ON SEQUENTIAL ESTIMATION OF THE REGRESSION FUNCTION

Samanta，M
Department of Statistics，The University of Manitoba
https：／／doi．org／10．5109／13352

出版情報：Bulletin of informatics and cybernetics． 21 （1／2），pp．19－27，1984－03．Research Association of Statistical Sciences
バージョン：
権利関係：

ON SEQUENTIAL ESTIMATION OF THE REGRESSION FUNCTION*

By

M. Samanta**

1. Introduction and Summary

Let (X, Y) be a two dimensional random variable having a joint density function f and let g be the marginal density function of X. We assume that $E_{f} Y$ is finite and define the regression function $m(x)$ (for regression of Y on X) by $m(x)=E[Y \mid X=x]$. Nadaraya [3] and Watson [7] and Schuster [6] have studied the asymptotic properties of the estimate $\hat{m}_{n}(x)$ of $m(x)$ defined by

$$
\begin{equation*}
\hat{m}_{n}(x)=\frac{\sum_{i=1}^{n} Y_{i} K\left(\frac{x-X_{i}}{h_{n}}\right)}{\sum_{i=1}^{n} K\left(\frac{x-X_{i}}{h_{n}}\right)} \tag{1}
\end{equation*}
$$

where $K(u)$ is a probability density function on $(-\infty,+\infty),\left\{h_{n}\right\}$ is a monotonically decreasing sequence of positive numbers converging to zero and (X_{1}, Y_{1}), $\left(X_{2}, Y_{2}\right), \cdots$, (X_{n}, Y_{n}) are n independent observations of (X, Y).

In many practical situations the number of observations N_{t} which we observe in time $(0, t]$ is a random variable. We call N_{t} a stopping random variable. We assume that $\left(X_{1}, Y_{1}\right),\left(X_{2}, Y_{2}\right), \cdots$ are independent observations of (X, Y) and need not be independent of the random variable N_{t}. In this paper we propose an estimate $m_{N_{t}}(x)$ of the regression function $m(x)$ based on $\left(X_{1}, Y_{1}\right),\left(X_{2}, Y_{2}\right), \cdots,\left(X_{x_{i}}, Y_{x_{t}}\right)$ and given by

$$
\begin{equation*}
m_{v_{t}}(x)=\frac{\sum_{i=1}^{N_{t}} \frac{Y_{i}}{h_{i}} K\left(\frac{x-X_{i}}{h_{i}}\right)}{\sum_{i=1}^{N_{t}}-\frac{1}{h_{i}} K\left(\frac{x-X_{i}}{h_{i}}\right)} \tag{2}
\end{equation*}
$$

We note that the expression for the estimate $m_{N_{t}}(x)$ is motivated by the recursive type of estimate of a probability density function first proposed by Yamato [8]. Suppose $x_{1}, x_{2}, \cdots, x_{l}$ are l distinct points. We have shown that under certain regularity conditions $\left(N_{t} h_{N_{t}}\right)^{1 / 2}\left\{m_{N_{t}}\left(x_{1}\right)-m\left(x_{1}\right), \cdots, m_{N_{t}}\left(x_{l}\right)-m\left(x_{l}\right)\right\}$ is asymptotically normally distributed with mean vector 0 and diagonal covariance matrix $C=\left[c_{i j}\right]$ with $c_{i i}=$ $\frac{\operatorname{Var}\left[Y \mid X=x_{i}\right]}{g\left(x_{i}\right)} \nu \int_{-\infty}^{\infty} K^{2}(u) d u$ where $\nu(\nu<1)$ is as defined in the next section. For simplicity we have proved the theorem for the special case $l=2$. The method of proof remains valid in the more general case. The theorem can be regarded as the appropriate

[^0]extension of the earlier result due to Schuster [6].

2. Main Result

We assume that the probability density function K and the sequence $\left\{h_{n}\right\}$ are chosen to satisfy the following conditions:
(i) $K(u)$ and $|u K(u)|$ are bounded
(ii) $\int_{-\infty}^{\infty} u K(u) d u=0$
(iii) $\int_{-\infty}^{\infty} u^{2} K(u) d u<\infty$
(iv) $\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n}\left(\frac{h_{n}}{h_{j}}\right)=\nu<1$
(v) $\frac{1}{n} \sum_{j=1}^{n} h_{j}^{2} \leqq C_{1} h_{n}^{2} \quad\left(C_{1}>0\right), n=1,2,3, \cdots$
(vi) $\lim _{n \rightarrow \infty} n h_{n}^{3}=\infty$ and $\lim _{n \rightarrow \infty} n h_{n}^{5}=0$

Remark 1. If K is the standard normal probability density function, then conditions (i), (ii) and (iii) are satisfied.

Remark 2. If $h_{n}=n^{-\delta}, \frac{1}{5}<\delta<\frac{1}{3}$, then conditions (iv), (v) and (vi) are satisfied. (For a proof see [1], p. 26 and p. 46.)

