九州大学学術情報リポジトリ Kyushu University Institutional Repository

ON SEQUENTIAL ESTIMATION OF THE REGRESSION FUNCTION

Samanta, M Department of Statistics, The University of Manitoba

https://doi.org/10.5109/13352

出版情報: Bulletin of informatics and cybernetics. 21 (1/2), pp.19-27, 1984-03. Research

Association of Statistical Sciences

バージョン: 権利関係:

ON SEQUENTIAL ESTIMATION OF THE REGRESSION FUNCTION*

By

M. SAMANTA**

1. Introduction and Summary

Let (X, Y) be a two dimensional random variable having a joint density function f and let g be the marginal density function of X. We assume that $E_f Y$ is finite and define the regression function m(x) (for regression of Y on X) by m(x) = E[Y | X = x]. Nadaraya [3] and Watson [7] and Schuster [6] have studied the asymptotic properties of the estimate $\hat{m}_n(x)$ of m(x) defined by

$$\hat{m}_n(x) = \frac{\sum_{i=1}^n Y_i K\left(\frac{x - X_i}{h_n}\right)}{\sum_{i=1}^n K\left(\frac{x - X_i}{h_n}\right)}$$

where K(u) is a probability density function on $(-\infty, +\infty)$, $\{h_n\}$ is a monotonically decreasing sequence of positive numbers converging to zero and (X_1, Y_1) , (X_2, Y_2) , \cdots , (X_n, Y_n) are n independent observations of (X, Y).

In many practical situations the number of observations N_t which we observe in time (0, t] is a random variable. We call N_t a stopping random variable. We assume that (X_1, Y_1) , (X_2, Y_2) , \cdots are independent observations of (X, Y) and need not be independent of the random variable N_t . In this paper we propose an estimate $m_{N_t}(x)$ of the regression function m(x) based on (X_1, Y_1) , (X_2, Y_2) , \cdots , (X_{N_t}, Y_{N_t}) and given by

$$m_{N_t}(x) = \frac{\sum_{i=1}^{N_t} \frac{Y_i}{h_i} K\left(\frac{x - X_i}{h_i}\right)}{\sum_{i=1}^{N_t} \frac{1}{h_i} K\left(\frac{x - X_i}{h_i}\right)}$$

We note that the expression for the estimate $m_{N_t}(x)$ is motivated by the recursive type of estimate of a probability density function first proposed by Yamato [8]. Suppose x_1, x_2, \cdots, x_l are l distinct points. We have shown that under certain regularity conditions $(N_t h_{N_t})^{1/2} \{m_{N_t}(x_1) - m(x_1), \cdots, m_{N_t}(x_l) - m(x_l)\}$ is asymptotically normally distributed with mean vector 0 and diagonal covariance matrix $C = [c_{ij}]$ with $c_{ii} = \frac{\text{Var}[Y|X=x_i]}{g(x_i)} \nu \int_{-\infty}^{\infty} K^2(u) du$ where $\nu(\nu < 1)$ is as defined in the next section. For simplicity we have proved the theorem for the special case l=2. The method of proof remains valid in the more general case. The theorem can be regarded as the appropriate

^{*} Research partially supported by a Natural Science and Enging Research Council Grant of Canada.

^{**} Department of Statistics, The University of Manitoba, Winnipeg, Manitoba, R3t 2n2 Canada.

extension of the earlier result due to Schuster [6].

2. Main Result

We assume that the probability density function K and the sequence $\{h_n\}$ are chosen to satisfy the following conditions:

(i) K(u) and |uK(u)| are bounded

(ii)
$$\int_{-\infty}^{\infty} u K(u) du = 0$$

(iii)
$$\int_{-\infty}^{\infty} u^2 K(u) du < \infty$$

(iv)
$$\lim_{n\to\infty}\frac{1}{n}\sum_{j=1}^{n}\left(\frac{h_n}{h_i}\right)=\nu<1$$

(v)
$$\frac{1}{n} \sum_{i=1}^{n} h_{i}^{2} \leq C_{1} h_{n}^{2}$$
 ($C_{1} > 0$), $n = 1, 2, 3, \cdots$

(vi)
$$\lim_{n\to\infty} nh_n^3 = \infty$$
 and $\lim_{n\to\infty} nh_n^5 = 0$

REMARK 1. If K is the standard normal probability density function, then conditions (i), (ii) and (iii) are satisfied.

