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A CLASS OF NONPARAMETRIC RECURSIVE ESTIMATORS 

     OF A MULTIPLE REGRESSION FUNCTION

     By 

Eiichi  ISOGAI*

                    Abstract 

   Let Z= (X, Y) be a R" x Rvalued random vector having a 
(unknown) probability density function f* (x, y) with respect to 
Lebesgue measure. We wish to estimate a regression function m(x) 
=E[Y1 X=x]. In this paper we propose a class of recursive esti

mators {mn (x) } based on a random sample Z1= (X1, Y1) , Z2= 
(X2, Y2), ••• from Z, and show the strong pointwise consistency and 
the asymptotic normality of mn (x) at a point x. We also deal with 
the optimality in the sense of asymptotic minimum variance.

   1. Introduction 

   Let (X, Y) be a R" x Rvalued random vector having a probability density function 

(p. d. f.) f*(x,y)with respect to Lebesgue measure. Based on a sequence Z1=(X1,Y1), 
Z2-=(X2,Y2),Z3=(X3, Y3), ••• , of independent identically distributed random vectors 

defined on a probability space (Q, F, P) with the common (unknown) p. d. f. f*(x, y), 

we wish to estimate a regression function m(x)=E[7 I X= x] (of Y on X) which is 

assumed to exist. Gyorfi [5] discusses about the estimators of a nonparametric regres

sion function and investigates universal consistency of these estimators. 

   Ahmad and Lin [1] proposed the recursive estimator in n(x) of the form 

(1.1)Mo(x)=f0(x)=0 

J n(x)=(hn/hn-1)PJ n1(x)+K((x—Xn)/hn) 

mn(x)=mn-1(x) . nl(x)(Yn—mn1(x))K((x—Xn)/hn), 

where K(x) is a p. d. f. with certain properties and {hn} is a sequence of positive 

numbers. They give pointwise and uniform convergence results with weak and strong 
convergence. In addition they treat the joint asymptotic normality of (nhf ,)1"2(mn(x1) 
—m(x1), ••• , mn(xk)—m(xk)) at distinct points x1, ••• , xk. Devroye and Wagner [4] 

proposed the still simpler recursive estimator than that of {mn(x)}. They discuss 
weak and strong consistency in L1. 

   In this paper we propose a class of recursive estimators {mn(x)} of the form 

(1.2) mo(x)-0, fo(x)-c with c being an arbitrary positive constant 

f n(x)=.f n1(x)d-an {Kn(x, Xn)—.f 72-1(x)} 

mn(x)=mn1(x)-I-anG(fn(x))(Yn—mn1(x))Kn(x, Xn)
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for each n�1, 1, where 

(1.3)an=a/n with 0<a<_1, 

G(y)=y-1 if y>0 

                          =0 if y<0 , 

(1.4)Kn(x, s)=hnPK((x—s)/hn) for x, sERP 

and K(x) is a bounded p. d. f. on RP with respect to Lebesgue measure. 
   REMARK 1.1. It is easy to see that G(f n(x))= i1(x) for each n>-1 and each x ERP 

if either a 1 in (1.3) or K(x)>0 for all xERP. Thus, in the case where a=1 in (1.3) 

and K(x)>0 for all xERP, mn(x) in (1.2) coincides with mn(x) in (1.1) for each n>-1 

and each xERP. 

   The purpose of this paper is to show the strong pointwise consistency and the 

asymptotic normality of mn(x) at a point x. We also deal with an optimal choice of 

the coefficient a in (1.3) in the sense of asymptotic minimum variance. For a special 
type of the sequence {hn} our estimators are shown to be asymptotically more efficient 

than those of Ahmad and Lin [1], in the sense of Definition 5.1 given in Section 5, by 
choosing the coefficient a suitably. 

