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ON SEQUENTIAL ESTIMATION OF 

 THE REGRESSION  FUNCTION*

    By 

M. SAMANTA**

   1. Introduction and Summary 

   Let (X, Y) be a two dimensional random variable having a joint density function f 

and let g be the marginal density function of X. We assume that E fY is finite and 

define the regression function m(x) (for regression of Y on X) by m(x)=E[Y (X=x]. 

Nadaraya [3] and Watson [7] and Schuster [6] have studied the asymptotic properties 

of the estimate nzn(x) of m(x) defined by 

YiK(x_X~~ 
( 1)iiin(x)= i=i hn 

z x—Xi) i=1 hn 

where K(u) is a probability density function on (—oo, ; co), {h n} is a monotonically 
decreasing sequence of positive numbers converging to zero and (X1, Y1), (X2, Y2), • • • 

(Xn, Yn) are n independent observations of (X, Y). 
   In many practical situations the number of observations Vt which we observe in 

time (0, t] is a random variable. We call Ni a stopping random variable. We assume 
that (X1, Y1), (X2, Y2), are independent observations of (X, Y) and need not be in

dependent of the random variable Ni. In this paper we propose an estimate mNt(x) of 

the regression function m(x) based on (X1, Y1), (X2, Y2), ••• , (X \-t, Y Nt) and given by 

                   h K(xhX2)  
( 2)m vt(x)= Nt 1 (x —Xi  

hiK( hi 
   We note that the expression for the estimate mNt(x) is motivated by the recursive 

type of estimate of a probability density function first proposed by Yamato [8]. Suppose 

x1, x2,  xt are 1 distinct points. We have shown that under certain regularity con
ditions (NthNt)1r2 {my t(x1)—m(x1), •••, mNt(x1)—m(x1)} is asymptotically normally dis

tributed with mean vector 0 and diagonal covariance matrix C=[ci;] with cii= 
Var [Y X = x i]  

v ̀ ~ K2(u)du where v(i) <1) is as defined in the next section. For sim
    g(xi) 

plicity we have proved the theorem for the special case 1=2. The method of proof 
remains valid in the more general case. The theorem can be regarded as the appropriate 
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extension of the earlier result due to Schuster [6].

   2. Main Result 

   We assume that the probability density function K and the sequence  {hn} are chosen 

to satisfy the foIlowing conditions : 

(i) K(u) and I uK(u) I are bounded 

(ii) LuK(u)du=0 

(iii) ._ u2K(u)du<co 

n 

             h1=--v<1 (iv) lim—E( 
n ;=1; 

n 

(v)  h; <C1 h n (C1 > 0), n=1, 2, 3, • • 
       n ;=1 

(vi) lim nhn=oo and lim nh=0 

   REMARK 1. If K is the standard normal probability density function, then conditions 

( i ), (ii) and (iii) are satisfied. 

   REMARK 2. If h n=n -a,5<o<3, then conditions (iv), (v) and (vi) are satisfied. 
(For a proof see [1], p. 26 and p. 46.) 

   We define the following : 

g(x)=E f(x, y)d v 

(3)w(x)== _C~ yf(x, y)dy 
z'(x)= 's y2f(x, y)dy • 

Hence, 

                      Var [YX=x]= v(x) — w2(x) 
                                  g(x) g2(x) • 

Suppose x1 and x2 are two distinct points. We define for 1=1, 2, ••• , n and$s=1, 2 

U*(xs)=----1 K(xs—X0 
hi hi 

                                                T7                     Vi(xs)=Y1U*(tis) 

U(x8) = h;," {U*(x s) — EU*(x s)} 

V i(xs)=h;/ 2 {V *(xs)—EV*(xs)} 

Cin(xs)= Ui(xs) 
i=1
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 (4)Vn(xs)= V i(xs) 
j=1 

Wi=(Ui(x1), V i(x1), Ui(x2), V i(x2))' 

n112Zn=(17n(xi), 17.(x1), Un(x2), Vn(x2))' 

' g(x1) w(x1) 0 0 

w(x1) v(x1) 0 0 A=v.0 K2 (u)du 0 0 g(x2) w(x2) 

0 0 w(x2) v(x2) i 

Let Z be a four variate normal random variable with mean vector 0 and covariance 

matrix A. 

   We now prove the following lemmas. 
   LEMMA 1. Suppose K satisfies conditions (i) and (iii) and the sequence {hn} satisfies 

condition (iv). Let g', w' and v' exist and be bounded. Then the following results hold 

for s=1, 2 and r=1, 2. 