REMARK 2. If $h_n = n^{-\delta}$, $\frac{1}{5} < \delta < \frac{1}{3}$, then conditions (iv), (v) and (vi) are satisfied. (For a proof see [1], p. 26 and p. 46.)

We define the following:

(3)
$$g(x) = \int_{-\infty}^{\infty} f(x, y) dy$$
$$w(x) = \int_{-\infty}^{\infty} y f(x, y) dy$$
$$v(x) = \int_{-\infty}^{\infty} y^2 f(x, y) dy.$$

Hence,

Var
$$[Y | X = x] = \frac{v(x)}{g(x)} - \frac{w^2(x)}{g^2(x)}$$
.

Suppose x_1 and x_2 are two distinct points. We define for $i=1, 2, \dots, n$ and s=1, 2

$$U_{i}^{*}(x_{s}) = \frac{1}{h_{i}} K\left(\frac{x_{s} - X_{i}}{h_{i}}\right)$$

$$V_{i}^{*}(x_{s}) = Y_{i}U_{i}^{*}(x_{s})$$

$$U_{i}(x_{s}) = h_{n}^{1/2} \{U_{i}^{*}(x_{s}) - EU_{i}^{*}(x_{s})\}$$

$$V_{i}(x_{s}) = h_{n}^{1/2} \{V_{i}^{*}(x_{s}) - EV_{i}^{*}(x_{s})\}$$

$$\overline{U}_{n}(x_{s}) = \sum_{i=1}^{n} U_{i}(x_{s})$$

$$(4) \qquad \overline{V}_{n}(x_{s}) = \sum_{i=1}^{n} \overline{V}_{i}(x_{s})$$

$$W_{i} = (U_{i}(x_{1}), \ V_{i}(x_{1}), \ U_{i}(x_{2}), \ V_{i}(x_{2}))'$$

$$n^{1/2} Z_{n} = (\overline{U}_{n}(x_{1}), \ \overline{V}_{n}(x_{1}), \ \overline{U}_{n}(x_{2}), \ \overline{V}_{n}(x_{2}))'$$

$$A = \nu \int_{-\infty}^{\infty} K^{2}(u) du \begin{bmatrix} g(x_{1}) \ w(x_{1}) \ 0 \ 0 \\ w(x_{1}) \ v(x_{1}) \ 0 \ 0 \\ 0 \ 0 \ w(x_{2}) \ w(x_{2}) \\ 0 \ 0 \ w(x_{2}) \ v(x_{2}) \end{bmatrix}$$

Let Z be a four variate normal random variable with mean vector 0 and covariance matrix A.

We now prove the following lemmas.

LEMMA 1. Suppose K satisfies conditions (i) and (iii) and the sequence $\{h_n\}$ satisfies condition (iv). Let g', w' and v' exist and be bounded. Then the following results hold for s=1, 2 and r=1, 2.

(a)
$$\lim_{n\to\infty} \operatorname{Var}\left\{n^{-1/2}\overline{U}_n(x_s)\right\} = \nu g(x_s) \int_{-\infty}^{\infty} K^2(u) du$$

(b)
$$\lim_{n\to\infty} \operatorname{Var}\left\{n^{-1/2}\overline{V}_n(x_s)\right\} = \nu v(x_s) \int_{-\infty}^{\infty} K^2(u) du$$

(c)
$$\lim_{n\to\infty} \text{Cov} \{n^{-1/2}\overline{U}_n(x_s), n^{-1/2}\overline{V}_n(x_s)\} = \nu w(x_s) \int_{-\infty}^{\infty} K^2(u) du$$

(d)
$$\lim_{n\to\infty} \text{Cov} \{n^{-1/2}\overline{U}_n(x_1), n^{-1/2}\overline{U}_n(x_2)\} = 0$$

(e)
$$\lim_{n \to \infty} \text{Cov} \{ n^{-1/2} \overline{V}_n(x_1), n^{-1/2} \overline{V}_n(x_2) \} = 0$$

