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DEPENDENCIES IN A PARTIALLY SPECIFIED RELATION

       By 

Yuzuru TANAKA*

                    Abstract 

   The current schema design theories assume that a database may 
be regarded as a single relation. From the practical point of view, 
this is hardly acceptable. However, if a relation is allowed to have 
unspecified items, any database can be represented as a partial 
relation. Since the normalization theory is defined with respect to 
relations, it needs to be extended so that it may become applicable 
to partial relations. As extensions of dependencies, natural depend
encies are defined. They are axiomatized, and the set of axioms is 
proved its completeness. The schema design based on natural de
pendencies solves not only the problems caused by a universal relation 
assumption but also the update anomalies caused by decomposition 
of a database.

   1. Introduction 

   While the theories on database schema design that are based on dependencies among 
attributes of a relation have been much criticized their inapplicability to the actual 
design of practical databases, the growing dimension and complexity of databases are 
increasing the needs for a CAD system for the design of database schemata. In order 
to automatize a major portion of design processes, such a CAD system needs as its 
basis a mathematical design algorithm based on a complete axiomatic system. The 

purpose of this paper is to fill up an alleged gap between theory and practice of the 
schema design. 

   The current design theories are based on the socalleed normalization theory, which 
was originally applied only to a single relation. Normalization was first proposed by 
E. F. Codd [1]. It decomposes a relation to decrease update anomalies. The decompo
sition increases the locality of update operations, and hence it saves trouble in the 
execution of update requests. Unfortunately, the same theory has been applied to a 
database, which is not always able to be represented as a single relation but as a set 
of relations. The schema design theories originated from a hasty conclusion that 
normalization is also applicable to databases. Therefore, they have to assume that an 
object database can be regarded as a single relation. This assumption is called a 
universal relation assumption. Obviously, it is hardly acceptable from a practical point 
of view. The alleged gap between theory and practice originates in this assumption. 

   This paper will extend the definition of a relation in section 3 to allow some of its 
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tuples to have attributes whose values are not specified. Such an extended relation is 

called a partial relation. Instead of regarding a database as a relation, we will regard 
it as a partial relation. This assumption imposes no essential restrictions on object 

databases. The definition of dependencies is also extended in section 4 to describe 

dependency structures in partial relations. New dependencies are called natural depend

encies. The replacement of dependencies by their corresponding natural dependencies 

will make the normalization theory and the design algorithms also applicable to partial 

relations. Section 5 will axiomatize natural dependencies, and prove its completeness. 

Section 7 will show this extention will solve various problems caused by update 

operations.

    2. Problems in the Conventional Normalization Theory 

    Schema design theories based on the conventional normalization theory assume the 

universal relation assumption. The examples in this section will show the impracticability 

of this assumption. 

    Let R(A, B, C) as shown in Fig. 1(a) be a relation satisfying a functional depend

ency  B—*C. In this section, R is taken as an example database that can be regarded 

as a single relation. Schema design theories decompose the database R to yield as its 
schema two projections of R, i. e., R, and R2 in Fig. 1(b). There are two different 

major approaches to the design of schemata. One is the decomposition approach, and 

the other is the synthesis approach. In this example, however, the result is independent 
from which of the two approaches is applied. 

   Problems will arise when we try to update R(A, B, C) that is actually stored as a 

set of two relations R, and R2. The following two update requests will explain the 

problems ; 

   (1) Delete the relationship that B is ` c ' and C is ` e'. 

   (2) Delete the value ` c ' from the values of B. 

   The execution of (1) will change R, and R2 as in Fig. 1(c), while the execution of 

(2) will change them as in (f). The result (c) has no corresponding universal relation 
over {A, B, CI. A table in (d) represents the result (c), however, it is not a relation 
since it has an unspecified item. Such a table with unspecified items is called a partial 

relation. Since unspecified items may be regarded to take a special value `1', a table 

(d) may be identified with (e). This example indicates the possibilities that even a very 
simple update request may make a database to lose its universal relation even if it 

initially satisfies the universal relation assumption. 