(a) lim Var {n1I2Un(xs)} =vg(xOf* K2(u)du 

(b) lim Var {n112Vn(xs)} =vv(xsT K2(u)du 

(c) lirn Cov {n1%2Un(xs), n'12Vn(xs)} =vw(xs4 K2(u)du 
(d) lim Cov {n1/2Un(x1), n-"2Un(x2)} =0 

(e) lim Cov{n_1%2Vn(x1), n1/2Vn(x2)} =0 
            n-,00 

(f) lim Coy {n1-`2Un(xs), n1/2Vn(x,)} =0, r#s 
           n—.00 

   PROOF. We sketch the proof of part (a) and part (d) of the Lemma. The proof of 
the other parts are similar and will be omitted. To obtain part (a) we have 

             Var {n112Un(xs)} = n ;-=.1(h~{K(u)} 2g(xs—h;u)du 

—  

 2 

                           nn;~~K(u)g(xs—h;u)du} 

                   n ;(----)[g(xs)~~{K(u)} 2d u+O(h;)] 
                        hn E [

g(xs)+O(ha n j=1 

Hence, 

lim Var {n1%2Un(xs)} =vg(xsT K2(u)du , s=1, 2. 
n-.00
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To prove part (d; we have used the method similar to that of Schuster [61 : 

E[----f1 K(x1h~Xi~K(x2—Xj)]=O(hi) . hi 

Now, 

Coy {n1,2C'R(x 1 ,--1 2U(x2)}_—E {Ui(x1)Ui(x2)}              c
n i=i 

                        1 nr hn  E j 1Kxl—XiKx2—Xi1 
                     n iL hi l hi hi-----------) hi IJ 

                    —hnE{hZ----IC(  x1hiXZ)}ElhiK(xZ1---------x2))] 

                        n iELhi• O(hi)—hn {g(x1) O(hi)} {g(x2)±O(hi)} 
=O(hn) • 

Hence, 

lim Coy {n-112Lf (x1), n1/2Un(x2)} =0. 
n~~ 

Let C=(c1, d1, c2, d2)' be any real vector in R4. 
   LEMMA 2. Suppose K satisfies conditions (i) and (iii) and the sequence {hn} satisfies 

condition (iv) and nhn—>oo as n—*co. Let Ef I Y 13 be finite and let g', w' and v' exist and 

be bounded. If g(xi)>0 for i=1, 2, then C'Zn converges in distribution to a normal 
random variable with mean 0 and variance C'AC. 

   PROOF. We shall establish the asymptotic normality of C'Z, by showing that 

n (5)lim E I C'W i 13 =0 . (See [2], p. 275.) 
n312(Var(C'Zn))312 

Using Lemma 1, we have 

(6) lim Var(C'Zn)=v K2(u)du[ {csg(xs)±4v(xs)+2csdsw(xs)}] 
rt0oS=1 

=C'AC>0. 

The positive definiteness of the matrix A follows from the fact that g(x)v(x)—w2(x)= 

g2(x) Var [171X= x] and g(x1)>0 for i=1, 2. It now suffices to prove that 

lim n-3/2{ i E I C'Wi 13} =0 
i=1 

Using the hypothesis and the arguments similar to those in Lemma 1 it can be shown 

that 

                    E I Ui(x OP= O(hn'2h i2)=O(h7b112) 

and 

                     E IV i(xs) 13=0(h;,12h t 3)=O(hT312) . 

Hence
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           n-3/217EIC'W1IJICn3/21C13 iE1 i       l
li=1 i=1 

 <8n33/2IC  I3 max {E l Ui(xs) 13, El Vi(x3)1 >} 
                                                                1=1 s=1,2 

                          =0 {(nhn)-112} =o(1) . 

This completes the proof. 

   We define 

(7)Z*,=h', 2, n1/2{±(U*(xi)—g(xi)), i(V *(x1)—w(x1)), 
             1i=1i=1 

                ±(Ut(x2)g(x2)),i(V *(x2)—w(x2))} 
        i=1i=1 

   LEMMA 3. Suppose conditions (i) through (vi) are satisfied. Let E f I Y 13 be finite 
and let g', g", w', w" and v' exist and be bounded. If g(x1)>0 for i=1, 2, then C'Z* 

converges in distribution to a normal random variable with mean 0 and variance C'AC. 