(f)
$$\lim_{n\to\infty} \text{Cov}\{n^{-1/2}\overline{U}_n(x_s), n^{-1/2}\overline{V}_n(x_r)\} = 0, r \neq s.$$

PROOF. We sketch the proof of part (a) and part (d) of the Lemma. The proof of the other parts are similar and will be omitted. To obtain part (a) we have

$$\begin{aligned} \operatorname{Var} \left\{ n^{-1/2} \overline{U}_{n}(x_{s}) \right\} &= \frac{1}{n} \sum_{j=1}^{n} \left(\frac{h_{n}}{h_{j}} \right) \int_{-\infty}^{\infty} \left\{ K(u) \right\}^{2} g(x_{s} - h_{j}u) du \\ &- \frac{h_{n}}{n} \sum_{j=1}^{n} \left\{ \int_{-\infty}^{\infty} K(u) g(x_{s} - h_{j}u) du \right\}^{2} \\ &= \frac{1}{n} \sum_{j=1}^{n} \left(\frac{h_{n}}{h_{j}} \right) \left[g(x_{s}) \int_{-\infty}^{\infty} \left\{ K(u) \right\}^{2} du + O(h_{j}) \right] \\ &- \frac{h_{n}}{n} \sum_{j=1}^{n} \left[g(x_{s}) + O(h) \right]_{j}. \end{aligned}$$

Hence,

$$\lim_{n \to \infty} \text{Var} \{ n^{-1/2} \overline{U}_n(x_s) \} = \nu g(x_s) \int_{-\infty}^{\infty} K^2(u) du , \qquad s = 1, 2.$$

To prove part (d) we have used the method similar to that of Schuster [6]:

$$E\left[\frac{1}{h_i}K\left(\frac{x_1-X_i}{h_i}\right)K\left(\frac{x_2-X_i}{h_i}\right)\right] = O(h_i).$$

Now,

$$\begin{split} \operatorname{Cov}\left\{n^{-1/2}\overline{U}_{n}(x_{1}),\ n^{-1/2}\overline{U}_{n}(x_{2})\right\} &= \frac{1}{n}\sum_{i=1}^{n}E\left\{U_{i}(x_{1})U_{i}(x_{2})\right\} \\ &= \frac{1}{n}\sum_{i=1}^{n}\left[\frac{h_{n}}{h_{i}}E\left\{\frac{1}{h_{i}}K\left(\frac{x_{1}-X_{i}}{h_{i}}\right)K\left(\frac{x_{2}-X_{i}}{h_{i}}\right)\right\} \right. \\ &\left. -h_{n}E\left\{\frac{1}{h_{i}}K\left(\frac{x_{1}-X_{i}}{h_{i}}\right)\right\}E\left\{\frac{1}{h_{i}}K\left(\frac{x_{2}-X_{i}}{h_{i}}\right)\right\}\right] \\ &= \frac{1}{n}\sum_{i=1}^{n}\left[\frac{h_{n}}{h_{i}}\cdot O(h_{i})-h_{n}\left\{g(x_{1})+O(h_{i})\right\}\left\{g(x_{2})+O(h_{i})\right\}\right] \\ &= O(h_{n})\,. \end{split}$$

Hence,

$$\lim_{n \to \infty} \text{Cov} \{ n^{-1/2} \overline{U}_n(x_1), \ n^{-1/2} \overline{U}_n(x_2) \} = 0.$$

Let $C=(c_1, d_1, c_2, d_2)'$ be any real vector in R^4 .

LEMMA 2. Suppose K satisfies conditions (i) and (iii) and the sequence $\{h_n\}$ satisfies condition (iv) and $nh_n^3 \to \infty$ as $n \to \infty$. Let $E_f|Y|^3$ be finite and let g', w' and v' exist and be bounded. If $g(x_i) > 0$ for i = 1, 2, then $C'Z_n$ converges in distribution to a normal random variable with mean 0 and variance C'AC.