We define the following:

$$
\begin{align*}
& g(x)=\int_{-\infty}^{\infty} f(x, y) d y \\
& w(x)=\int_{-\infty}^{\infty} y f(x, y) d y \tag{3}\\
& v(x)=\int_{-\infty}^{\infty} y^{2} f(x, y) d y
\end{align*}
$$

Hence,

$$
\operatorname{Var}[Y \mid X=x]=\frac{v(x)}{g(x)}-\frac{w^{2}(x)}{g^{2}(x)}
$$

Suppose x_{1} and x_{2} are two distinct points. We define for $i=1,2, \cdots, n$ and $s=1,2$

$$
\begin{aligned}
& U_{i}^{*}\left(x_{s}\right)=\frac{1}{h_{i}} K\left(\frac{x_{s}-X_{i}}{h_{i}}\right) \\
& V_{i}^{*}\left(x_{s}\right)=Y_{i} U_{i}^{*}\left(x_{s}\right) \\
& U_{i}\left(x_{s}\right)=h_{n}^{1 / s}\left\{U_{i}^{*}\left(x_{s}\right)-E U_{i}^{*}\left(x_{s}\right)\right\} \\
& V_{i}\left(x_{s}\right)=h_{n}^{1 / 2}\left\{V_{i}^{*}\left(x_{s}\right)-E V_{i}^{*}\left(x_{s}\right)\right\} \\
& \bar{U}_{n}\left(x_{s}\right)=\sum_{i=1}^{n} U_{i}\left(x_{s}\right)
\end{aligned}
$$

$$
\begin{align*}
& \bar{V}_{n}\left(x_{s}\right)=\sum_{i=1}^{n} V_{i}\left(x_{s}\right) \tag{4}\\
& W_{i}=\left(U_{i}\left(x_{1}\right), V_{i}\left(x_{1}\right), U_{i}\left(x_{2}\right), V_{i}\left(x_{2}\right)\right)^{\prime} \\
& n^{1 / 2} Z_{n}=\left(\bar{U}_{n}\left(x_{1}\right), \bar{V}_{n}\left(x_{1}\right), \bar{U}_{n}\left(x_{2}\right), \bar{V}_{n}\left(x_{2}\right)\right)^{\prime} \\
& A=\nu \int_{-\infty}^{\infty} K^{2}(u) d u\left[\begin{array}{cccc}
g\left(x_{1}\right) & w\left(x_{1}\right) & 0 & 0 \\
w\left(x_{1}\right) & v\left(x_{1}\right) & 0 & 0 \\
0 & 0 & g\left(x_{2}\right) & w\left(x_{2}\right) \\
0 & 0 & w\left(x_{2}\right) & v\left(x_{2}\right)
\end{array}\right]
\end{align*}
$$

Let Z be a four variate normal random variable with mean vector 0 and covariance matrix A.

We now prove the following lemmas.
Lemma 1. Suppose K satisfies conditions (i) and (iii) and the sequence $\left\{h_{n}\right\}$ satisfies condition (iv). Let g^{\prime}, w^{\prime} and v^{\prime} exist and be bounded. Then the following results hold for $s=1,2$ and $r=1,2$.
(a) $\lim _{n \rightarrow \infty} \operatorname{Var}\left\{n^{-1 / 2} \bar{U}_{n}\left(x_{s}\right)\right\}=\nu g\left(x_{s}\right) \int_{-\infty}^{\infty} K^{2}(u) d u$
(b) $\lim _{n \rightarrow \infty} \operatorname{Var}\left\{n^{-1 / 2} \bar{V}_{n}\left(x_{s}\right)\right\}=\nu v\left(x_{s}\right) \int_{-\infty}^{\infty} K^{2}(u) d u$
(c) $\lim _{n \rightarrow \infty} \operatorname{Cov}\left\{n^{-1 / 2} \bar{U}_{n}\left(x_{s}\right), n^{-1 / 2} \bar{V}_{n}\left(x_{s}\right)\right\}=\nu w\left(x_{s}\right) \int_{-\infty}^{\infty} K^{2}(u) d u$
(d) $\lim _{n \rightarrow \infty} \operatorname{Cov}\left\{n^{-1 / 2} \bar{U}_{n}\left(x_{1}\right), n^{-1 / 2} \bar{U}_{n}\left(x_{2}\right)\right\}=0$
(e) $\lim _{n \rightarrow \infty} \operatorname{Cov}\left\{n^{-1 / 2} \bar{V}_{n}\left(x_{1}\right), n^{-1 / 2} \bar{V}_{n}\left(x_{2}\right)\right\}=0$
(f) $\lim _{n \rightarrow \infty} \operatorname{Cov}\left\{n^{-1 / 2} \bar{U}_{n}\left(x_{s}\right), n^{-1 / 2} \bar{V}_{n}\left(x_{r}\right)\right\}=0, \quad r \neq s$.

