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NONPARAMETRIC TESTS FOR INDEPENDENCE BASED 

           ON INTRACLASS RANKS

        By 

Shingo SHIRAHATA*

                    Abstract 

   Intraclass rank statistics are introduced to test for independence 
in a bivariate population when it has the same continuous marginal 
distributions. Locally most powerful intraclass rank tests (LMPIRT) 
are derived for a oneparameter family and asymptotic normality of 
a family of intraclass rank statistics including LMPIRT is shown 
under the hypothesis of independence and its contiguous alternatives. 
Furthermore, approximations of the null distributions of the statistics 
are discussed.

   1. Introduction 

   Let (Xi, Yi), i=1, • • • , n be a random sample from a population with continuous 

distribution function. In this paper intraclass rank tests of the null hypothesis H; X 

and Y are independent is considered under the constraint that X and Y have a common 

continuous marginal distribution function F(x). 

   Let Ri and Qi be the intraclass ranks of Xi and Yi among overall observations, 

respectively, i. e., 

Ri= {u(Xi—X;)+u(Xi—Y;)} 
a=1 

and 

Qi= {u(Yi—X;)+u(Yi—Y;)} 

where u(x)=1  or 0 according as x�0  or x<0.  The random variables Yi and Qi are 

also denoted by X1+n and Ri+n, respectively. In the second notations, the intraclass 
ranks are given by 

                                                2n 

Ri= Li(Xi—X;), i=1, ••• , 2n . 
j=i 

We shall use both notations for simplicity. We believe no confusions will occur. 
   Since X and Y have the same distribution, it is preferable that the conclusion of a 

test does not altered if (Xi, Yi) is replaced by (Yi, Xi) for some i. In this sense, the 

tests based on the intraclass ranks are more sound than the tests based on the usual 

ranks.
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46S. SHIRAHATA

   In Section 2 the locally most powerful intraclass rank test (LMPIRT) for a one

parameter family is derived. As in the case of the usual ranks in Shirahata (1974), the 

LMPIRT has critical region of the form  an(Ri, Qi)>c in many models. The asymp
                                                               i=i 

totic properties of intraclass rank statistics including LMPIRT are considered under H 

and its contiguous alternatives in Sections 3 and 4. Some special attentions are paid to 

statistics of the product form an(Ri)an(Qi) in the same sections. Though these can 
i=1 

not be the LMPIRT, the product form is easy to treat and is useful in the practical 

situations. 

   Usual linear rank statistics with symmetric scores constants are symmetric about the 

origin under H. However, our intraclass rank statistics are not symmetric exactly and 

symmetric asymptotically. Hence, the accuracy of the approximations by the asymptotic 

distribution will be not so good. In Section 5, the approximations using exact moments 

under H are discussed.

   2. Locally Most Powerful Intraclass Rank Tests 

   Let us consider a oneparameter family of density functions f(x, y; 0) with the 

same marginal density function f(x;  0). Here 0 represents the parameter such that 

0 =0 implies that X and Y are independent. By denoting f (x) = f (x ; 0), f(x, y; 0)= 

f(x)f(y). In this section, we derive the LMPIRT of the null hypothesis 0=0 against 
the alternative 0>0  or 0� 0. 

   Put R=(R1i ••• , R2n) and X*=(XC1), ••• , X(2.)) where X(i) is the i-th smallest order 

statistic of X= (X1i • • • , X27i). Denote by r(Xi) the intraclass rank of Xi for 1=1, • • • , 2n. 
Recalling the notations in Section 1, r(Xi+n)=r(Yi)=Ri+n= Q1. We need the following 

assumptions. 

   ASSUMPTION 2.1. The derivative 

                   f'(x, y; e)=(a/ae)f(x, y; 0) 

exists for almost everywhere (x, y) and the integral 

f'(x, y ; 0) j dxdy 

is finite and continuous in a neighbourhood of 8=0. 

                                          ASSUMPTION 2.2. The derivative 

                   f"(x, y; e)=(a2/a02)f(x, y; 0) 

exists for almost everywhere (x, y) and the integral 

f"(x, y; 0)Idxdy 

is finite and continuous in a neighbourhood of 0=0. 