PROOF. We shall establish the asymptotic normality of $C'Z_n$ by showing that

(5)
$$\lim_{n \to \infty} \left\{ \frac{\sum_{i=1}^{n} E |C'W_i|^3}{n^{3/2} (\operatorname{Var}(C'Z_n))^{3/2}} \right\} = 0. \quad \text{(See [2], p. 275.)}$$

Using Lemma 1, we have

(6)
$$\lim_{n\to\infty} \operatorname{Var}(C'Z_n) = \nu \int_{-\infty}^{\infty} K^2(u) du \left[\sum_{s=1}^{2} \left\{ c_s^2 g(x_s) + d_s^2 v(x_s) + 2c_s d_s w(x_s) \right\} \right]$$
$$= C'AC > 0.$$

The positive definiteness of the matrix A follows from the fact that $g(x)v(x)-w^2(x)=g^2(x)\operatorname{Var}[Y|X=x]$ and $g(x_i)>0$ for i=1, 2. It now suffices to prove that

$$\lim_{n \to \infty} n^{-3/2} \Big\{ \sum_{i=1}^{n} E |C'W_i|^3 \Big\} = 0$$

Using the hypothesis and the arguments similar to those in Lemma 1 it can be shown that

$$E|U_i(x_s)|^3 = O(h_n^{3/2}h_i^{-2}) = O(h_n^{-1/2})$$

and

$$E|V_i(x_s)|^3 = O(h_n^{3/2}h_i^{-3}) = O(h_n^{-3/2})$$
.

Hence

$$\begin{split} n^{-3/2} \Big\{ \sum_{i=1}^{n} E \, |C'W_{i}|^{3} \Big\} & \leq n^{-3/2} \, |C|^{3} \sum_{i=1}^{n} E \, |W_{i}|^{3} \\ & \leq 8n^{-3/2} \, |C|^{3} \sum_{i=1}^{n} \max_{s=1, 2} \big\{ E \, |U_{i}(x_{s})|^{3}, \, E \, |V_{i}(x_{s})|^{3} \big\} \\ & = O \, \{ (n \, h_{3}^{3})^{-1/2} \} = o(1) \, . \end{split}$$

This completes the proof.

We define

$$Z_n^* = h_n^{1/2} \cdot n^{-1/2} \Big\{ \sum_{i=1}^n (U_i^*(x_1) - g(x_1)), \ \sum_{i=1}^n (V_i^*(x_1) - w(x_1)), \\ \sum_{i=1}^n (U_i^*(x_2) - g(x_2)), \ \sum_{i=1}^n (V_i^*(x_2) - w(x_2)) \Big\} .$$

LEMMA 3. Suppose conditions (i) through (vi) are satisfied. Let $E_f|Y|^3$ be finite and let g', g'', w', w'' and v' exist and be bounded. If $g(x_i)>0$ for i=1, 2, then $C'Z_n^*$ converges in distribution to a normal random variable with mean 0 and variance C'AC.

PROOF. We have

$$(8) C'Z_n - C'Z_n^* = h_n^{1/2} \cdot n^{-1/2} \sum_{i=1}^n \sum_{s=1}^2 \left[c_s \left\{ g(x_s) - EU_i^*(x_s) \right\} + d_s \left\{ w(x_s) - EV_i^*(x_s) \right\} \right].$$

Using the hypothesis it can be shown that for $i=1, 2, \dots, n$ and s=1, 2

$$EU_i^*(x_s) = g(x_s) + O(h_i^2)$$

and

$$EV_{i}^{*}(x_{s}) = w(x_{s}) + O(h_{i}^{2})$$
.

Hence,

$$\left|\sum_{i=1}^{n} (g(x_s) - EU_i^*(x_s))\right| = O\left(\sum_{i=1}^{n} h_i^2\right),$$

and

(10)
$$\left|\sum_{i=1}^{n} (w(x_s) - EV_i^*(x_s))\right| = O\left(\sum_{i=1}^{n} h_i^2\right).$$

From (8), (9) and (10) we get

$$\begin{split} C'Z_n - C'Z_n^* &= O\bigg(h_n^{1/2} \, n^{-1/2} \sum_{i=1}^n h_i^2\bigg) \\ &= O\bigg((n h_n)^{1/2} \frac{1}{n} \sum_{i=1}^n h_i^2\bigg) \\ &= O((n h_n)^{1/2} h_n^2) \\ &= O((n h_n^5)^{1/2}) \\ &= o(1) \, . \end{split}$$

The proof now follows from Lemma 2.