Proof. We sketch the proof of part (a) and part (d) of the Lemma. The proof of the other parts are similar and will be omitted. To obtain part (a) we have

$$
\begin{aligned}
\operatorname{Var}\left\{n^{-1 / 2} \bar{U}_{n}\left(x_{s}\right)\right\}= & \frac{1}{n} \sum_{j=1}^{n}\left(\frac{h_{n}}{h_{j}}\right) \int_{-\infty}^{\infty}\{K(u)\}^{2} g\left(x_{s}-h_{j} u\right) d u \\
& -\frac{h_{n}}{n} \sum_{j=1}^{n}\left\{\int_{-\infty}^{\infty} K(u) g\left(x_{s}-h_{j} u\right) d u\right\}^{2} \\
= & \frac{1}{n} \sum_{j=1}^{n}\left(\frac{h_{n}}{h_{j}}\right)\left[g\left(x_{s}\right) \int_{-\infty}^{\infty}\{K(u)\}^{2} d u+O\left(h_{j}\right)\right] \\
& -\frac{h_{n}}{n} \sum_{j=1}^{n}\left[g\left(x_{s}\right)+O(h)\right]_{j} .
\end{aligned}
$$

Hence,

$$
\lim _{n \rightarrow \infty} \operatorname{Var}\left\{n^{-1 / 2} \bar{U}_{n}\left(x_{s}\right)\right\}=\nu g\left(x_{s}\right) \int_{-\infty}^{\infty} K^{2}(u) d u, \quad s=1,2 .
$$

To prove part (d) we have used the method similar to that of Schuster [6]:

$$
E\left[\frac{1}{h_{i}} K\left(\frac{x_{1}-X_{i}}{h_{i}}\right) K\left(\frac{x_{2}-X_{i}}{h_{i}}\right)\right]=O\left(h_{i}\right) .
$$

Now,

$$
\begin{aligned}
\operatorname{Cov}\left\{n^{-1 / 2} \bar{U}_{n}\left(x_{1}\right), n^{-1: 2} \bar{C}_{n}\left(x_{2}\right)\right\}= & \frac{1}{n} \sum_{i=1}^{n} E\left\{U_{i}\left(x_{1}\right) U_{i}\left(x_{2}\right)\right\} \\
= & \frac{1}{n} \sum_{i=1}^{n}\left[\frac{h_{n}}{h_{i}} E\left\{\frac{1}{h_{i}} K\left(\frac{x_{1}-X_{i}}{h_{i}}\right) K\left(\frac{x_{2}-X_{i}}{h_{i}}\right)\right\}\right. \\
& \left.-h_{n} E\left\{\frac{1}{h_{i}} K\left(\frac{x_{1}-X_{i}}{h_{i}}\right)\right\} E\left\{\frac{1}{h_{i}} K\left(\frac{x_{2}-X_{i}}{h_{i}}\right)\right\}\right] \\
= & \frac{1}{n} \sum_{i=1}^{n}\left[\frac{h_{n}}{h_{i}} \cdot O\left(h_{i}\right)-h_{n}\left\{g\left(x_{1}\right)+O\left(h_{i}\right)\right\}\left\{g\left(x_{2}\right)+O\left(h_{i}\right)\right\}\right] \\
= & O\left(h_{n}\right) .
\end{aligned}
$$

Hence,

$$
\lim _{n \rightarrow \infty} \operatorname{Cov}\left\{n^{-1 / 2} \bar{U}_{n}\left(x_{1}\right), n^{-1 / 2} \bar{U}_{n}\left(x_{2}\right)\right\}=0 .
$$

Let $C=\left(c_{1}, d_{1}, c_{2}, d_{2}\right)^{\prime}$ be any real vector in R^{4}.
Lemma 2. Suppose K satisfies conditions (i) and (iii) and the sequence $\left\{h_{n}\right\}$ satisfies condition (iv) and $n h_{n}^{3} \rightarrow \infty$ as $n \rightarrow \infty$. Let $E_{f}|Y|^{3}$ be finite and let g^{\prime}, w^{\prime} and v^{\prime} exist and be bounded. If $g\left(x_{i}\right)>0$ for $i=1,2$, then $C^{\prime} Z_{n}$ converges in distribution to a normal random variable with mean 0 and variance $C^{\prime} A C$.

Proof. We shall establish the asymptotic normality of $C^{\prime} Z_{n}$ by showing that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\{\frac{\sum_{i=1}^{n} E\left|C^{\prime} W_{i}\right|^{3}}{n^{3 / 2}\left(\operatorname{Var}\left(C^{\prime} Z_{n}\right)\right)^{3 / 2}}\right\}=0 . \quad \text { (See [2], p. 275.) } \tag{5}
\end{equation*}
$$

Using Lemma 1, we have

$$
\begin{align*}
\lim _{n \rightarrow \infty} \operatorname{Var}\left(C^{\prime} Z_{n}\right) & =\nu \int_{-\infty}^{\infty} K^{2}(u) d u\left[\sum_{s=1}^{2}\left\{c_{s}^{2} g\left(x_{s}\right)+d_{s}^{2} v\left(x_{s}\right)+2 c_{s} d_{s} w\left(x_{s}\right)\right\}\right] \tag{6}\\
& =C^{\prime} A C>0 .
\end{align*}
$$

