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                    Abstract 

   A pattern is a string of constant symbols and variable symbols. 
The language  L(p) of a pattern p is the set of all strings obtained 
by substituting any non-empty constant string for each variable 
symbol in p. In this paper we consider inference from positive data 
for unions of two pattern languages, that is, identification of 
L(p)UL(q)  when an enumeration of elements in the union is given.

   1. Introduction 

   In general, two kinds of inferences have been known, inference from positive data 

and inference from positive and negative data. A general theory of inductive inference 
is found in literatures [3, 6]. Briefly, inference of languages from positive data is to 

identify a language when an enumeration of elements in the language is given. 

   Inference of unions from positive data, we are concerning with in this paper, is an 

inference of languages when given enumeration is not of one language but of two 

languages, and is found in the following problems. 

   1) Bilingual learning of children whose parents are internationally married. 
   2) Error detection when correct data and wrong data are shuffled. 

   Historically, the inference from positive data has been considered of little interest 

to study, since Gold [3] proved that any class of languages is not inferrable from posi

tive data if it contains all finite languages and at least one infinite languages, and 

hence that even the class of regular sets is not inferrable from positive data. However, 

recently Angluin [1, 2] proved a theorem characterizing the class of languages infer

rable from positive data and presented interesting classes including the class of pattern 

languages. Shinohara has found two subclasses of pattern languages applicable to 

practical problems [4], and has got a similar result for extended pattern languages [5]. 
Here a pattern is a string of constant symbols and variable symbols, and the language 

of a pattern p is the set of all strings obtained by substituting any non-empty constant 
string for each variable symbol in p. 

   In this paper we first show that the class of pattern languages is not closed under 

union. Without this property, considering inference for unions of pattern languages 

would make no sense. Then we show that the class of unions of two pattern lan

guages is inferrable from positive data.
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   2. Patterns and Their Languages 

   We begin with the definitions on patterns and their languages. 
   Let X be a finite set of symbols containing at least two symbols and let X= 

{x1, x2, •••} be a countable set of symbols disjoint from E. Elements in are called 
constants and elements in X are called variables. A pattern is any string over TUX. 
The set (TUX)* of all patterns is denoted by P. 

   Let f be a nonerasing homomorphism from P to P. If f(a)=a for any constant 
a, then f is called a substitution. If f is a substitution, f(x) is in X, and f (x)= f (y) 
implies x=y for any variables x and y, then f is called a renaming of variables. We 
define two binary relations on P as follows : 

   1) p m'q if p=f(q)  for some renaming of variables f, 
   2) p <_'q iff p=f(q)  for some substitution f. 

   The language of a pattern p is the set 

L(p)={wEX*I ws'p}, 

and the class of pattern languages is 

PL={L(p)I pEP}. 

These syntactic relations <' and -' are characterized by the following lemma. 

   LEMMA 1. [2] 
   1) For all patterns p and q, p='q iff L(p)=L(q). 

   2) For all patterns p and q, if p �_'q then L (p) C L (q), but the converse is not true 
in general. 

   3) If p and q are patterns such that j p 1 = 1 q I, then p <'q iff L(p) c L(q), where j p 
is the length of p. 

   We say that a pattern p is in canonical form if x1, x2, • • • , x k are all variables in 

p and the leftmost occurrence of xi is left to the leftmost occurrence of xi+1 for each 
i =1, • , k-1. Clearly, for any pattern p, there uniquely exists a pattern p in ca
nonical form such that

   3. Inference from Positive Data 

   In this section we briefly describe inference from positive data for later discussion. 

   Inference machine is an effective procedure which requires inputs from time to time 

and produces outputs from time to time. Let s = s 1i s2, • • • be an arbitrary infinite 
sequence, and let g=g1i g2, ••• be a sequence of outputs produced by an inference 

machine M when inputs in s are successively given to M on request. Then we say 

that M on input s converges to go iff g is a finite sequence ending with go or all but 

finitely many elements of g are equal to go. 

   Let L = L1, L2, • • • be a class of recursive languages, and let s = s1, s2, • • • be an 

arbitrary enumeration of some language Li. Then we say that a machine M infers L 

from positive data if M on input s converges to an index j with L;= Li. We say that 
a class L is inferrable from positive data if there exists a machine which infers L from
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positive date. 
   To prove inferrability from positive data for unions of two pattern languages, we 

use the following theorem. 