Suppose N_t (t>0) is a stopping random variable such that $\frac{N_t}{t} \stackrel{p}{\to} \pi$ $(\pi>0)$ as $t\to\infty$. This implies that for any $\varepsilon>0$, there exists $t_0=t_0(\varepsilon)$ such that for $t\ge t_0$ we have

$$P[|N_t - \pi t| \ge \pi t \varepsilon] < \varepsilon$$
.

We define

(11)
$$N_1 = N_1(t, \varepsilon) = \lceil \pi t (1 - \varepsilon) \rceil$$

and

(12)
$$N_2 = N_2(t, \varepsilon) = [\pi t(1+\varepsilon)]$$

where [x] is the integral part of x.

We note that for any $0 < \varepsilon < \frac{1}{2}$ and $t > \frac{1}{\pi \varepsilon}$ the numbers N_1 and N_2 defined above satisfy the following inequalities:

$$\frac{N_2}{N_1} < \frac{1+\varepsilon}{1-2\varepsilon}$$

and

$$\frac{N_2 - N_1}{N_1} < \frac{3\varepsilon}{1 - 2\varepsilon} .$$

We define

$$R_{i} = \sum_{s=1}^{2} \left\{ c_{s} U_{i}^{*}(x_{s}) + d_{s} V_{i}^{*}(x_{s}) \right\}, \qquad i=1, 2, \dots$$

$$\mu = \sum_{s=1}^{2} \left\{ c_{s} g(x_{s}) + d_{s} w(x_{s}) \right\}$$

$$S_{n} = \sum_{i=1}^{n} \left\{ R_{i} - \mu \right\}, \qquad n=1, 2, \dots$$

$$Q = \max_{N \in \mathbb{Z} \in \mathcal{N}_{n}} \left| \sum_{s=1}^{n} \left[R_{i} - E \left\{ R_{i} \right\} \right] \right|.$$

It can be seen that $h_n^{1/2}n^{-1/2}S_n=C'Z_n^*$. Replacing n by N_t in the expressions for $\overline{U}_n(x_s)$, $\overline{V}_n(x_s)$, Z_n and Z_n^* , we define $\overline{U}_{N_t}(x_s)$, $\overline{V}_{N_t}(x_s)$, Z_{N_t} and $Z_{N_t}^*$ respectively.

In order to study the asymptotic distribution of $C'Z_{Nt}^*$ we find it convenient to choose a specific sequence $\{h_n=n^{-\delta},\ n=1,\ 2,\ \cdots\}$, where δ is some positive number. With this choice of $\{h_n\}$ we have the following lemma. Let C_1 be a generic constant.

LEMMA 4. Suppose K satisfies conditions (i) and (iii) and $\{h_n = n^{-\delta}\}$, $\delta > 0$. If g' and v' exist and are bounded, then for any $0 < \varepsilon < \frac{1}{2}$, $t > \frac{1}{\pi \varepsilon}$ we have

$$P\left\{Q\!\ge\!\varepsilon^{1/3}\sqrt{\frac{N_1}{h_{N_1}}}\right\}\!<\!\frac{C_1\varepsilon^{1/3}}{(1\!-\!2\varepsilon)}\!\left\{\!\frac{(1\!+\!\varepsilon)}{(1\!-\!2\varepsilon)}\!\right\}^\delta$$

PROOF. By Kolmogorov's inequality

(13)
$$P\left[Q \ge \varepsilon^{1/3} \sqrt{\frac{N_1}{h_{N_1}}}\right] \le \frac{\sum_{i=N_1+1}^{N_2} E\left\{R_i^2\right\}}{\varepsilon^{2/3} \left\{\frac{N_1}{h_{N_1}}\right\}}.$$

Using the hypothesis it can be shown that

(14)
$$E\{R_i^2\} = O\left(\frac{1}{h_i}\right) = O\left(\frac{1}{h_{N_2}}\right) \quad \text{if} \quad N_1 < i \le N_2.$$

From (13) and (14), we get

$$\begin{split} P\!\!\left[Q\! \ge & \varepsilon^{1/3} \sqrt{\frac{N_1}{h_{N_1}}}\right] \! \le \frac{C_1(N_2\!-\!N_1)}{3\varepsilon^{2/3}N_1} \! \left(\frac{h_{N_1}}{h_{N_2}}\right) \\ & \le \frac{C_1\varepsilon^{1/3}}{(1\!-\!2\varepsilon)} \! \left(\frac{1\!+\!\varepsilon}{(1\!-\!2\varepsilon)}\right)^{\!\delta}. \end{split}$$