   Note that the continuity of the integrals of the above assumptions are weaker than 

the usual Lebesgue's assumptions that I f'(x, y; 0)1 <M1(x, y) and I f"(x, y; 0) 

M2(x, y) for some integrable functions M1 and M2.
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   We can obtain the following theorem. 

   THEOREM 2.1. Under Assumption 2.1, the locally most powerful intraclass rank tests 
of the null hypothesis 0=0 against the alternative 0>0 have the critical regions of the 

 form

{ (2.1)SL=~'E0(---------------{r(Xo)=Ri,r(Yi)=Qi>>c 1=1f (Xi)J(Yi) 

at the respective levels. 

   Here Eo is calculated under 0=0. From now on, E0, varo and covo imply that the 

calculations are performed under H or 0=0. 

   PROOF. We have 

(2.2)Po(R=r)—Po(R=r) 

       =J...f(f(~i ,yi ; 0)—f(xi)f(yi))II.f(x;,yj ; 0)II (.f(xj)f(y~))dx 
    0=1 R=rj=1=i+1 

= f f f B f'(xi , yi ; t)dt II f(x;, yi ; 0) .II(f(xj)f(y>))dx 
j=1R---r 7       r 0j=1=i+1 

              

z  JR-r...110Aidtdx , (say), 

where 

                         dx= II (dxidyi) 
                                                             i=1 

Clearly 

                           f'(xi, yi ; 0) n                lim A
i/B =f(x

0)f(y0) (f(xj)f (yj)) . 
Furthermore, 

(2.3)J R2n ...JJo I Ai/0I dtdx<_J0-' I f'(x, y; t)I dtdxdy . 

From Assumption 2. 1, the right hand side of (2.3) converges to E .r. I f'(x, y; 0) I dxdy 
as 0 *0. Hence, from the convergence theorem II 4.2 of Hajek and Sidak (1967), 

                          e 

                    Aidtdx=J...ff'(xi,yi ; 0).II (f(xj)f (yj))dx . B•0R=r0R=rJ(*i) 

Thus, it holds that 

   lim(PB(R=r)—Po(R=r))/0=((2n) !Y'Ec(f'(Xi, 1; 0)/ 
   e-•0i=if (Xi)f(Yi)Ir(Xi)—Ri, r(Yi)=Qi 

From the NeymanPearson lemma, we can get the desired result. 

   If (X, Y) is normal or it satisfies a model of Farlie type (1960) 

(2.4)f(x, y; 0)=f(x)f(y)(1+0A(x, y)+o(0)) 

where A(x, y)=A(y, x), then the LMPIRT can be given by Theorem 2.1. However, in 
some models the test statistic SL vanishes. The Hajek model 

(2.5)(X, Y)=(X*H 4Z, Y*+4Z) 

is a typical one, since in this model f'(x, y; 0) is proportional to f (x) f'(y)+ f'(x) f (y).



48S. SHIRAHATA

This is because X and Y are always positively correlated for  4�0.  Hence, we must 

consider the two-sided alternative 4�0  in this case. 

   THEOREM 2.2. Suppose SL=O with probability one and Assumptions 2.1 and 2.2 are 

satisfied, then the locally most powerful intraclass rank tests of the null hypothesis 0=0 

against the alternative 0#0 have the critical regions of the form 

(2.6) TL= 1 EG(fil(Xi, Yi ;0) 1 r(Xi)=Ri, r(Yi)=Qi) 
2 i=1`f(Xi)f(17i) 

                   f'(Xi, Yi ; 0)f'(Xj, Y;; 0) r(X i)=Ri, r(Yi)=Qi,             Ea( f (Xi)f (Yi)f (XM(Yj) 
, r(X;)=Rj, r(Y;)=Q;) 

?c 

at the respective levels. 