The positive definiteness of the matrix A follows from the fact that $g(x) v(x)-w^{2}(x)=$ $g^{2}(x) \operatorname{Var}[Y \mid X=x]$ and $g\left(x_{i}\right)>0$ for $i=1$, 2. It now suffices to prove that

$$
\lim _{n \rightarrow \infty} n^{-3 / 2}\left\{\sum_{i=1}^{n} E\left|C^{\prime} W_{i}\right|^{3}\right\}=0
$$

Using the hypothesis and the arguments similar to those in Lemma 1 it can be shown that

$$
E\left|U_{i}\left(x_{s}\right)\right|^{3}=O\left(h_{n}^{3 / 2} h_{i}^{-2}\right)=O\left(h_{n}^{-1 / 2}\right)
$$

and

$$
E\left|V_{i}\left(x_{s}\right)\right|^{3}=O\left(h_{n}^{3 / 2} h_{i}^{-3}\right)=O\left(h_{n}^{-3 / 2}\right)
$$

Hence

$$
\begin{aligned}
n^{-3 / 2}\left\{\sum_{i=1}^{n} E\left|C^{\prime} W_{i}\right|^{3}\right\} & \leqq n^{-3 / 2}|C|^{3} \sum_{i=1}^{n} E\left|W_{i}\right|^{3} \\
& \leqq 8 n^{-3 / 2}|C|^{3} \sum_{i=1}^{n} \max _{s=1,2}\left\{E\left|U_{i}\left(x_{s}\right)\right|^{3}, E\left|V_{i}\left(x_{s}\right)\right|^{3}\right\} \\
& =O\left\{\left(n h_{n}^{3}\right)^{-1 / 2}\right\}=o(1) .
\end{aligned}
$$

This completes the proof.
We define

$$
\begin{align*}
Z_{n}^{*}= & h_{n}^{1 / 2} \cdot n^{-1 / 2}\left\{\sum_{i=1}^{n}\left(U_{i}^{*}\left(x_{1}\right)-g\left(x_{1}\right)\right), \sum_{i=1}^{n}\left(V_{i}^{*}\left(x_{1}\right)-w\left(x_{1}\right)\right),\right. \tag{7}\\
& \left.\sum_{i=1}^{n}\left(U_{i}^{*}\left(x_{2}\right)-g\left(x_{2}\right)\right), \sum_{i=1}^{n}\left(V_{i}^{*}\left(x_{2}\right)-w\left(x_{2}\right)\right)\right\} .
\end{align*}
$$

Lemma 3. Suppose conditions (i) through (vi) are satisfied. Let $E_{f}|Y|^{3}$ be finite and let $g^{\prime}, g^{\prime \prime}, w^{\prime}, w^{\prime \prime}$ and v^{\prime} exist and be bounded. If $g\left(x_{i}\right)>0$ for $i=1,2$, then $C^{\prime} Z_{n}^{*}$ converges in distribution to a normal random variable with mean 0 and variance $C^{\prime} A C$.

Proof. We have

$$
\begin{equation*}
C^{\prime} Z_{n}-C^{\prime} Z_{n}^{*}=h_{n}^{1 / 2} \cdot n^{-1 / 2} \sum_{i=1}^{n} \sum_{s=1}^{2}\left[c_{s}\left\{g\left(x_{s}\right)-E U_{i}^{*}\left(x_{s}\right)\right\}+d_{s}\left\{w\left(x_{s}\right)-E V_{i}^{*}\left(x_{s}\right)\right\}\right] . \tag{8}
\end{equation*}
$$

Using the hypothesis it can be shown that for $i=1,2, \cdots, n$ and $s=1,2$

$$
E U_{i}^{*}\left(x_{s}\right)=g\left(x_{s}\right)+O\left(h_{i}^{2}\right)
$$

and

$$
E V_{i}^{*}\left(x_{s}\right)=w\left(x_{s}\right)+O\left(h_{i}^{2}\right) .
$$

Hence,

$$
\begin{equation*}
\left|\sum_{i=1}^{n}\left(g\left(x_{s}\right)-E U_{i}^{*}\left(x_{s}\right)\right)\right|=O\left(\sum_{i=1}^{n} h_{i}^{2}\right), \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\sum_{i=1}^{n}\left(w\left(x_{s}\right)-E V_{i}^{*}\left(x_{s}\right)\right)\right|=O\left(\sum_{i=1}^{n} h_{i}^{2}\right) . \tag{10}
\end{equation*}
$$

From (8), (9) and (10) we get

$$
\begin{aligned}
C^{\prime} Z_{n}-C^{\prime} Z_{n}^{*} & =O\left(h_{n}^{1 / 2} n^{-1 / 2} \sum_{i=1}^{n} h_{i}^{2}\right) \\
& =O\left(\left(n h_{n}\right)^{1 / 2} \frac{1}{n} \sum_{i=1}^{n} h_{i}^{2}\right) \\
& =O\left(\left(n h_{n}\right)^{1 / 2} h_{n}^{2}\right) \\
& =O\left(\left(n h_{n}^{5}\right)^{1 / 2}\right) \\
& =o(1) .
\end{aligned}
$$