LEMMA 5. Suppose K satisfies conditions (ii), and (iii) and $\{h_n = n^{-\delta}\}$, $\delta > 0$. If g', g'', w' and w'' exist and are bounded and if $0 < \varepsilon < \frac{1}{2}$, $t > \frac{1}{\pi \varepsilon}$ and $\frac{1}{5} < \delta$, then for all $N_1 < n \le N_2$,

$$\left|\sqrt{\frac{h_{N_1}}{N_1}}\sum_{i=N_1+1}^n \left[E\left\{R_i\right\} - \mu\right]\right| < \frac{C_1\varepsilon}{(1-2\varepsilon)}.$$

PROOF. Using computations similar to those in Lemma 3, we obtain for all n such that $N_1 < n \le N_2$

$$\begin{split} \Big| \sum_{i=N_1+1}^n \left[E\left\{ R_i \right\} - \mu \right] \Big| & \leq \frac{C_1}{3} (N_2 - N_1) \sum_{i=N_1+1}^n h_i^2 \\ & \leq \frac{C_1}{3} (N_2 - N_1) h_{N_1}^2 \,. \end{split}$$

Hence,

$$\begin{split} \left| \sqrt{\frac{h_{N_1}}{N_1}} \sum_{i=N_1+1}^n \left[E\left\{ R_i \right\} - \mu \right] \right| & \leq \frac{C_1 (N_2 - N_1)}{3N_1} (N_1 h_{N_1}^5)^{1/2} \\ & = \frac{C_1 (N_2 - N_1)}{3N_1} (N_1^{1-5\delta})^{1/2} \\ & \leq \frac{C_1 \varepsilon}{(1-2\varepsilon)} \, . \end{split}$$

LEMMA 6. Suppose K satisfies conditions (i), (ii) and (iii) and $\{h_n=n^{-\delta}\}$, $\frac{1}{5} < \delta < \frac{1}{3}$ and $\frac{N_t}{t} \stackrel{p}{\to} \pi$ ($\pi > 0$) as $t \to \infty$. Let $E_f |Y|^3$ be finite and let g', g'', w', w'' and v' exist and be bounded. If $x_1 \neq x_2$, $g(x_i) > 0$ for i=1, 2, then $C'Z_{N_t}^*$ converges in distribution to a normal random variable with mean 0 and variance C'AC as t tends to infinity.

PROOF. The proof resembles that of Theorem 1 in Renyi [5]. Let $\varepsilon \left(\varepsilon < \frac{1}{2}\right)$ be an arbitrarily small positive number. Let $t \ge t_0$ where $t_0 = t_0(\varepsilon) > \frac{1}{\pi \varepsilon}$ and let N_1 and N_2 be chosen as before.

We have for y>0

$$\begin{split} P[C'Z_{N_t}^* < y] &= \sum_{n=1}^{\infty} P[C'Z_n^* < y \; ; N_t = n] \\ &= \sum_{|n-\pi|t| < \pi t\varepsilon} P[C'Z_n^* < y \; ; N_t = n] \\ &+ \sum_{|n-\pi|t| \ge \pi t\varepsilon} P[C'Z_n^* < y \; ; N_t = n] \\ &\leq \sum_{|n-\pi|t| \le \pi t\varepsilon} P[C'Z_n^* < y \; ; N_t = n] + \varepsilon \; . \end{split}$$

26 M. Samanta

Hence,

(15)
$$|P[C'Z_{N_t}^* < y] - \sum_{n=\pi t \mid s=\pi t \leq \pi} P[C'Z_n^* < y; N_t = n]| < \varepsilon.$$