   There is another noticeable point in (d). Although the projection of a tuple (b, c, e) 

to the attsibute set {A, B} is preserved in the result of update, its projection to {A, C} 

disappears from the result. This seems to reflect a tacit understanding that, if B---C 

holds, the value of C is not specified with the corresponding value of B remaining 
unspecified. 

   The execution of (2) will change two relations in (b) to two tables in (f), which 

cause another problem. Although the universal table for this result should be the table
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(1) Delete the relation
   ship that B is 'c' 

   and C is  `e'.

(2) Delete the value 
`c' from the val

   ues of B.

Fig. 1. Problems caused by the execution of updates on a designed database.

(g), another table (h) is also decomposed to (f). Such ambiguity is caused by an update 
operation that yields a partial relation with unspecified items in its key attributes. In 

the relational model of databases, partial relations of this kind have been tacitly 

prohibited. 
   The example update (1) indicates that universal relations should be allowed to have 
unspecified items. The second observation on (1) and the example (2) indicate that 

dependencies used for decomposition of a partial relation should not be specified inde

pendently from how unspecified items may appear in this partial relation. Dependencies 
and the appearance of unspecified items seem to be closely related. 

   The E-R model [2] that is comparatively accepted by practitioners of the database 

design discriminates between two types of attributes, i. e., entities and properties. It 

considers only those dependencies X—*Y and X—)--Y whose determinant X has no 

properties. The values of properties can not be specified independently without specif y
ing the corresponding entities or the relationships among entities. Therefore, if Y has 
no entities, dependencies X—Y and X---4Y satisfy the condition :



72Y. TANAKA

 "  In each tuple
, its X values are completely specified if there exists some attribute 

   A in Y whose value is specified." 

It is proved in this paper that decomposition of partial relation by such dependencies 

satisfying the above condion yields no undesirable partial relations that have unspecified 

items in their key attributes. Therefore, it seems desirable and practical to define 

dependencies in partial relations to satisfy the above condition.

   3. Partial Relations 

   Let YX denote a set of all the total functions from 'a set X to another set Y. A 
set of all the partial functions from X to Y is denoted by (Y')'. Let Q be a finite 
set and D an enumerable set. A relation over (Q, D) with Q as its attribute set and 
D as its value set might be interpreted as a subset of D2. As an extension of this 
interpretation, a partial relation over (Q, D) is defined as a subset of (D'2)'. In distinc
tion from partial relations, ordinary relations are said to be total. An element of D'1 
is called a (total) tuple over (Q, D), while an element of (Do)' is called a partial tuple. 
Let `I' be a special value called a bottom that is not in D, and D a union of D and 
{1}  . For each partial tuple i in (Do)', a total tuple a inJDp is defined as 

p(x) if p(x) is defined, 
p(x)=- I if xE9 and p(x) is undefined, 

undefined otherwise. 

The support of a tuple ,u over (Q, D), that is denoted by s(p), is defined as 

                    s(p)= {Al AESZA,u(A)* 1}. 

A tuple p is said to be shperior to p' if 

dx E Q (p'(x) 1)D(p(x)= p'(x)) , 

which is denoted by p> p'. The difference p— p' of two tuples p and a' in D2 is also 
a tuple in D2 defined as 

                         p(x) if pp', 
               (p—p')(x)=p(x) if p> p' and xeEs(p'), 

I otherwise. 

For each partial relation r over (9, D), a corresponding total relation r over (9, D) is 
defined as 

r= {P I It r} . 

By co(r) is referred to the attribute set of r. Since a relation r may be identified with 
r, r is also called a partial relation. Similarly, a tuple p is also called a partial tuple. 

   The restriction of a partial tuple p over (9, D) within a subset X of 9 is an 
element of DX defined as 

                           p(x) if xEX, 
                   Ell  x(x)=                               undefined otherwise. 

The projection of a partial relation r with respect to an attribute set X is a subset of 
(DQnx)' defined as
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                    ({Ha} if XCSQ,                  [X]
r= 

 ¢otherwise. 

 VVeRdefine a directed join of two relations r and s as 

Y D s= {f-t I (fi E Dw(r) Um(s)) A (, I w(r) E r) A ([t I w(s) E s) 

                       A dAEw(s)—w(r)dB Eco(s)nw(r) 

((p(A) � 1)D(p(B) � 1))} 

The join of two total relations R and S is denoted by R * S.