The proof now follows from Lemma 2.
Suppose $N_{t}(t>0)$ is a stopping random variable such that $\frac{N_{t}}{t} \xrightarrow{p} \pi(\pi>0)$ as $t \rightarrow \infty$. This implies that for any $\varepsilon>0$, there exists $t_{0}=t_{0}(\varepsilon)$ such that for $t \geqq t_{0}$ we have

$$
P\left[\left|N_{t}-\pi t\right| \geqq \pi t \varepsilon\right]<\varepsilon .
$$

We define

$$
\begin{equation*}
N_{1}=N_{1}(t, \varepsilon)=[\pi t(1-\varepsilon)] \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
N_{2}=N_{2}(t, \varepsilon)=[\pi t(1+\varepsilon)] \tag{12}
\end{equation*}
$$

where $[x]$ is the integral part of x.
We note that for any $0<\varepsilon<\frac{1}{2}$ and $t>\frac{1}{\pi \varepsilon}$ the numbers N_{1} and N_{2} defined above satisfy the following inequalities:

$$
\frac{N_{2}}{N_{1}}<\frac{1+\varepsilon}{1-2 \varepsilon}
$$

and

$$
\frac{N_{2}-N_{1}}{N_{1}}<\frac{3 \varepsilon}{1-2 \varepsilon} .
$$

We define

$$
\begin{aligned}
& R_{i}=\sum_{s=1}^{2}\left\{c_{s} U_{i}^{*}\left(x_{s}\right)+d_{s} V_{i}^{*}\left(x_{s}\right)\right\}, \quad i=1,2, \cdots \\
& \mu=\sum_{s=1}^{2}\left\{c_{s} g\left(x_{s}\right)+d_{s} w\left(x_{s}\right)\right\} \\
& S_{n}=\sum_{i=1}^{n}\left\{R_{i}-\mu\right\}, \quad n=1,2, \cdots \\
& Q=\max _{N_{1}<n \leqslant N_{2}}\left|\sum_{i=N_{1}+1}^{n}\left[R_{i}-E\left\{R_{i}\right\}\right]\right| .
\end{aligned}
$$

It can be seen that $h_{n}^{1 / 2} n^{-1 / 2} S_{n}=C^{\prime} Z_{n}^{*}$. Replacing n by N_{t} in the expressions for $\bar{U}_{n}\left(x_{s}\right)$, $\bar{V}_{n}\left(x_{s}\right), Z_{n}$ and Z_{n}^{*}, we define $\bar{U}_{N_{t}}\left(x_{s}\right), \bar{V}_{N_{t}}\left(x_{s}\right), Z_{N_{t}}$ and $Z_{N_{t}}^{*}$ respectively.

In order to study the asymptotic distribution of $C^{\prime} Z_{N_{t}}^{*}$ we find it convenient to choose a specific sequence $\left\{h_{n}=n^{-\delta}, n=1,2, \cdots\right\}$, where δ is some positive number. With this choice of $\left\{h_{n}\right\}$ we have the following lemma. Let C_{1} be a generic constant.

Lemma 4. Suppose K satisfies conditions (i) and (iii) and $\left\{h_{n}=n^{-\delta}\right\}, \delta>0$. If g^{\prime} and v^{\prime} exist and are bounded, then for any $0<\varepsilon<\frac{1}{2}, t>\frac{1}{\pi \varepsilon}$ we have

$$
P\left\{Q \geqq \varepsilon^{1 / 3} \sqrt{\frac{N_{1}}{h_{N_{1}}}}\right\}<\frac{C_{1} \varepsilon^{1 / 3}}{(1-2 \varepsilon)}\left\{\frac{(1+\varepsilon)}{(1-2 \varepsilon)}\right\}^{\delta}
$$

Proof. By Kolmogorov's inequality

$$
\begin{equation*}
P\left[Q \geqq \varepsilon^{1 / 3} \sqrt{\frac{N_{1}}{h_{N_{1}}}}\right] \leqq \frac{\sum_{i=N_{1}+1}^{N_{2}} E\left\{R_{i}^{2}\right\}}{\varepsilon^{2 / 3}\left\{\frac{N_{1}}{h_{N_{1}}}\right\}} . \tag{13}
\end{equation*}
$$

Using the hypothesis it can be shown that

$$
\begin{equation*}
E\left\{R_{i}^{2}\right\}=O\left(\frac{1}{h_{i}}\right)=O\left(\frac{1}{h_{N_{2}}}\right) \quad \text { if } \quad N_{1}<i \leqq N_{2} . \tag{14}
\end{equation*}
$$

