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ON BIAS REDUCTION IN ESTIMATION OF THE 

MAGNITUDE-SQUARED COHERENCE FUNCTION*

    By 

Jae C. LEE**

                    Abstract 

   Magnitudesquared coherence (MSC) function between two stoch
astic processes measures the linear relationship between the processes. 
The usual estimators of MSC are biased. A Jackknife estimator of 
MSC is introduced to reduce the bias in estimation.

   1. Introduction 

   A measure of linear relationship between two stochastic processes is given by the 
magnitudesquared coherence function (MSC) defined by 

                               S112(f)12  
                         P=S 11(f)S22(f) 

where  S12(f) is the cross spectral density at frequency f between two zero-mean sta

tionary random processes X(t) and IY(t) with auto spectra S11(f) and S22(f ). 
   The usual estimator of p given by 

                            g1212 
                                               S11' S22 

where -11, S12 and S22 are estimates of S11, S12 and S. based on the whole sample, has 
the variance which does not decrease as the sample size increases. Hence this does 
not possess the usually desired property of sample statistic that the variance of estimate 
is inversely proportional to the sample size. 

   Current techniques in MSC estimation rely on partitioning the whole sample into 
n equal segments and averaging the segment-wise estimates of spectral and cross 
spectral densities to obtain a reduction in variance of the estimate. When the parti
tioning is disjoint, properties and approximate distribution function of the MSC esti
mator have been studied by many authors. Goodman (1957) derived the probability 

density function of the statistic under the Gaussian assumption, Carter and Nuttall (1972) 
showed the bias and variance of the estimate as functions of true MSC and the number 
of segments.
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   In many practical applications it has been suggested that overlapped segments in 

place of disjoint ones reduce both bias and variance of the estimate. Carter, Knapp 
and Nuttall (1973) investigated the propertes of overlapped estimator by simulation and 
showed an advantage of it over disjoint segments in terms of reduced bias and variance. 

The reduction in bias and variance actually depends on the true MSC and proportion 

of overlapping as well as the number of segments. The overlapping methods increase 

the computational cost as the percentage of overlap gets highter. Also the additional 

reduction in bias and variance seems very small beyond 65 percent of overlapping. For 

example, when the true MSC is 0.3 and the overlap is 50 percent, the variance is 55 

percent of the nonoverlapped estimator, and the bias is 50 percent as large. Their 
study included the cases of p=0  and p =0.3, where p is the true MSC. In a more 
recent study by Lugannani (1981) he claimed that, under some restrictions, approximate 

probability density function (asymptotic) depends on the effective number of degrees of 
freedom (EDF) and true MSC.

   2. Lugannani's Results 

   Lugannani considered the sample MSC 

                         _IS112() 12 _ e2                      P=
e1e2 

where e1=S11(f ), e2=S22(f ),3=Re {S12(f )} and e4=Im {S12(f )} . He also assumed that 

the overlapping of the type defined by 

K=MQ 

where K is the segment legnth, M is the shift and Q is an integer factor of overlap

ping. For example, Q=2 gives the 50 percent overlapping. 
   Unlike other previous studies where the Guassian assumption was given to the 

original processes he assumed that{1,e2,S3,E4}has a joint Gaussian distribution. The 

asymptotic distribution of p under these assumptions was given without details by 

P0(p)=„-----1 rD112(v) {2P2(v)} R(v)} exp(2E(v))dv 
27ci~ 

where P(v), R(v), D(v) and E(v) are claimed to be rational functions of v that depend 

upon p and true MSC p but not explicitly upon M and Q. He claims that P(p) depends 

on N and Q only through 2 which is defined by 

                6N2Q                       2(N
, Q)=--- 2N(2Q2+1) —Q(Q2-1) • 

Hence the overlapped estimator with factor Q has ((N1)Q+1) overlapped segments 

and EDF 

6Q(NQ—Q+1)2 2'=-2---- 2N
(NQ—Q+1)(2Q2I1)—NQ(Q2-1) 

Since 2'_<_(3/2)2 with equality attained only in the limit as N--*co and Q--*co, he claims
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that bias and variance cannot be reduced to less than 2/3 of their nonoverlap values 

(except the case of  p=0 where it is 4/9). 
   For specially chosen values of N, M and Q the approximated bias and variance of 

overlap MSC estimator were compared to the simulated results of Carter, Knapp and 

Nuttall (1973) to see the closeness of approximation.
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                              Fig. 1

   It seems that the rate of convergence may be slower perhaps than what is desired 

to be practical for ordinary sample sizes. However, it is of great intrest since his 

result is the first of its kind under overlapping. If the rate of convergence is reason

able for practical cases, Lugannani's result will be very useful in approximating the 

bias and variance of sample MSC for construction of its desired confidence interval. 