   4. Natural Dependencies 

   As the dependencies are defined with respect to total relations, we will define 

natural dependencies with respect to partial relations. 

   DEFINITION 4.1. Let r, X and Y be a partial relation and two subsets of w(r). An 

existential dependency (ED) XAY is defined as 

r sat X~Y if VBEYJAEXdpEr (p(A)#1)D(p(B)#1), 

where r sat C denotes that r satisfies the condition C. 

   DEFINITION 4.2. Let r, X and Y be same as in Definition 4.1. A natural functional 

dependency (nFD) XY is defined as 

            r sat XY if (r sat X—>Y)A("AEY r sat {A}-e-a). 

   DEFINITION 4.3. Let r, X and Y be same as in Definition 4.1. A natural multi 

valued dependency (nMVD) XY is defined as 

            r sat XxY if (r sat X )Y)A("AEY r sat {A}lX). 

A natural dependency XY (X= >Y) is a dependency X-->Y (X—>—>Y) with the implica
tions that the value of any attribute in Y is not specified with the corresponding value 

of some attribute in X remaining unspecified. 

   As a relation R satisfies that 

               (R sat X—>—>Y) if R=[XY]R*[X(Q—Y)]R , 

a partial relation satisfies a similar relation as shown in the next theorem. 

   THEOREM 4.1. Let r, x and Y be same as in Definition 4.1. A partial relation is 

decomposable if it satisfies a nontrivial natural dependency, i.e., 

               (r sat X e Y) if r=[X(SQ—Y)]rD [XY]r 

   PROOF. Obvious from the definitions. 

   If total relations are concerned, natural dependencies are identical with the corre

sponding dependencies.

   5. Axiomatization of Natural Dependencies 

   It is well known that FD's and MVD's satisfy the following set of axioms. 

FD1 (Reflexivity) if YcX then X— Y.
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FD2 (Augmentation) if  ZCW and X-->Y then XW-->YZ. 

FD3 (Transitivity) if X-->Y and Y--4Z then X-->Z. 
MVDO (Complementation) if X-----> >Y then X  > >Q Y, where Q denotes the universal 

                      set of attributes. 

MVD1 (Augmentation) if ZCW and X—  Y then XW >YZ. 

MVD2 (Transitivity) if X—>—>Y and Y---->Z then X—>-->Z--Y. 

FD-MVD1if X—*Y then X>--*Y. 

FD-MVD2if X—>--->37 and (S2—Y)--*Y then X—>Y, where S2 denotes the 
                      universal set of attributes. 

   LEMMA 5.1. The above set of axioms is complete with respect to FD's and MVD's. 

   PROOF. See C. R. Beeri's proof [3]. 
   Now we axiomatize the properties of ED's. 

ED1 (Reflexivity) if YCX then X e>Y. 

ED2 (Augmentation) if ZcW and X e->Y then XW->YZ. 

ED3 (Transitivity) if X~Y and Y e>Z then X e>Z. 

The above set of axioms for ED's is essentially the same as the axioms for FD's. 

   THEOREM 5.2. ED's satisfy the above set of axioms ED1,,,ED3. 

   PROOF. Trivial. 
   THEOREM 5.3. The above set of axioms for ED's is complete with respect to ED's. 

   PROOF. Let A be an arbitrary set of ED's among subsets of Q. A set of all the 

ED's inferable from A using ED1—,ED3 is called the closure of A. It is denoted by At. 

The set of axioms is complete if, for any A, there always exist a value set D and a 

partial relation r over (Q, D) such that r satisfies all the ED's in At but not any ED's 
other than those in At. Here we show how such D and r can be constructed for an 

arbitrarily given A. Let Q be {A1i A2, • • • , AO. For each XCQ, a set X* is defined as 

X *_ {B I X~B E At}, 

and a value set D with 2" distinct elements is defined as 

D= {ax I XCS2}. 

For each XcQ, a tuple ,ux over (Q, D) is defined as 

ax if AEX*, 
fix(A)= 

1 otherwise. 

A partial relation r is constructed as 

r={pxI XCS2}. 