From (13) and (14), we get

$$
\begin{aligned}
P\left[Q \geqq \varepsilon^{1 / 3} \sqrt{\frac{N_{1}}{h_{N_{1}}}}\right] & \leqq \frac{C_{1}\left(N_{2}-N_{1}\right)}{3 \varepsilon^{2 / 3} N_{1}}\left(\frac{h_{N_{1}}}{h_{N_{2}}}\right) \\
& \leqq \frac{C_{1} \varepsilon^{1 / 3}}{(1-2 \varepsilon)}\left(\frac{1+\varepsilon}{(1-2 \varepsilon)}\right)^{\delta} .
\end{aligned}
$$

Lemma 5. Suppose K satisfies conditions (ii), and (iii) and $\left\{h_{n}=n^{-\delta}\right\}, \delta>0$. If $g^{\prime}, g^{\prime \prime}$, w^{\prime} and $w^{\prime \prime}$ exist and are bounded and if $0<\varepsilon<\frac{1}{2}, t>\frac{1}{\pi \varepsilon}$ and $\frac{1}{5}<\delta$, then for all $N_{1}<n$ $\leqq N_{2}$,

$$
\left|\sqrt{\frac{h_{N_{1}}}{N_{1}}} \sum_{i=N_{1}+1}^{n}\left[E\left\{R_{i}\right\}-\mu\right]\right|<\frac{C_{1} \varepsilon}{(1-2 \varepsilon)} .
$$

Proof. Using computations similar to those in Lemma 3, we obtain for all n such that $N_{1}<n \leqq N_{2}$

$$
\begin{aligned}
\left|\sum_{i=N_{1}+1}^{n}\left[E\left\{R_{i}\right\}-\mu\right]\right| & \leqq \frac{C_{1}}{3}\left(N_{2}-N_{1}\right) \sum_{i=N_{1}+1}^{n} h_{i}^{2} \\
& \leqq \frac{C_{1}}{3}\left(N_{2}-N_{1}\right) h_{N_{1}}^{2}
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\left|\sqrt{\frac{h_{N_{1}}}{N_{1}}} \sum_{i=N_{1}+1}^{n}\left[E\left\{R_{i}\right\}-\mu\right]\right| & \leqq \frac{C_{1}\left(N_{2}-N_{1}\right)}{3 N_{1}}\left(N_{1} h_{N_{1}}^{5}\right)^{1 / 2} \\
& =\frac{C_{1}\left(N_{2}-N_{1}\right)}{3 N_{1}}\left(N_{1}^{1-5 \delta}\right)^{1 / 2} \\
& \leqq \frac{C_{1} \varepsilon}{(1-2 \varepsilon)} .
\end{aligned}
$$

Lemma 6. Suppose K satisfies conditions (i), (ii) and (iii) and $\left\{h_{n}=n^{-\delta}\right\}, \frac{1}{5}<\delta<\frac{1}{3}$ and $\frac{N_{t}}{t} \xrightarrow{p} \pi(\pi>0)$ as $t \rightarrow \infty$. Let $E_{f}|Y|^{3}$ be finite and let $g^{\prime}, g^{\prime \prime}, w^{\prime}, w^{\prime \prime}$ and v^{\prime} exist and be bounded. If $x_{1} \neq x_{2}, g\left(x_{i}\right)>0$ for $i=1,2$, then $C^{\prime} Z_{N_{i}}^{*}$ converges in distribution to a normal random variable with mean 0 and variance $C^{\prime} A C$ as t tends to infinity.

Proof. The proof resembles that of Theorem 1 in Renyi [5]. Let $\varepsilon\left(\varepsilon<\frac{1}{2}\right)$ be an arbitrarily small positive number. Let $t \geqq t_{0}$ where $t_{0}=t_{0}(\varepsilon)>\frac{1}{\pi \varepsilon}$ and let N_{1} and N_{2} be chosen as before.

We have for $y>0$

$$
\begin{aligned}
P\left[C^{\prime} Z_{N_{t}}^{*}<y\right]= & \sum_{n=1}^{\infty} P\left[C^{\prime} Z_{n}^{*}<y ; N_{t}=n\right] \\
= & \sum_{\mid n-\pi t i<\pi t \varepsilon} P\left[C^{\prime} Z_{n}^{*}<y ; N_{t}=n\right] \\
& +\sum_{|n-\pi t| 2 \pi t} P\left[C^{\prime} Z_{n}^{*}<y ; N_{t}=n\right] \\
\leqq & \sum_{|n-\pi t|<\pi t \varepsilon} P\left[C^{\prime} Z_{n}^{*}<y ; N_{t}=n\right]+\varepsilon .
\end{aligned}
$$

Hence,

$$
\begin{equation*}
\left|P\left[C^{\prime} Z_{N_{t}}^{*}<y\right]-\sum_{\mid n-\pi t<\pi t s} P\left[C^{\prime} Z_{n}^{*}<y ; N_{t}=n\right]\right|<\varepsilon . \tag{15}
\end{equation*}
$$