Introducing the random variables R_i , S_n and Q as defined in (11), we have for any n such that $N_1 < n \le N_2$

$$\begin{split} (16) \qquad P \lceil C' Z_n^* < y \; ; N_t = n \rceil = & P \left[\sqrt{\frac{h_n}{n}} \left\{ \sum_{i=1}^{N_1} (R_i - \mu) + \sum_{i=N_1+1}^n (R_i - E(R_i)) \right. \right. \\ & + \sum_{i=N_1+1}^n (E(R_i) - \mu) \right\} < y \; ; N_t = n \right] \\ \leq & P \left[S_{N_1} < y \sqrt{\frac{N_2}{h_{N_2}}} - \sum_{i=N_1+1}^n (E(R_i) - \mu) + Q \; ; N_t = n \right] \\ = & P \left[\sqrt{\frac{h_{N_1}}{N_1}} \, S_{N_1} < y \sqrt{\frac{N_2}{N_1}} \left(\frac{h_{N_1}}{h_{N_2}} \right) - \sqrt{\frac{h_{N_1}}{N_1}} \sum_{i=N_1+1}^n \left\{ E(R_i) - \mu \right\} \right. \\ & + \sqrt{\frac{h_{N_1}}{N_1}} \, Q \; ; N_t = n \right] \\ \leq & P \left[C' Z_{N_1}^* < y \sqrt{\left(\frac{N_2}{N_1} \right)^{1+\delta}} + \frac{C_1 \varepsilon}{(1-2\varepsilon)} + \sqrt{\frac{h_{N_1}}{N_1}} \, Q \; ; N_t = n \right], \end{split}$$

by Lemma 5. Hence,

$$(17) \sum_{|n-\pi t|<\pi t\varepsilon} P[C'Z_n^* < y ; N_t = n]$$

$$\leq P\Big[C'Z_{N_1}^* < y\sqrt{\left(\frac{N_2}{N_1}\right)^{1+\delta}} + \frac{C_1\varepsilon}{(1-2\varepsilon)} + \sqrt{\frac{h_{N_1}}{N_1}}Q ; |N_t - \pi t| < \pi t\varepsilon\Big]$$

$$\leq P\Big[C'Z_{N_1}^* < y\left(\frac{1+\varepsilon}{(1-2\varepsilon)}\right)^{(1+\delta)/2} + \frac{C_1\varepsilon}{(1-2\varepsilon)} + \varepsilon^{1/3};$$

$$Q < \varepsilon^{1/3}\sqrt{\frac{N_1}{h_{N_1}}}; |N_t - \pi t| < \pi t\varepsilon\Big] + P\Big[Q \geq \varepsilon^{1/3}\sqrt{\frac{N_1}{h_{N_1}}}\Big]$$

$$\leq P\Big[C'Z_{N_1}^* < y\left(\frac{1+\varepsilon}{1-2\varepsilon}\right)^{(1+\delta)/2} + \frac{C_1\varepsilon}{(1-2\varepsilon)} + \varepsilon^{1/3}\Big] + \frac{C_1\varepsilon^{1/3}}{(1-2\varepsilon)}\left(\frac{1+\varepsilon}{1-2\varepsilon}\right)^{\delta},$$

by Lemma 4.

From (16) we get in a similar manner

$$(18) \sum_{|n-\pi t|<\pi t\varepsilon} P[C'Z_n^* < y ; N_t = n]$$

$$\geq P\Big[C'Z_{N_1}^* < y - \frac{C_1\varepsilon}{(1-2\varepsilon)} - \sqrt{\frac{h_{N_1}}{N_1}}Q ; |N_t - \pi t| < \pi t\varepsilon\Big]$$

$$\geq P\Big[C'Z_{N_1}^* < y - \frac{C_1\varepsilon}{(1-2\varepsilon)} - \varepsilon^{1/3} ; Q < \varepsilon^{1/3}\sqrt{\frac{N_1}{h_{N_1}}}; |N_t - \pi t| < \pi t\varepsilon\Big]$$

$$\geq P\Big[C'Z_{N_1}^* < y - \frac{C_1\varepsilon}{(1-2\varepsilon)} - \varepsilon^{1/3}\Big] - P\Big[Q \geq \varepsilon^{1/3}\sqrt{\frac{N_1}{h_{N_1}}}\Big] - P[|N_t - \pi t| \geq \pi t\varepsilon]$$

$$\geq P\Big[C'Z_{N_1}^* < y - \frac{C_1\varepsilon}{(1-2\varepsilon)} - \varepsilon^{1/3}\Big] - \frac{C_1\varepsilon^{1/3}}{(1-2\varepsilon)}\left(\frac{1+\varepsilon}{1-2\varepsilon}\right)^{\delta} - \varepsilon.$$