   PROOF. We have 

                           7t
i (8) C'Z,,—C'Z*= h;!2 • n-"2r[cs {g(xs)—EU*(xs)} +ds {w(xs)—EV *(xs)} ] .                                                1=1 s=1 

Using the hypothesis it can be shown that for i=1, 2, • • • , n and s=1, 2 

EU*(x3)=g(x,)+0(hi) 
and 

EV*(xs)=w(xs)+0(h1) • 

Hence, 

(9)ii(g(xs)—EU*(xs)) =0(±h2), 
i=1z 1 

and 

(10)±(w(xs)—EV*(xs)) =0(i h7). 
i=1i-1 

From (8 ), (9) and (10) we get 

C'Zn—C'Z*,=0(hn/2 n-1/2 hi) 
i=1 

                           =0((nh01/2±,~l                              —hi) 
                                                                  n i=1 

=0((nh,)1/2hn) 

=0((nhn ,)1/2) 

=o(1) . 

The proof now follows from Lemma 2. 

   Suppose Art (t>0) is a stopping random variable such thatttp 7r (7r>0) as t co. 
This implies that for any e>0, there exists to=to(s) such that for t>_to we have
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P[INt—:1tI>rrtr]<s. 

We define 

(11)N1=N1(t, s)=[ rt(1—s)] 

and 

(12)N2=N2(t, s)—[7t(1E-s)] 

where [x] is the integral part of x. 

   We note that for any 0<s<2and t>--rthe numbers N1 andN2 defined above 
satisfy the following inequalities : 

                         N2 1+6  
N1 < 1-2s 

and 

N2—N1 3s  
N1 1-2s' 

We define 

Ri= {csU*(xs)+dsV*(xs)}, i=1, 2, ••• 
                                                    s=1 

                                      2 

                   f~=1{csg(xs)+dsw(xs)} 

Sn= {Ri—p} , n=1, 2, ••• 
                                        ti,l 

                                                     n 

                  Q= max± [Ri—E {Ri} ] . 
N1<nN2 ti=N1+1 

It can be seen that h1,12n1T2Sn=C'Z*. Replacing n by Nt in the expressions for Un(xs), 

Vn(xs), Z. and Z*, we define UNt(xs), VNt(xs), ZNt and ZNt respectively. 

   In order to study the asymptotic distribution of C'ZNt we find it convenient to 

choose a specific sequence { h n = n -a, n=1, 2, •••},  where d is some positive number. 
With this choice of {hn} we have the following lemma. Let C1 be a generic constant. 

   LEMMA 4. Suppose K satisfies conditions (i) and (iii) and {hn=n-s}, 3>0. If g' and 

v' exist and are bounded, then for any 0<s<1t>~swe have 
                   P{Q>s1/3'/------N1< C161/8 (1+6)15                    =Jh N1J(1-2s)(1-2s)J 

   PROOF. By Kolmogorov's inequality 

                                                       N2 

(13)plLQ> s1/3'V h~rl]Cs2,31N1•hN1f 
Using the hypothesis it can be shown that 

(14)E{Ri}=0(h 2)=O(hN2) if N1<i<N2 •
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From (13) and (14), we get 

                    PLQ~b1,3/   N1<  Cl(N2-N1)(hN1l 
                  LV hN1J 3e213N1 hN2J 

<  C1E1/3 1.+e  lS                                — (1-2e) \ (1-2s)) 

   LEMMA 5. Suppose K satisfies conditions (ii), and (iii) and {hn=n-a}, 0>0. If g', g", 

w' and w" exist and are bounded and if0<s<—2,t>---- and5<5, then for all N1< n 
N2, 

                      hN1~`[E {R
1} —<  Cls                   N li=N1+1(1-2s) 

   PROOF. Using computations similar to those in Lemma 3, we obtain for all n such 
that N1 < n <N2 

               [E {RiCln             I i=N1+1—3i=N1+1 

31----(N2—Nl)hN1. 
Hence, 

T 
               •hNl[E {Ri}—]<  C1(N—Nl) (N1hN)112          AT 

i=1V1+13N11 

C1(N2—N1)  (N153)1/2 
                        3N11 

<  Cls  
(1-2s) 

   LEMMA 6. Suppose K satisfies conditions (i), (ii) and (iii) and {h n = n -a} , 5 <o < 3 

andNt ~ 7r (7r>0) as t-->00. Let E f I Y 13 be finite and let g', g", w', w" and v' exist 
and be bounded. If x1/x2, g(xi)>0 for i=1, 2, then C'ZNt converges in distribution to 
a normal random variable with mean 0 and variance C' AC as t tends to infinity . 