Introducing the random variables R_{i}, S_{n} and Q as defined in (11), we have for any n such that $N_{1}<n \leqq N_{2}$

$$
\begin{align*}
P\left[C^{\prime} Z_{n}^{*}<y ; N_{t}=n\right]= & P\left[\sqrt { \frac { h _ { n } } { n } } \left\{\sum_{i=1}^{N_{1}}\left(R_{i}-\mu\right)+\sum_{i=N_{1}+1}^{n}\left(R_{i}-E\left(R_{i}\right)\right)\right.\right. \tag{16}\\
& \left.\left.+\sum_{i=N_{1}+1}^{n}\left(E\left(R_{i}\right)-\mu\right)\right\}<y ; N_{t}=n\right] \\
\leqq & P\left[S_{N_{1}}<y \sqrt{\frac{N_{2}}{h_{N_{2}}}}-\sum_{i=N_{1}+1}^{n}\left(E\left(R_{i}\right)-\mu\right)+Q ; N_{t}=n\right] \\
= & P\left[\sqrt{\frac{h_{N_{1}}}{N_{1}}} S_{N_{1}}<y \sqrt{\frac{N_{2}}{N_{1}}\left(\frac{h_{N_{1}}}{h_{N_{2}}}\right)}-\sqrt{\frac{h_{N_{1}}}{N_{1}}} \sum_{i=N_{1}+1}^{n}\left\{E\left(R_{i}\right)-\mu\right\}\right. \\
& \left.+\sqrt{\frac{h_{N_{1}}}{N_{1}}} Q ; N_{t}=n\right] \\
\leqq & P\left[C^{\prime} Z_{N_{1}}^{*}<y \sqrt{\left(\frac{N_{2}}{N_{1}}\right)^{1+\delta}}+\frac{C_{1} \varepsilon}{(1-2 \varepsilon)}+\sqrt{\frac{h_{N_{1}}}{N_{1}}} Q ; N_{t}=n\right]
\end{align*}
$$

by Lemma 5. Hence,

$$
\begin{align*}
& \sum_{\mid n-\pi t<\pi t \varepsilon} P\left[C^{\prime} Z_{n}^{*}<y ; N_{t}=n\right] \tag{17}\\
& \quad \leqq P\left[C^{\prime} Z_{N_{1}}^{*}<y \sqrt{\left(\frac{N_{2}}{N_{1}}\right)^{1+\delta}}+\frac{C_{1} \varepsilon}{(1-2 \varepsilon)}+\sqrt{\frac{h_{N_{1}}}{N_{1}}} Q ;\left|N_{t}-\pi t\right|<\pi t \varepsilon\right] \\
& \quad \leqq P\left[C^{\prime} Z_{N_{1}}^{*}<y\left(\frac{1+\varepsilon}{(1-2 \varepsilon)}\right)^{(1+\delta) / 2}+\frac{C_{1} \varepsilon}{(1-2 \varepsilon)}+\varepsilon^{1 / 3} ;\right. \\
& \left.\quad Q<\varepsilon^{1 / 3} \sqrt{\frac{N_{1}}{h_{N_{1}}}} ;\left|N_{t}-\pi t\right|<\pi t \varepsilon\right]+P\left[Q \geqq \varepsilon^{1 / 3} \sqrt{\frac{N_{1}}{h_{N_{1}}}}\right] \\
& \quad \leqq P\left[C^{\prime} Z_{N_{1}}^{*}<y\left(\frac{1+\varepsilon}{1-2 \varepsilon}\right)^{(1+\dot{\delta}) / 2}+\frac{C_{1} \varepsilon}{(1-2 \varepsilon)}+\varepsilon^{1 / 3}\right]+\frac{C_{1} \varepsilon^{1 / 3}}{(1-2 \varepsilon)}\left(\frac{1+\varepsilon}{1-2 \varepsilon}\right)^{\delta},
\end{align*}
$$

by Lemma 4.
From (16) we get in a similar manner

$$
\begin{align*}
& \sum_{\mid n-\pi t 1<\pi t \varepsilon} P\left[C^{\prime} Z_{n}^{*}<y ; N_{t}=n\right] \tag{18}\\
& \quad \geqq P\left[C^{\prime} Z_{N_{1}}^{*}<y-\frac{C_{1} \varepsilon}{(1-2 \varepsilon)}-\sqrt{\frac{h_{N_{1}}}{N_{1}}} Q ;\left|N_{t}-\pi t\right|<\pi t \varepsilon\right] \\
& \quad \geqq P\left[C^{\prime} Z_{N_{1}}^{*}<y-\frac{C_{1} \varepsilon}{(1-2 \varepsilon)}-\varepsilon^{1 / 3} ; Q<\varepsilon^{1 / 3} \sqrt{\frac{N_{1}}{h_{N_{1}}}} ;\left|N_{t}-\pi t\right|<\pi t \varepsilon\right] \\
& \quad \geqq P\left[C^{\prime} Z_{N_{1}}^{*}<y-\frac{C_{1} \varepsilon}{(1-2 \varepsilon)}-\varepsilon^{1 / 3}\right]-P\left[Q \geqq \varepsilon^{1 / 3} \sqrt{\frac{N_{1}}{h_{N_{1}}}}\right]-P\left[\left|N_{t}-\pi t\right| \geqq \pi t \varepsilon\right] \\
& \quad \geqq P\left[C^{\prime} Z_{N_{1}}^{*}<y-\frac{C_{1} \varepsilon}{(1-2 \varepsilon)}-\varepsilon^{1 / 3}\right]-\frac{C_{1} \varepsilon^{1 / 3}}{(1-2 \varepsilon)}\left(\frac{1+\varepsilon}{1-2 \varepsilon}\right)^{\delta}-\varepsilon .
\end{align*}
$$