Obviously, r satisfies At. Suppose that r satisfies an ED f : X-!>17 that is not in At. 

Since an ED XS-4X * is included in At, a set Y—X*  must not be empty. Let B be an 

element of Y—X*. Since r satisfies Y e->Y, it also satisfies Xi->B. This implies that 

3AEX d Er (a(A) 1)D(a(B) 1) , 

which is equivalent to the condition ; 

3AEX Vp (p(B)=1)D(p(A)=1) .(5.1)
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While  B  E  X  * implies px(B)=1, the definition of px implies px(A)= ax. This con

tradicts the condition (5.1). Therefore, r does not satisfy f. 

    Natural dependencies are axiomatized by adding the following two axioms to the 

axioms FD1~FD3, MVDO~MVD2, FD-MVD1, FD-MVD2 and ED1--ED3. 

nFDXY if (X—Y)A("AEY AS4X) 

nMVDX=T if (X-- Y)A("AEY A-X) 

    THEOREM 5.4. A set of axioms consisting of FD1 FD3, MVDO~MVD2, FD-MVD1, 
FD-MVD2, ED1~ED3, nFD, and nMVD is complete with respect to nFD's and nMVD's. 

   PROOF. Let I' be a set of nFD's and nMVD's among subsets of Q. We define two 

sets as 

ro= {X-*Y XYEI'} U {X-~--+Y j X>YE1,}, 

1 1= {As-X i (XYEI'V X.YEI')A(AEY)}. 

A set of ED's inferable from f' by ED1' ED3 is denoted by I'1t, and a set of FD's 

and MVD's inferable from I', by the remaing axioms is denoted by rot. 

   The above set of axioms is complete if, for any r and Q, there exists a value set 

D and a partial relation r over (Q, D) such that r satisfies Ft but not any natural 

dependencies other than those in rt. Here we show how to construct such a value 

set D and an example partial relation r for an arbitrarily given Q and[ From Lemma 

5.1, there exist, for each S2 and F, a value set Da and an example relation Ro over 

(Q, Do) such that Ro satisfies Fot but not any dependencies other than those in rot. 
From Theorem 5.3, there exist a value set D1 and an example partial relation rl that 

satisfies I'1t but not any ED's other than those in rit. Since the elements of D1 defined 

in Theorem 5.3 are independent from Do, Do and D1 can be made mutually disjoint. 
Let D and r over (Q, D) be defined as 

D=DoUD1, 

r=RoUr1. 

Then r satisfies rt but not any natural dependencies other than those in rt. This is 

proved as follows. 
   Let f be a natural dependency XY (or X=>17) Y) that is arbitrarily chosen from Ft. 

Since the corresponding dependency holds, rot includes X--17 (or X~Y). Therefore, 

the definition of Ro implies that 

Ro sat X-4Y (or X *Y) .(5.2) 

On the other hand, f E I't implies that 

"A Y AlXEF1t , 
which further implies that 

vAEY "ZCSQ (AEZ)J(XCZ*) 

because A* includes X and Z* includes A*. Therefore, for any Zc 2, if pz in rl 

which was defined in the proof of Theorem 5.3 satisfies pz(A) # I , then, for any B in 
X, 1i (B) is equal to pz(A). Since az does not appear in any tuples in rl other than 

pZ, this implies that
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 VAEY r1 sat X--*A , 
or equivalently 

r1 sat X--0Y.(5.3. a) 

Obviously, this also implies. 
r1 sat X->-3Y.(5.3. b) 

Since the value sets of Ro and rl are mutually disjoint, conditions (5.2) and (5.3) imply 

that 
                   r sat X--*Y (or X--)--*Y) .(5.4) 

Now we will prove under the same assumption that 

"A E Y r sat AlX 

Since XY (or XY) is an element of ['t, rit includes A 4X for any A in Y. There

fore, the definition of rl implies 

dAGY r 1 sat Al >. .(5.5) 

Since Ro is a total relation, it is obvious that 

'AEY Ro sat A-X .(5.6) 

The conditiins (5.5) and (5.6) imply that 

                d A c- Y r sat AIX .(5.7) 

From (5.4) and (5.7), it can be concluded that 

                r sat XY (or X x Y) .(5.8) 