   PROOF. The proof resembles that of Theorem 1 in Renyi [5]. Let e (s<-1) be an 
arbitrarily small positive number. Let t>to where to=to(e)>------1and let N1 and N2 be 

7rs 
chosen as before. 

   We have for y>0 

               P[C'Z* t<y]= i P[C'Z*<y ; Nt=n] 

                        = E P[C'Zn<y;Nt=n] 
I n2rtl<nte 

                        + E P[C'Z*<y;N1=n] 
Insrtl2nte 

E P[C'Z*.<y;Nt=n]d-s. 
Inrrtl<nte
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Hence, 

(15) I P[C'ZN<y]— P[C'Zn<y ; Nt=n]I <s . 
inati<rte 

   Introducing the random variables Ri, ST, and Q as defined in (11), we have for any 

n such that N1 < n < N2 

           hN1n (16)P[C'Zn<y; Nt=n]=P[n----1(Ri—re)+i=+1(Ri—E(Ri)) 
+ (E(Ri)—it)}<y ;Nt=n] 

                                             i=N1+1 

             hn                                       +1[Sv1<yN2N2—i=N1(E(Ri)—p)+Q ; Nt=n] 
P[,JhNi SN1<y~N2(hN1\/hN1'{E(Ri)—,u} 

N1N1 hN2N1 i=N1+1 

                 + /N1Q;Nt=n] 

                  <13[C'Zt1<y /(Z1)"+ (1C12s) +,~711 Q;Nt=n], 
by Lemma 5. Hence,1V1V 

(17) E P[C'Z*.<y ; Nt=n] 
In1rti<nts 

P[C'Zt1<y //N2\1+a +(ICI) -----Q ;IArt—irtl <~rts]                      ~/lN~)(1-2e)N1 

                              1+e  1(1+3)/2+C1s + E1/3           <P[CZN1<y((1-2s)I (1-2s); 

               Q <E113'. /  111, I Nt-7rtI <7rte]+P[Q>g113.`  h11 ] 
              5-P[*1+E \(1+S)/2C1s1/3C1a1/31-Fs 0               CZN1<y(1-2e/+(1-2s)+~]+(12s)(1-2s / ' 

by Lemma 4. 

   From (16) we get in a similar manner 

(18) E P[C'Z*.<y ; Nt=n] 
In7rtl<rrts 

          >P[C'ZN1<y—(1C12s)N11 Q ; I Nt-7tI<7rts] 
            >_P[C'ZN1 <y— (1C1ss)—E1/3 ; Q <s1/3'J N1; I Nt-7rt I <7rts]                                                             ~G1 

           >P[C'ZN1<y(1C12s)—s1/3]—P[Q>s1/3.J 1-----1P[I Nt-7rtI7rtsl 
                                                                        Ni 

             >P['*Cis—1/3—C1E1111+s S                CZN1<y (1-2s) 6](1-2s)(1-2s l E.
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From (15), (17) and (18) we conclude that for  t>t0 

P[C Ztt<y]<_P[C Zt1<y(  1-2s (1-2s))(1+5)E1/3] (12r)(1-2s 
and 

  **                                CIE—1i31— C1s1/3 C1s )o_25    P[CZNt<y]>>—PCZN 1<y—-------s.                           (1-2s)(1-2s)1-2s 

   Similar statements hold for y <O. We now invoke Lemma 3 and the continuity of 

the distribution function of a normal random variable to complete the proof . 
   We are now in a position to prove the main theorem of this paper . 

1 1    THEOREM. Suppose K satisfies conditions (i), (ii) and (iii), and {h,,=n°} , —5 
   Ntp 

and —> rc (7.>0) as t—> co. Let E f ! Y 13 be finite and let g' , g", w', w" and v' exist 

and be bounded. If x1�x2i g(xi)>0 for i=1, 2, then (NthN t)112(m 2(xl)—m(xl), mxt(x2) —m(x2))' converges in distribution to Z* as t tends to infinity where Z* is a bivariate 

normal random variable with mean vector 0 and diagonal covariance matrix C=[ci;] where 

                   Var[YIX=xi]  
cii=v K2(u)du i=1, 2. 

g(xi)-~ 

   PROOF. Using the Cramer-Wold theorem (Theorem (xi) on page 123 of [4]) we 

conclude from Lemma 6 that ZN2 converges in distribution to Z as t tends to infinity . 
The proof of the theorem now immediately follows from this result in conjunction with 

Theorem (iii) on page 388 of [4].
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