   PROOF. From (2.2), we have 

(2.7) PB(R=r)—Po
~(R=r) 

              ...JJBJtf"(xi, yi; s) II f(xj, yj; t).II(f(xj)f(yj))dsdtdx 
                                                             7 i=1 R=r 0 0j=1=i+1 

+ 0... .f'(xi, yi; o)(II f(xj, yi; 0)—it(f(x~)f(y5)) i=1 R=rj=1j=1 

x ft (f(xj)f(yj))dx+ 0•f'(xi, yi; 0).fl (f(xj)f(yj))dx. 
j=i+1ti=1R=rJ(#i) 

From the assumptions, the last term of (2.7) is equal to zero. From the same con

vergence theorem used in the proof of Theorem 2.1, the second and the first terms each 

multiplied by (2n) !/02 converges to the first and the second terms of TL, respectively. 

The NeymanPearson lemma ensures the conclusion of the theorem. 

   The test statistic TL seems very complicated. However, it is not necessarily so. 

For example, in the Hajek model (2.5), f"(x, y; 0) is proportional to f "(x) f (y )+ 

2f'(x)f'(y)+f(x)f"(y) and TL is equivalent to 

                   EG\f'(Xi)f'(Y$) I r(X1)=R1, r(Y1)=Qi)                  i=i1\f(Xi)f(Yi) 

                                 which is analogous to SLin its form. Two statistics SL and Ti. are analogous to 

statistics in Shirahata (1974) in which usual ranks are adopted. 

   In many model f'(x, y; 0)/(f (x) f (y)) is of the form A(x)A(y) and the statistic 

(2.8)SL= E0(A(Xi) I r(Xi)=Ri)E0(A(Yi) I r(Yi)=- Qi) 
i=1 

is of interest although it is not equivalent to SL or T L. 

   In the following sections the asymptotic properties of intraclass rank statistics 

including SL will be investigated and some special attentions are paid to a class includ

ing S.
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    3. Asymptotic Distributions of Intraclass Rank Statistics under the Hypothesis 
of Independence 

    Let us consider the asymptotic property of the statistic 

(3.1) SnG= an(Ri, Qi) 
                                                              i=1 

under H where an(i, j), i, j=1 , ••• , 2n be some given constants such that an(i, j)= 
an(j, i). The LMPIRT SL in Theorem 2.1 is a special case of SnG and many of TL in 
Theorem 2.2 will be special cases of SnG. In the usual rank tests, Shirahata (1974) 
considered the asymptotic normality of locally most powerful rank tests . In our situa
tion, the results of Jogdeo (1968) which are extensions of Hajek (1961) are interesting . 
The following theorems 3.1, 3.2 and 3.3 are based on Jogdeo's results . 

   Define the function 0n(u, v) on (0, 1] x (0, 1] as 

                                 i  (3.2)cn(u, v)=an(i , j)22 n1-----<u—�2n '~2n1 <v—�-2-771 

and suppose that the following is satisfied . 
   ASSUMPTION 3.1. A collection of constants {an(i , j)} is 4monotone in the sense 

that 

             ~i;—an(Z+1, j+1)—an(Z+1, j)—an(i, j+1)+an(Z, j)?0 

for all (i, j) or dii<0 for all (i, j). 
   Put 

                   1  (3.3)T7,0= ±cn(F(Xi),F(Yi))—2(2n-1)~n(F(X1),F(X;)) 
           1 n                 -~ 

2(2n-1)an(i, j) 

where F(x) is the common marginal distribution function . Note that Yi=Xi+n in (3.3). 
Then from Jogdeo (1968. Theorem 4.1), we have 

   THEOREM 3.1. Suppose that {an(i, j)} satisfies Assumption 3.1 and 

                  1 2n4                lim n-1 max(an(i, j)—2an(k, m)) =0. 
ni~(i, j)4nk, m=1 

Then, under H, it holds that 

(3.4)lim E0{(SnG—T nG)2/n} =0 
n-.co 

   From Theorem 3.1, SnG is asymptotically equivalent to T nG. Now, consider a 
piecewise monotone function 0(u, v) on (0, 1) x (0, 1) such that c(u, v)=0(v, u). Let 
{an(i, j)} be a set of constants constructed from one of 

(3.5)an(i, j)=q5(i/(2n+1), j/(2n+1)) , 

                                   fi/(2n)7/(2n) (3.6)an(i, j)=4n2f(i1)/(2n)~(> 1)l(2n)cb(u, v)dudv 
and 

(3.7) an(i, j)=EO(cb(F(Xk), F(Xm.)) I r(Xk)=i, r(Xm.)=j) .
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The statistic SL is a special case of (3.7). Then from Jogdeo (1968, Theorem 4.2), we 
have 

   THEOREM 3.2. Suppose that  {an(i, j)} is constructed from one of (3.5), (3.6) and (3.7) 

and it satisfies Assumption 3.1. Furthermore, suppose 

(3.8) .0:08(u, v)dvdv<oo 
Then, we have the convergence (3.4) under H. 