   The remaining part of our proof is to show that r does not satisfy any natural 

dependency f that is not in rt. Let f be XY (or X x Y) that is not in rt. This 
assumption implies either 

X-4Y (or X-* Y) Et rot, or 

A E Y Al*XEE 

If X-->Y (or X-*--Y) is not included in rot, then the definition of Ro implies that 

—1(R0 sat X-*Y (or X--->--4Y)),(5.9) 

and hence it is proved from the disjointness of Do and D1 that 
-~(r sat XY (or XY)) 

Otherwise, there exists A in Y such that AI)X is not in Ii. Therefore, the definition 
of rl implies that 

--1(rl sat Ala.),(5.10) 

and hence it is proved that 
--1(r sat XY (or XY)) 

Thus the set of axioms as shown above is complete with respect to natural dependencies.

  6. The Computation of the Natural Dependency Closure 

   The proof of Theorem 5.4 gives a hint about how to compute Tt from an arbitrarily 

given T. The following is an algorithm for this computation.
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ALGORITHM 

step 1. Obtain  ro and F1 from I. 

step 2. Compute rot from ro using axioms for FD's and MVD's. 

step 3. Compute r1t from r, using axioms for ED's. 

step 4. Compute rt as 

rt= {X {A} I (X-* {A} E Tot) A (As,XE Fit)} 

{X YI(X ) YErot)A("AEY AoXEr1t)}. 

   The algorithms to compute rot have already been studied by several authors. Here 

we show an algorithm using the canonical representation of dependencies [4]. For a 

partition {X, Y0,Y1i , Yn} of Q, a representation 

X: [Y0]Y1 I Y2 I ... I Y. 

is called a canonical representation. It denotes a set of dependencies 

X-oY0 , and 

                       Vi 

Let C be a set of all the canonical representations over D. The dependency base of ro 
that is denoted by Po is a subset of C that is defined as 

I'o={oj(oEC)A(roF-o)A—i(3o'Ec—{o} (roi-5')A(5'F-5))} 

Since, for each element f in rot, there always exist an element 5 in to and an element 

f' in 5 such that Pi— f, the computation of rot might be replaced by that of Po. The 
dependency base to can be computed using the following rules. 

rule 1. 

If roi—X: [Yo]Y1I Y21'•'IY. . and roF—u.: [Vo]V1I V21'•'I Vm 
then F0'-W : [Zo]Z1 I Z2 I • • • I Zm I Zm+1, where 

W=XU(YinU), 

Zo=YoJ(YinV 0)—W , 

Zj=YinV, for 1�-i� 774 

Zm+i=Q-117— U Zj . 

rule 2. 

U: [Vo]V11V21...IV.1--X: [Y0]Y11Y21.••lY. 

if (UCX)A(V0DY0)A(ei /C {0, 1, 2, •••, nZ} XUYi=Uu(UVj))• 
jEI 

If MVD's are not concerned, each canonical representation X: [Yo]Y1 might be replaced 

with X: [Y0]. The computation of Fit in step 3 is essentially same as the computation 
of the closure of functional depedencies. Therefore, its dependency bace 11 is defined . 
The computation of r1t might be replaced with that of 11. 

   An example is given below to show how to apply this algorithm. 

   EXAMPLE 6.1. The computation of Ft for such SZ and r given as 

Q={A,B,C,D,E,F,G,H,I,J,K,L,H,N,0,P,Q},
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 T= {G~DK, ACOP, HAB, ABCDEFGKLM, C>DEFGKN, 

Dn AHKLN, F ABG, In'JQ} 

is shown below. 

step 1. 

] = {G->DK, AC--*OP, H---AB, AB  > >CDEFGKLM, C}DEFGKN, 

D--*-4 AHKLN, F-r= ABG, I JQ} , 

I'1= {D~G, Ke>G, O~AC, P~AC, A e>H, B e>H, C-LAB, D~AB, E-AB, 

FLAB, G1AB, Ks4AB, L~AB, M~AB, D~C, E e->C, F e>C, G~C, 

KsC, N~C, A1D, He>D, K~D, LAD, NSD, Al0F, BSF, G~F, 

1->I, Q-e-°I} . 
step 2. 

