n -1 (log n)5, —00<a<1 .  Then the rate On in 
Theorem 2 is replaced by a1,12 (log n)1-a/2 (log log n)-'. However , with 3=-1, nan--7400 
as n—oo. A kernel density estimate constructed with this choice of the bandwidth 

sequence will not be consistent. Nevertheless, since bn-*0 as n—*oo is both necessary 

and sufficient for {w(----)} to be a Heaviside sequence, the choice of {an} indicated above 
n when W has compact support will still give rise to consistent estimates F. 

   (d) The difference between Zn and Z* lies in the bias term. Under additional as
sumptions on F and {Wn}, the bias can be made to decrease at a certain rate. (See 

Winter [30], Singh [22] and Reiss [16].) Similarly, the mean square error issue can be 

analysed just as the density estimate case. (See Azzalini [1].) However, Read [15] has 
shown that the standard empirical d. f. Fn is inadmissible w. r . t. integrated square loss 
by exhibiting a (biased) continuous piecewise linear estimate of F dominating Fn. It 

would be of interest to investigate if versions of Fn exist which dominate F,,.

   3. Open Questions 

   There are obviously many interesting open questions regarding the statistical and 

probabilistic behaviour of Fn or Zn. We list a few here, hoping that there will be 
further research work on this topic : 

(i) What kinds of optimality properties can Fn inherit from Fn? 

   (ii) Is there a Hajek-Beran type representation theorem for Zn in the context of 
       regular estimators? 

   (iii) What is the Prokhorov distance between Fn and F? (This has relevance in 
robustness.)
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(iv) Would similar smoothing procedures be useful in the setting with censoring? 

    (i. e., replace Fn by the Kaplan-Maier product limit function.) 

(v) How does P7, compare with other possible competitors? For instance, how does 

    (1) or (2) compare with the estimates constructed by orthogonal series expan
    sions as in Kronmal and Tarter [12]? 

(vi) How do bootstrap estimates behave when the bootstrap sample is generated 
    according to Pn rather than F,i?
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