   In Jogdeo (1968), the case (3.7) is not treated. But, we can prove the theorem easily 
by showing that the function cn(u, v) is uniformly integrable in n. The proof of the 
uniform integrability is due to the martingale theory adopted in Shirahata (1974). From 
Theorem 3.2, many practical scores constants give the convergence (3.4). However, the 
random variable T nG is complicated. Instead of T n0, let us introduce 

1  (3.9) TnG= ch(F(Xti), F(Yi))— 2(2
n-1)q5(F(Xti), F(XX)) 

             1 2n 
                  2(2n-1)an(i,j) • 

Then we have 
   THEOREM 3.3. Under the same assumptions of Theorem 3.2, 

(3.10)lim Ea{(TnG—Tn0)2/n} =0. 
n-•oo 

   The proof of Theorem 3.3 is along a similar line of the proof of Theorem 3.2 (see 

Jogdeo (1968)) and hence it is omitted. 
   Now, without loss of generality, it is assumed that 

(3.11)C 00(u, v)du=icb(u, v)dv=0. 
Then, it is easily seen that T nG is asymptotically equivalent to 

(3.12)Tn*G= 0(F(X1), F(Yti)) . 
=1 

Thus, we can get the following theorem. 

   THEOREM 3.4. Suppose that the assumptions of Theorem 3.3 and (3.11) are satisfied. 

Then SnG is asymptotically normal with mean zero and the asymptotic variance 

n oocb2(u, v)dudv under H. 
   The conditions to ensure the asymptotic normality of SnG are strong and it is 

tedious to check them. However, if an(i, j)=an(i)an(j) for some scores constants 

{ a n(i), i =1, • • • , 2n} , then it is easier to investigate though R i and Q ti are not inde

pendent even under H. Hence, let us consider 

                                                  / (3.13)Snp= an(Ri)an(Q1) 
z=1 

which is a generalization of Shirahata (1981) in which an(i)=i. We need the following 

assumptions 

   ASSUMPTION 3.2. The scores constants a n(i), i=1, • • • , 2n satisfy
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(3.14)limsl(an(1+[2nu])0(u))4du=0 
                                             n-•00 0 

for some nonconstant function  0(u) on (0, 1) such that 04(u)du<oo. Here [2nu]is 
0 the integer part of 2nu. 

    ASSUMPTION 3.3. It holds that 

(3.15)C10(u)du=~;an(Z)=0. 
              0t=1 

Assumption 3.3 is for the sake of simplicity of the calculations. We can get the fol

lowing theorem. 

   THEOREM 3.5. If Assumptions 3.2 and 3.3 hold, then Snp is asymptotically normal with 

mean zero and the asymptotic variance n(102(u)du)2under H. 

                                                    0 

   PROOF. It sufficies to show 

(3.16)lim Eo{(Snp—T np)2/n} =0 
n~~ 

where 

(3.17)T np= 0(F(X,))0(F(Yti)) . 

Now 
E0{(Snp—T np)2/n} =E0(D1)+(n1)E0(D1D2) 

where 
                 Di=an(Rz)an(Qi)0(F(Xi))0(F(Yi)), i=1, 2. 
Clearly 

    E0(D7)<2Eo {a(R1)(a n(Q1)0(F(Y1)))2} +2E0 {02(F(Y1))(a n(R1)0(F(X1)))2} 

From (3.14) and the Schwartz inequality, it is found that Eo(D?) converges to zero as 
n—> cc. 

   On the other hand, from (3.15), 

(3.18)Eo(D1D2)=Eo(an(R1)an(R2)an(Q1)a, (Q2)) 
—2Eo(an(R1)an(Q1)0(F(X2))0(F(Y2))) . 