Also the use of table prepared by Amos and Koopmans (1963) can be extended to over

lap cases with proper equivalent degrees of freedom.
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   3. Jackknife Estimator 

   In most of the previous studies the Gaussian assumption was made in order to 

derive an approximate distribution of the sample MSC. There has not been a study on 

the robustness of estimate, i. e. sensitivity to departure of the given assumption. 
   It is our desire to find a practical method to establish a confidence interval of a 

sample MSC. A method which has been successful in reducing bias in ordinary sample 

statistics and asympotically robust is Jackknife. (or generalized Jackknife estimator.) 
   In this section we will briefly review the properties of these estimators and their 

asymptotic distributions. In the following section Jackknife MSC estimator will be 

formulated. 

   Let B be an estimator defined on the random sample X1, X2, • • • , X. Partition this 

sample into N subsets of size M so that NM= n, and form a new random sample by 
deleting a subset of size M from the original sample. Then we define the estimator 

di to be the estimator B defined on the subsample which arises when the ith subset of 

size M has been deleted. 

   Now define pseudovalues of the Jackknife by 

Ji(e)=Ne—(N-1)0i, i=1, ••• , N. 

Then the Jackknife estimator is defined to be 

                   J(0) =NEJi(e) 
=NO—(N-1)-6i 

1 v 
where d= E B2, i. e. the average of segment-wise estimators. N 

i=1 
   It is easier to understtand the Jackknife as a special case of the Generalized Jack

knife which is defined as follows. (See Gray and Schucany (1972).) Let B1 and 02 be 
estimators for parameter B. Then for any R#1  we define the generalized Jackknife 
G(01, 82) by 

el----—Re2 G(0
1, 00= 1—R • 

Clearly, if B1i and 02 are consistent, then G(01, 02) is also a consistent estimator of 0. To 
see the bias elimination property of G, suppose that we have di, and e2 satisfying the 
following. 

E(0k)=0+bk(n, 8), k=1, 2 

where bk(n, 0)#O. Now take 

                      R=bl(n'0)#1 .                                       b
2(n, 0) 

Then, 

                E(G(81, 82))=E(B1)—R•E(B2) 
1—R
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 _   8(1—R)H-b1(N, 8)—R•b2(n, 8)  
1—R 

=8 . 

This shows that the generalized Jackknife estimator can remove bias when we know 
the biases of both el and 02. 

   Further in a more general assumption of biases G(01i 82) removes, even though not 
all, some part of bias. If 

E(G(Bk)=0± E bki(n,0),k=12,and R= b11(n, 8)  
        1=1b21(n, 0) 

then 

E b1i(n, 0)—R E b2i(n, 8) 
E(G(0i, 02))=0+ 2=2 1 —R 

It shows that in many cases, although G(01i 02) is not unbiased, it does contain less bias 
than either el or 02. 

   Now returning to ordinary Jackknife J(6), we consider e1=6 and 

1  N 
                              2E Bi=Bi. N i=1 

Pick R(N)=(N-1)/N and suppose 

                 E(e)=0+Eai =B+E ai 
a=1 n''i=1 NZMi 

where ai may be function of 8 but not of n. Then 

E(0i)=0+  ai =0+ Eai  
                            1=1 (n—m)i1=1 (N1)1M 

and hence 

          E(J(e))=8—-------•a2_ a3(2N-1) —...                           M21V(N-1) M3N2(N-1)2 

                       =8_ a2 _ a3(2n—M) — •.• 

                           n(n—M) n2(n—M)2 

Thus the bias in J(0) is of order n -2 while that of 8 is of order n-1 when a 1 �0. 

Moreover, if a2=a3= ••• =0, as in the previous example it is unbiased. 