Pa : G : [ABDKOP]HI LI NI IJQ I CEFM 

H: [ABOP]NI IJQ ( CDEFGKLM 

AB : [OP]HI NI IJQ I CDEFGKLM 

C: [ABOP]HI NI IJQ I DEFGKI L I M 

D : [ABKOP]H) LI NI IJQ I CEFGM 
F: [ABDKOP]G I HI LI NI IJQ I CEM 

       I: JQ [ ABCDEFGHKLMNOP 

step 3. 

A: A: [BCDFGH], B: [ACDFGH], C: [ABDFGH], D : [ABCFGH], 
F: [ABCDGH], G : [ABCDFH], H: [ABCDFG], E: [ABCDFGH], 

       J: [I], K: [ABCDFGH], L: [ABCDFGH], Al: [ABCDFGH], 
N: [ABCDFGH], 0 : [ABCDFGH], P: [ABCDFGH], Q : [I] 

step 4. 

Ft : GABDKOP, Gn H, Gn L, GrrN, Gn CEFM, 
HABOP, Hn N, Hn CDEFGKLM, 
ABOP, ABn H, AB N, ABn CDEFGKLM, 
CABOP,CnH,C N, C DEFGK,C 
D~ABKOP, DH, DL, DN, D=>CEFGM, 
F'ABDKOP, Fn G, Fn H, Fn L, FrnN, F>CEM, 
IJQ. 

   It should be noticed that there exist some dependencies that are not natural 
dependencies, An MVD G----> >IJQ is such an example.

   7. Updates of a Partial Relation 

   The insertion of a partial tuple ,u over (Q, D) to a partial relation r over (2, D) is 
a simple process to change r to r'J {,u} . However, the deletion of a partial tuple 

over (2, D) from r is not so simple. In this paper, it is defined as a process to change 

r to 

{v'-vI V Er}.
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The difference of two tuples is already defined in Section 3. An example of such 

deletion is shown in Fig. 2.

Fig. 2. Deletion of a partial tuple from a partial relation.

   Assume that Q is an attribute set satisfying natural dependencies I. For a subset 

X of Q,  X* and *X are defined as 

X*= {A! (AQ)A(r1XS,A)}, and 

*X={Aj(AeQ)A({A}*nX�0)} . 

These two sets X* and *X are respectively called an insertion base and a deletion base 

of X. Suppose that a partial tuple p is to be inserted to a partial relation over (Q, D) 

satisfying F. A partial tuple p must satisfy existential dependencies in Fi. Therefore, 

if its value is specified at an attribute A, it is also specified at any attributes in {A} *. 

A subset X of Q is said to be insertion compatible if X* is equal to X. If p is to be 

inserted, its support S(p) should be insertion compatible. 
   Suppose that a partial tuple v is to be deleted from a partial relation r over (Q, D) 

satisfying F. Let V be a tuple in r satisfying v' > v. Suppose that there exists an 

attribute A in *X such that v'(A) will not become `I' after the deletion. Since Al {A} * 

holds in Ti, there exists some attribute B in {A} *nX and v'(B) will not be `I'. 

However, since v is to be deleted, v'(B) should become `I'. Therefore, the value of V 

should become unspecified at all the attributes in *s(v). A deletion base of s(v) is a 
maximum set of attributes to which the deletion of a partial tuple v might propagate. 

   THEOREM 7.1.For any subset X of Q and any insertion compatible set Y, (Y—*X) 

is also insertion compatible, i.e., 

(Y—*X)*=Y—*X .
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   PROOF. If there exists A in  (Y—*X)*—(Y—*X), then A is in Yn*X because the 

insertion compatibility of Y implies that 

(Y—*X)*—(Y—*X)cY—(Y—*X)=Yn*X . 

Therefore, A satisfies 

Y—*X-4A, and 3BEX AB . 

Since each ED in I'1 has only one attribute in its determinant, there exists some C in 
Y—*X such that C--A. This implies C-SB, and further implies C is in *X. This 

contradicts the condition that CY—*X. Therefore, (Y—*X) should be insertion 

compatible. 