   THEOREM 1.  [2] A class L=L1, L2, ••• of languages is inferrable from positive 

data iff L satisfies the following condition. 

   CONDITION. There exists an effective procedure which enumerates elements in a set 
Ti for any index i, where 

   1) Ti is finite, 

   2) Ti_cLi, and 

   3) for no index j, T ig.L .F Li. 

Ti in Theorem 1 is called a tell-tale finite subset of Li. Note that Li is a minimal 

language containing Ti.

   4. Inference for Unions of Two Pattern Languages 

   Let L = L 1i L2, • • • be a class of recursive languages and /= { 1, 2, • • • } be the set of 

indexes. Then we define I2= {(i, j) I i, j EI}, L( ,,)=LiULi, and L2 is the class of 

languages whose index set is I2. Then inference for unions of two pattern languages 
is nothing less than the inference for PL2. In our case, the set of indexes is the set 

P2 of all pairs of two patterns and L(i)'JL(j) is denoted by L(i, j). 

   First we show that the class of pattern languages is not closed under union . The 
following lemma is used in the proof. 

   LEMMA 2. [2] If I p 1=1 q I, then 

L(p)nE PI C L(q)----) L(p)-C L(q) and p_<'q • 

   THEOREM 2. If card(X)>_3, then 

                  L(p)UL(q)=L(r)----) p='r or q-'r 

for any patterns p, q, and r, where card(S) is the number of elements in S. 

   PROOF. Assume L(p)UL(q)=L(r), 1 p 1 < I q I, p'r, and q'r. The minimum lengths 

of strings in L(p)'JL(q) and L(r) are equal to Ipl and Irl, respectively, therefore 

IpI=Irl• 

L(p)SL(r) from our assumption and hence by Lemma 1 

p<'r. 

By Lemma 2, there exists a string w(L(r)nX'T')—L(p). Since the string w must be 

in L(4), I r 1= I w I? I g l. Therefore 

IpI=lqI. 
Again by Lemma 1 

   Here we should note that if I s I = I t I , s _<'t, and sit, then 

s<i> X' and t<i> E X for some i, or



86T. SHINOHARA

        s<i>, s<j>,  t<i>,  t<j>EX, s<i>=s<j>, and t<i>�t<j> some i and j, 

where v<i> denotes the i-th symbol in v from the left. A typical example is s =012; 

t=0x2 or s=xlx, t=xly, where E= {0, 1, 2} and X= {x, y, •••}. 

   Clearly, from our observation, there exists a string w E L(r)nX'r' satisfying the 
following conditions : 

   1) If p<i> e f and r<i> E X for some i, then 

w<i> # p<i>, or 

if p<i>, p<j>, r<i>, r<j>EX, p<i>=p<j>, and r<i>=r<j> for some i and j, then 

w<i>�w<j>, and 

   2) If q<i'> E X and r<i'> E X for some i', then 

w<i'>�q<i'>, or 

if q<i'>, q< j'>, r<i'>, r< j'> E X, q<i'>=q<j'>, and r<i'> � r<j'> for some i' and j', then 

w<i'> � w<j'>. 

   Then w EE L(p) by condition 1) and w E L(q) by condition 2). Hence, by contradic

tion, our proof is completed.^ 

   The condition card (X)>_3 is necessary in Theorem 2 because if p<i>, q<i> E X , p<i> 
: q<i>, and r<i> e X, then we need at least three constant symbols to satisfy two con
ditions 

w<i> # p<i> and w<i> �-q<i> 

In fact, L(0x)UL(lx)=L(xy) when I={0, 1}. 

   Now we state our main theorem and prove it. 

   THEOREM 3. PL2 is inferrable from positive data. 

   PROOF. We show that PL2 satisfies Condition of Theorem 1. We present an effec
tive procedure which enumerates elements in a tell-tale finite subset of L(p , q) for any 
pair (p, q) of patterns given. Consider the following procedure, where (p, q) is given 

pair of patterns, j p I < 1 q 1 , and assignments to T is the enumeration.

init: T : =L(p)nE'p' ;(1 ) 

    F: = {(r, s); (p l_{ r l = j s i , r and s are canonical, T c L(r, s)} ; (2 ) 

  start enumeration of I+ ;(3 ) 
w : =the first element of '+;(4 ) 

   while w E L(p) or w E L(q) do(5 ) 

        begin 

    if w E L(p) then(6 ) 

              begin 

               Fl: ={(r, s)EF; wEL(r, s)} ;(7) 

             if Fl ch then T:=TkJ{w};(8) 
F: =F—F1(9 ) 

end; 

w: =the next element of I+(10)
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         end; 

 reset  : T : =TU(L(q)nE'9U {w} ;(11) 