From (15), (17) and (18) we conclude that for $t \geqq t_{0}$

$$
P\left[C^{\prime} Z_{N_{t}}^{*}<y\right] \leqq P\left[C^{\prime} Z_{N_{1}}^{*}<y\left(\frac{1+\varepsilon}{1-2 \varepsilon}\right)^{(1+\grave{\delta}) / 2}+\frac{C_{1} \varepsilon}{(1-2 \varepsilon)}+\varepsilon^{1 / 3}\right] \div \frac{C_{1} \varepsilon^{1 / 3}}{(1-2 \varepsilon)}\left(\frac{1+\varepsilon}{1-2 \varepsilon}\right)^{\bar{o}}+\varepsilon
$$

and

$$
P\left[C^{\prime} Z_{N_{t}}^{*}<y\right] \geqq P\left[C^{\prime} Z_{N_{1}}^{*}<y-\frac{C_{1} \varepsilon}{(1-2 \varepsilon)}-\varepsilon^{1 / 3}\right]-\frac{C_{1} \varepsilon^{1 / 3}}{(1-2 \varepsilon)}\left(\frac{1+\varepsilon}{1-2 \varepsilon}\right)^{\delta}-2 \varepsilon .
$$

Similar statements hold for $y<0$. We now invoke Lemma 3 and the continuity of the distribution function of a normal random variable to complete the proof.

We are now in a position to prove the main theorem of this paper.
Theorem. Suppose K satisfies conditions (i), (ii) and (iii), and $\left\{h_{n}=n^{-\grave{o}\},} \frac{1}{5}<\delta<\frac{1}{3}\right.$ and $\frac{N_{t}}{t} \xrightarrow{p} \pi(\pi>0)$ as $t \rightarrow \infty$. Let $E_{f}|Y|^{3}$ be finite and let $g^{\prime}, g^{\prime \prime}, w^{\prime}, w^{\prime \prime}$ and v^{\prime} exist and be bounded. If $x_{1} \neq x_{2}, g\left(x_{i}\right)>0$ for $i=1,2$, then $\left(N_{t} h_{N_{t}}\right)^{1 / 2}\left(m_{N_{t}}\left(x_{1}\right)-m\left(x_{1}\right), m_{N_{t}}\left(x_{2}\right)\right.$ $\left.-m\left(x_{2}\right)\right)^{\prime}$ converges in distribution to Z^{*} as tends to infinity where Z^{*} is a bivariate normal random variable with mean vector 0 and diagonal covariance matrix $C=\left[c_{i j}\right]$ where

$$
c_{i i}=\frac{\operatorname{Var}\left[Y \mid X=x_{i}\right]}{g\left(x_{i}\right)} \nu \int_{-\infty}^{\infty} K^{2}(u) d u \quad i=1,2
$$

Proof. Using the Cramér-Wold theorem (Theorem (xi) on page 123 of [4]) we conclude from Lemma 6 that $Z_{N_{t}}^{*}$ converges in distribution to Z as t tends to infinity. The proof of the theorem now immediately follows from this result in conjunction with Theorem (iii) on page 388 of [4].

References

[1] Korovkin, P.P.: Inequalities. Pergammon Press, London, (1961).
[2] Loeve, M. : Probability Theory. Third Edition, Van Nostrand, Princeton, (1963).
[3] Nadaraya, E. A.: "On Estimating Regression". Theory of Probability and Its Applications, 9 (1964), 141-142.
[4] Rao, C. R.: Linear Statistical Inference and Its Applications. Second Edition, Wiley, New York, (1973).
[5] Renyi, A.: On the Asymptotic Distribution of the Sum of a Random Number of Independent Random Variables. Acta Mathematica Scientiarum Hungaricae, 8 (1957), 193-199.
[6] Schuster, E.F.: Joint Asymptotic Distribution of the Estimated Regression at a Finite Number of Distinct Points. Annals of Mathematical Statistics, 43 (1972), 84-88.
[7] Watson, G. S.: "Smooth Regression Analysis". Sankhyá, A26 (1964), 359-372.
[8] Yamato, H.: "Sequential Estimation of a Continuous Probability Density Function and Mode". Bulletin of Mathematical Statistics, 14, 3-4, (1971), 1-12.

Communicated by S. Kano

Received June 20, 1983

[^0]: * Research partially supported by a Natural Science and Enging Research Council Grant of Canada.
 ** Department of Statistics, The University of Manitoba, Winnipeg, Manitoba, R3t 2 n 2 Canada.