The first term of (3.18) is 

3{( a2n(i))2-2 an(i)}/ {2n(2n1)(2n2)(2n-3)} =0(n-2) . 
The second term is, up to the multiplicative constants, 

Eo {E0(an(R1)an(Q1)0(F(X2))0(F(Y2)) I X*, r(X2)=R2, r(Y2)=Q2)} 

=E0{0(F(X2))0(F(Y2))(— a; (i)+2a; (R2)+2an(Q2)F-2an(R2)an(Q2))} 
                                                          t=~ 

/{(2n2)(2n-3)} 
=0(n-2) . 

Thus, Eo(D1D2)=0(n-2) and hence (3.16) is established.
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   4. Asymptotic Distributions of Intraclass Rank Statistics under Contiguous 

Alternatives 

   Let us consider the oneparameter family f(x, y; 8) in Section 2. The alternative 

hypothesis to be considered in this section is  Hn(80)  ; the density function of (X1, Yi) 

is f(x, y; n-1"200). We need the following assumptions. 

   ASSUMPTION 4.1. Let s(x, y; t)= f"2(x, y; t) and s'(x, y; t)=(a/at)s(x, y; t). The 

integral (s'(x, y; t))2dxdy is continuous in a neighbourhood of t=0. 

   At first, let us show that Hn(60) is contiguous to H. Introduce 

1og(Ln)= log(f (Xi, Yi ; n17200)/(f (Xi)f (Yi))) , 
i=1 

W,,=2 {(f (Xi, Yi ; n-112O0)/(f (Xi)f (Yi)))112-1} 
i=1 

and 

Tn= n-11200 f'(Xi, Yi ; 0)/(f (Xi)f (Yi)) • 
                                                     i=1 

To establish the contiguity, we may show the following two lemmas (see Hajek and 
Sidak (1967)). 

   LEMMA 4.1. If Assumption 4.1 is fulfilled, then 

(4.1)lirn E0(Wn.)=—a62/4 
                                                        n-•~ 

under Hn(0) where 

62=varo(f'(X, Y ; 0)/(f (X )f (Y))) 

=4r° J~ (s'(x, y; 0))2d xd y 

    PROOF. Eo(Wn)=—nr°(s(x, y; n11280)—s(x, y; 0))2dxdy 
                                 0o fm                     n112B2 

                           (nl'2eo10os'(x, y ; t)dt) dxdy 
=—eTsAn(x, y; 190)dxdy , say. 

Then obviously 
lim An(x, y; 00)=(s'(x, y; 0))2. 

                                                          n-•oo 

Furthermore, 

                                                                          —1/20
0 (4.2)An(x, y; 00)dxdy�fifini2B01Jo(s'(x, y; t))2dtdxdy 

From Assumption 4.1 the right hand side of (4.2) converges to 0-2/4. Hence, from the 

convergence theorem II 4.2 of Hajek and Sidak (1967), (4.1) holds. 

    LEMMA 4.2. Suppose Assumption 4.1 is fulfilled, then 

lim var0(I47n—Tn)=0 
n-. 

 under Hn(0).
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   PROOF. Since  W„—T„ is n independent summands, 

(4.3)var0(117„—T,i)<4n{s(x, y; n11280)—s(x, y; 0) 

—n"28os'(x , y; 0)}2dxdy 

As in Lemma 4.1, the right hand side of (4.3) converges to zero from the convergence 

theorem V 1.3 of Hajek and Sidak (1967). 

   From the Le Cam's second lemma and the above lemmas, it holds that log(Ln) is 

asymptotically equivalent to W„—a2/4 and consequently to T„-62/2. Thus, we can 

get the following theorem. 
   THEOREM 4.1. Suppose that the convergence 

lim Eo{(S„G—TnG)2/n} =0 

holds under H„(0). Also suppose that (3.8) and Assumption 4.1 are fulfilled. Then SnG 

is, under H„(BO), asymptotically normal with mean n11284f'(x, y ; 0)¢(F(x), F(y))dxdy 
and the variance given in Theorem 3.4. 

   PROOF. From the Le Cam's third lemma, SnG is, under H„(00), asymptotically 

normal with mean covo(T*G, T„) and the same variance as in H„(0). The calculation 

of covo(T nG, TO leads us to the conclusion. 