   DEFINITION 7.1. Let S21 and 92 be two subsets of Q. A pair (Q1, Q2) is a decom

position of Q if it satisfies 

      jnnn17,nn                  l~("°(~1nQ2)>Q1—Q2 orf—(Q1fl\nn2)u2—Qi 

   THEOREM 7.2. Let (Q1, S22) be a decomposition of Q. IfX is insertion compatible 

and neither of Q, nor S22 includes X, then the set of join attributes is included by X, i.e., 

Q1nS2,cX 

   PROOF. If neither of XCQ1 nor XcQ2 holds, then neither of the sets defined as 

X1=Xn(Q1-Q2) , 

X2=Xn(Q2--Q1) 

is empty. Let X3 be X—(X1UX2). Since (JG1i Q2) be a decomposition, either Q1nQ2a' 

Q1—Q2 or Q1nS22reQ2—Q1 holds. If Q1nQ2u Q1—Q2 holds, then X1* includes Din.Q2• 

Otherwise, X2* includes [21nf22. Therefore, if X* is X, then X includes u° 1n"G 2• 

   Suppose that a relation r is decomposable by an ordinary dependency and that it is 

actually stored as a set of its two projections [Q 1]r and [92]r. The insertion of a 

partial tuple p which crosses these two relations will cause a problem if p is not 
specified its value at some attribute in S21nSQ2. In such a case, if p I s21 and /4(22 (22 are 
separately inserted to [Q1]7 and [Q2]r, the join of these two relations can not recon

struct p since p I Q1 and p I ,Q2 lack the values of the join attributes. However, if the 
natural dependencies in r are well specified and r is decomposed by one of them, such 

a problem will not occur. In such a situation, s(u) must be insertion compatible and 

hence, from Theorem 7.2, it must include Q1—Q2. Therefore, the directed join can 

reconstruct p from ,u 121 and p j s22. 

   As it was shown in Section 2, the above situation also causes a problem in deletion 

operations. If a relation r is inappropriately decomposed, some kind of deletion operations 

yields an undesirable tuple in r whose value is not specified at some of the join attri
butes. However, if the decomposition is performed by a natural dependency, it is 

guaranteed by Theorem 7.1 that such a situation will not occur. 
   This desirable property of the decompositions by natural dependencies is preserved 

for further decompositions. Therefore, if a schema is designed by decomposing a 

universal partial relation and each decomposition uses a natural dependency, then 

no updates will make any constituent relation in this schema have unspecified items in 

its join attributes.
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    8. Conclusions 

   The current schema design theories are based on the socalled normalization theory, 

which was originally applied to a single relation and has no theoretical foundation for 

its applicabilty to a partial relation. Thus the design theories had to assume that an 

object database may be regarded as a single relation. Usually, this assumption is hardly 

acceptable. However, any database can be regarded as a single partial relation. 
Essentially, the normalization theory is based on two concepts, a dependency among 

attributes and decomposition of a relation. As their natural extensions, similar concepts 

for partial relations has been defined in this paper. The extensions are natural since 

the new concepts degenerate into the original concepts if a partial relation happens to 
be a relation. The naturalness of these extensions makes it possible to use the 

essential part of the conventional theories with a little modification. 

   The join operation that is used as a basis of  decomposition has been replaced with 

the directed join operation. An extended dependency is called a natural dependency. 
A natural dependency XY (or XxY) is basically a dependency X--*Y (or X-3-->Y) 

with implications that, if some partial tuple is specified its value at some attribute in 

Y, it must be specified its values at all the attributes in X. Section 5 has axiomatized 

natural dependencies and proved the completeness of the set of axioms. Section 6 has 
shown an algorithm to compute the closure of an arbitrarily given set of natural 

dependencies. 

   Updates of a database generally causes various problems. If a database is decom

posed and a partial tuple is not specified its value at some of the join attributes, the 
insertion of this tuple across several relations is impossible. The similar troubles also 

occur in deletion operations. However, it has been proved that such a trouble will 

never occur if natural dependencies are well specified with respect to an object database 

and decomposition is done by one of them. Therefore, the schema design using natural 

dependencies solves not only the problem caused by a universal relation assumption but 
also the update anomalies caused by decomposition of a database.
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