F:=  {(r, s) ; I p l = I r l < I s I < I u, (, r and s are canonical, T c L(r, s)} ; (12) 

   restart enumeration of I+ ;(13) 

for each w E X+ do(14) 

    if WE L(p, q) then(15) 

            begin 
F2: = {(r, s) EF; we L(r, s)} ;(16) 

           if F2�0 then T : =TU {w};(17) 

F: =F—F2(19) 

             end

   The value of T at (1), the value of F at (2), the value of T at (11), and the value 
of F at (12) are all finite. It is easily shown that this procedure enumerates elements 
in a subset of L(p, q). We must show that T*, the finite subset of L(p, q) enumerated 
by this procedure, is a tell-tale. 

   Assume T* is not a tell-tale finite subset of L(p, q). Then, by the definition, there 
exists a pair (r, s) of patterns satisfying 

   (*) T* c_ L(r, s) L(p, q), l r I< I s l, r and s are canonical. 

Since we assume I p I I q I , L(p) is not properly contained in L(q) and hence we con
sider two cases according to whether L(q)—L(p)=cb or not. 

   Case 1. Assume L (q) — L (p) = 0. Then the condition w E L(p) or w E L(q) of the 
while statement (5) is always satisfied. The while statement never terminates and 
statements under "reset", (11)-(19), are never executed. Note that L(p, q)=L(p) holds in 
this case. 

   Let (r, s) be a pair of patterns satisfying (*). Then 

min{I wl ; wEL(p, q)}=1p1 <min{lwl ; wEL(r, s)}=lrl• 

Since L(p)nI'P' CT*S L(r, s), I P l -� l r l • Therefore 

IpI=1rl• 

By Lemma 2, there exists a string wE(L(p)nEIP')—L(r). The string w must be in 
L(s) and Iwl=1p1=1s1. Hence 

IpI=Ir1=1sI. 

The pair (r, s) appears in F at (2) and never appears in Fl at (9). However any string 
w' L(p, q)—L(r, s) will appear in the enumeration of E+ in time and then the pair 

(r, s) will appear in Fl at (9). This is a contradiction. 
   Case 2. Assume L (q) — L (p) � cb. Then the while statement terminates and state

ments under "reset", (11)-(19), are executed. If we can show that any pair, (r, s), satis
fying, (*), appears in F at (12), then a contradiction is easily derived in a similar way 
to Case 1. Let (r, s) be a pair of patterns satis-fying (*). Note that 

T ?(L(p)nE'P')U(L(q)nEIP')U {w}
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holds at (11). Obviously  I  p  1=1  r  1 

   There are two cases to consider. Let w be the w at (11). 

   1) Assume L(p)nE'P' 1 L(r). Then clearly I s 1= I p I <_ I w I. 
   2) Assume L(p)nE'P'CL(r). Then L(p)SL(r) by Lemma 2. If L(p)=L(r), then 

w ELM and hence w E L(s) and I s I <_ 1 w I . Otherwise, if, L(p) L(r), then there exists 

a string v such that ve(L(r)nI'r')-L(p). Since the string v must be in L(q), !pi=                                                                   

I q I . Clearly, by Lemma 2, L(q)nE'P' Z L(r) and hence there exists a string v' satisfy
ing v' E L(q)nf'q' and v' E L(s). Therefore                         

Is1=141c1w1• 

   In either 1) or 2), 1 p 1= I r 1 <_ I s I < I w 1 is satisfied and hence the pair (r, s) appears 
in F at (12).^

   5. Concluding Remarks 

   we have discussed inference from prositive data for unions of two pattern lan

guages. Unions of other classes than pattern languages should be considered on their 
inferrabilities. For example, whether the class of unions of two extended pattern lan

guages is inferrable from positive data or not should be an interesting problem. The 
extended language of a pattern p is the set of all strings obtained by substituting any 

(possibly empty) constant string, instead of non-empty constant string, for each variable 
in p. 

   To find practical problems, which can be modeled by inference for unions, is 

another interesting future subject. The computational complexity problem, we have not 

referred in this paper, should be considered in practical applications of inference.
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