   Under the assumption that the pseudovalues are independent, the statistic 

(J(0)8)^N(N-1) 1NN(0, 1) as (N—>00) 

            4ir JJ(e)J(e)12 
                      where the convergences in law. 

   For practical use in construction of confidence intervals or hypothesis testing, we 

may work with
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(J(0) e)A/ N(N-1) (C) 

                  E[ Ji(e)—J(e)12 
as if it were distributed as student t with (N-1) degrees of freedom. The factor C 

will be discussed later with a specific estimator. Hence the Jackknife estimator can be 
used to construct its approximate confidence interval with much less assumption on the 

distribution of sample.

   4. Jackknife Estimator of MSC 

   Let X1(t) and X2(t) be real processes which are jointly wide sense stationary with 

power spectral densities S;1(f ), 1, 1=1, 2. Let g;l(f) be the estimates of S;1 based on 
discrete fourier transforms. The discrete transforms are 

                                              x-1 

X;(f, n)= E x;(k+(m1)K)•exp(27rifk) 
k=o 

j=1, 2 and n=1, 2, • • • , nd, where K is the length of a segment and nd is the number 
of segments. 

   Then 

nd 
               S,1(f)= 

ndkE X,(f : n)•X*(f : m); j, 1=1, 2, 

and
{ 

p(f)— gI~1{2J)I2  
                                11(J)J22(f ) 

Hence, p(f) is an estimator of p(f) based on all nd segments of the sample. We define 

fin(f) to be the estimator p(f) defined on the subsample which arises when the nth 
segment of length K has been deleted. That is, 

                        EX,(f : h)•Xt(f : h); j, 1=1, 2            S;i(f) _ (
nd 11)K  

where the sum is over h=1 to h = n d except h = n, and 

                pn(f)= Slsl{S)I2 
                             11(f)22(f ) 

Let the pseudo values of the Jackknife be 

JJ(p)=ndp—(nd-1)p", n=1, 2, ••• , nd, 

and the Jackknife estimator be 
nd 

J(p)=---- EJn(,6) 
nd n=1 

=ndp—(nd-1)pn. 

   If we assume an approximate bias of the estimator p to be
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                         b(16: ad), 1  (1 pr
nd 

and hence 

1 b(O 
: ad-1) = (1—p)2 . 

                                                   71d-1 

Then we have 
E(I(3))=ndE(3)—(nd1)E(o") 

=p . 

Hence the Jackknife estimator is unbiased in this case. However, since the better 
approximation of bias of 5 has more terms beyond what is given here, the Jackknife 
here reduces the bias of term (1 / n d ). 

   We can also find an approximate distribution of I(p). That is 

(J(P)— p)-^na(nd--1) 
                                                                    t.,nd-1;d           n

d_~-~j. 

                  Z(Jn(p)—J(,r))'                                           n=1 

as nd->. 

   As in other approximations of the distribution it is assumed here that intraclass 

correlation is zero. It actually assumes that each pseudo value is independent of others. 

Since this assumption is not reasonable in our case, we can make some adjustment 

following Walsh (1947). 

   To correct the t statistic when each pair of variables in the sample have correla
tion, r, the multiplying factor is 

1-r C=
1+(n-1)r 

i. e. when the a values X1, X2i • • • , Xn represent a single observation of a multivariate 

Gaussian population for which each of n variables has mean ,u, variance a-2, and the 

correlation between two variables r, then 

(X1)^n(n-1) I1—, 

(XX)2 

1 has the student t distribution with (n-1) degrees of freedom. 

   Suppose that X1, X2, • • • are independently, identically distributed as N(0, 1). Let 

                                                                                              77+m 

     ;,~ Xi 
         i=1~ _i=m+1         01(X„..., Xn)=7and d2(Xm+1, ... , Xn+m)—

n , in<n . 

01 and 02 are sample means based on (n—m)-many overlapped sample points. Then 

Corr (81, 02)=(1/n)—(m/n2). Since 16711 and p"2 share (nd-2)-many S,~'s, it can be con
siderd as an overlapping with m=2. Hence the approximate correlation between VI 

and 137'2 (n1�n2) is
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nd-3                        Corr (6f1, 8n2)= (n _1) 

This gives the factor in Walsh 

1-7 na-3nd±4 1                     C=4 ,1 -1-(n-1)7  A 2n —6nd 4  v' 2 

for large nd.
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