   Note that when SnG satisfies the assumptions of Theorem 3.4, the asymptotic 

normality of SnG follows from Theorem 4.1. 

   In the model (2.5), covo(T nG, T)=0 and the above theorem seems to be useless. 
However, the model is interpretted as 

(4.4) f(x, y; 4)=f(x)f(y)(1+E(Z2)42(1{(x)J{                                 '(Y) +  f(x) + {(.y)  +0(42))) 
                          f(x)f(y) 2f(x) 2f(y) 

provided E(Z)=0. The condition E(Z)=0 does not affect the distribution of SnG• 
Hence, by putting 00=42 and assuming some regularity conditions, the asymptotic con

sideration of SnG for the model (2.5) is possible from Theorem 4.1 and the asymptotic 
mean is given by 

n1126of(x)f'(y)¢(F(x))¢(F(y))dxdy 

   From Theorem 3.5 and the contiguity, we can get further result when the scores 

constants are of the product form. 

   THEOREM 4.2. Suppose the assumptions in Theorem 3.5 and Assumption 4.1 are 

satisfied, then Snp given in Section 3 is asymptotically normal with mean 

nl'28os.f'(x, y; 0)¢(F(x))¢(F(y))dxdy 
and the variance given in Theorem 3.5 under H„(BO). 

   Let us consider (4.4) again. Then we can derive the asymptotic distribution of S, 

under the model (2.5) and the asymptotic mean is n1/28o0f'(x)¢(F(x))dx)2. A similar 
result will hold for the usual rank statistics with possibly different marginal distribu

tions.
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   5. Approximation of distribution of  SnG under H 

   In order to use the statistic SnG, it is required to get the percentage points under 

H. Theorems in Section 3 can be utilized to determine the asymptotic critical points. 

However, the asymptotic distribution of SnG is symmetric but the exact distributions 

are not so even if symmetric scores are adopted. Therefore, the approximation of the 

asymptotic distribution will be not so good and we need further considerations to apply 

SnG for relatively small n. 
                                                                   2n 

   Without loss of generality, assume that an(i, j)=0. Note that it is already 
i=1 

assumed that an(i, j)=an(j, i). A useful method is to standardize SnG with its exact 

moments. The exact means of SnG and S2„0 are given by 

2n 

Eo(STG)=— an(i, i)/{2(2n-1)} 
                                                             i=1 

and 

        EO(S;,G)={(an(i,i))2-4nan(i,—1)(11a~(i,j))} 
         i=1i=11, j=1 

/{4(2n1)(2n-3)}. 
Hence 

               2n varo(Sns)={2(E an(i,i))24n(2n-1)an(i,i)+4(n1)(2n-1)~~a;~(i,j)} 
i=11=11, j=1 

                                         / {4(2n1)2(2n-3)}. 

Therefore, for the scores generating function c(u, v) satisfying c(u, v)=0(v, u) and 

o(u, v)du=0, the mean and the variance of Sn0 under H are approximately 

                                                            1 

                         Eo(SnG)'—2
J0(u,u)du 

and
To2(varo(S,,G)^nJu,v)dudv 

Thus, it will be more accurate to determine the critical points from approximations 

                          SnG"N(Eo(SnG),varo(SnG)) 

or 

              SnG~~r( 2Cg5(u,u)du,nMb2(u,v)dudv) . 
   If we use formal Edgeworth approximation, we can obtain further approximation. 

Put 
SnG=(SnG—EQ(SnG))/var012(SfG) 

Then the approximation is 

(5.1) P(S*G<x)'N(x)—n(x){(x21),u3/6±(x33x)(e43)/24} 

where N(x) and n(x) are the distribution function and the density function of the 

standard normal distribution, respectively and where 113 and /14 are third and fourth
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moments of  SpG, respectively. The calculations of the moments are tedious and are 

omitted. However, for SnP given in Section 3, the calculations are easy when {an(i)} 

is symmetric i. e., an(i)=—an(2n+1—i). In Shirahata (1981), the approximations when 

an(i)=i—n--2      are given and are very satisfactory.
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