From (15), (17) and (18) we conclude that for $t \ge t_0$

$$P \lceil C'Z_{N_t}^* < y \rceil \leq P \left[C'Z_{N_1}^* < y \left(\frac{1+\varepsilon}{1-2\varepsilon} \right)^{(1+\delta)/2} + \frac{C_1\varepsilon}{(1-2\varepsilon)} + \varepsilon^{1/3} \right] + \frac{C_1\varepsilon^{1/3}}{(1-2\varepsilon)} \left(\frac{1+\varepsilon}{1-2\varepsilon} \right)^{\delta} + \varepsilon^{1/3} \right] + \frac{C_1\varepsilon^{1/3}}{(1-2\varepsilon)} \left(\frac{1+\varepsilon}{1-2\varepsilon} \right)^{\delta} + \varepsilon^{1/3} +$$

and

$$P [C'Z_{N_t}^* < y] \ge P \Big[C'Z_{N_1}^* < y - \frac{C_1 \varepsilon}{(1 - 2\varepsilon)} - \varepsilon^{1/3} \Big] - \frac{C_1 \varepsilon^{1/3}}{(1 - 2\varepsilon)} \Big(\frac{1 + \varepsilon}{1 - 2\varepsilon} \Big)^{\delta} - 2\varepsilon \ .$$

Similar statements hold for y < 0. We now invoke Lemma 3 and the continuity of the distribution function of a normal random variable to complete the proof.

We are now in a position to prove the main theorem of this paper.

Theorem. Suppose K satisfies conditions (i), (ii) and (iii), and $\{h_n=n^{-\delta}\}$, $\frac{1}{5} < \delta < \frac{1}{3}$ and $\frac{N_t}{t} \stackrel{p}{\to} \pi$ ($\pi > 0$) as $t \to \infty$. Let $E_f |Y|^3$ be finite and let g', g'', w', w'' and v' exist and be bounded. If $x_1 \neq x_2$, $g(x_i) > 0$ for i=1, 2, then $(N_t h_{N_t})^{1/2} (m_{N_t}(x_1) - m(x_1), m_{N_t}(x_2) - m(x_2))'$ converges in distribution to Z^* as t tends to infinity where Z^* is a bivariate normal random variable with mean vector 0 and diagonal covariance matrix $C = [c_{ij}]$ where

$$c_{ii} = \frac{\operatorname{Var} [Y | X = x_i]}{g(x_i)} \nu \int_{-\infty}^{\infty} K^2(u) du \qquad i = 1, 2.$$

PROOF. Using the Cramér-Wold theorem (Theorem (xi) on page 123 of [4]) we conclude from Lemma 6 that $Z_{N_t}^*$ converges in distribution to Z as t tends to infinity. The proof of the theorem now immediately follows from this result in conjunction with Theorem (iii) on page 388 of [4].

References

- [1] Korovkin, P.P.: Inequalities. Pergammon Press, London, (1961).
- [2] LOEVE, M.: Probability Theory. Third Edition, Van Nostrand, Princeton, (1963).
- [3] NADARAYA, E. A.: "On Estimating Regression". Theory of Probability and Its Applications, 9 (1964), 141-142.
- [4] RAO, C.R.: Linear Statistical Inference and Its Applications. Second Edition, Wiley, New York, (1973).
- [5] RENYI, A.: On the Asymptotic Distribution of the Sum of a Random Number of Independent Random Variables. Acta Mathematica Scientiarum Hungaricae, 8 (1957), 193-199.
- [6] Schuster, E.F.: Joint Asymptotic Distribution of the Estimated Regression at a Finite Number of Distinct Points. Annals of Mathematical Statistics, 43 (1972), 84-88.
- [7] WATSON, G.S.: "Smooth Regression Analysis". Sankhyá, A26 (1964), 359-372.
- [8] YAMATO, H.: "Sequential Estimation of a Continuous Probability Density Function and Mode". Bulletin of Mathematical Statistics, 14, 3-4, (1971), 1-12.

Communicated by S. Kano Received June 20, 1983