   In Section 2 we shall give auxiliary results needed later. In Section 3 the strong 

pointwise consistency of mn(x) will be shown. In Section 4 we shall give the asymptotic 
normality of (nhn)112(mn(x)—m(x)) at a point x. Section 5 is devoted to the optimal 

choice of the coefficient a and comparison between the estimators of {mn(x)} and 

{mn(x)}.

   2. Preliminaries and Auxiliary Results 

   In this section we shall give some results which are needed for the sections that 

follow. 

   Let the bounded p. d. f. K(x) in (1.4) satisfy 

(K1)jjx1IPIK(x)I--*0 as I1x11-3co, 

where II • II denotes the Euclidean norm on R. Let {hn} in (1.4) be a sequence of 

positive numbers converging to zero, on which some of the following conditions are 
imposed : 

(H1)E (n2hn)-1<co 
n=1 

(H2)n1+'2h7+4--*0 as n--00 for some 220 

(H3)n h n--+oo as n--400 

We introduce some notations. Let 

f(x)= . Rf*(x, y)dy , q(x)=Ryf*(x, y)dy 

g(x)=JRy2f*(x, y)dy ,
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          Var[Y  X=x]=(g(x)/f  (x))—(q(x)/f  (x))2 if f(x)>0 

                        =0 otherwise 
and 

Qn(x, z)=yKn(x, u) for xERP, z=(u, y)ERpXR and n?1, 

where Kn(x, u) is defined as (1.4). We assume that f(x), q(x) and g(x) are finite for 

all x E RP and that m(x)=q(x)/ f (x) if f(x)>0.  Throughout this paper we assume that 
E[11711<00, which guarantees the existence of m(x). Define a sequence {qn(x)} as 

follows: 

(2.1)qo(x)=0 

                    qn(x)= ajr3jnQ;(x, Z1) for n=1, 2, ••• , 
7=1 

where 

                                          n 

                  '3mn— I (l-a;) if n>m?0                                        j=m+1 

                  =1 if n=m>_0 

and an is given in (1.3). 

                                n 

   Let i=1 and1n=II(1—a;) for all n>2. It is clear that /r3mn=;'nT1 for n>m>1. 
j=2 

Throughout this paper C1, C2, • • • denote suitable positive constants, not depending on 
all positive integers n. Isogai [6] gives the result 

(2.2)C1na<in<C2n-a for all n>1. 

By the definition of f n(x) we get 

(2.3)f n(x)= Xj) Ponc for n=1, 2, ••• 
j=1 

Define N as follows: 

(2.4) N=smallest integer n>1 such that f n(x)>0 if such an n exists 

=H-co otherwise. 

   LEMMA 2.1. Suppose that for some (E9 N=N(w) is finite. Then, for such an co, 

m2(x)=qn(x)/fn(x) for all n>N 

                         =0 for N> n> 1. 

   PROOF. We can easily get the following facts: 

(2.5)f n(x)>0 for n>_N and f n(x)=0 for N> n>_1 

and 

(2.6)Kn(x, Xn)=0 for N>n>1. 

By (2.5) we have G(fn(x))=0 for N>n>1, which yields m,fx)=0 for N>n>1. By 

(1.2), (2.5) and the definition of G(y) we get 

(2.7)f n(x)mn(x)= E a;(3;nQ;(x, Z;) for all n?N. 

Since by (2.6) Qn(x, Zn)=0 for N> n>_1, using (2.1) and (2.7) we obtain f n(x)mn(x)=
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 qn(x) for all n>N. Thus, by (2.5) we get mn(x)—qn(x)/f,z(x) for all n?N. This 
completes the proof. 

   LEMMA 2.2. Let {d,z} be a sequence of positive numbers converging to zero. If it 

holds that for some a>0 and some p>0 

Hai n1-2adg=0 

and 

                                      n limnl-2adP .12(a -1)d-i p— j3 with some constant j3>0, 
j=1 

then for any positive integer m 

a2,-27.i 2dj p^'a213(ndnrn)-1 as n-->co , 
j=m 

where " c5„,--,0,2 as n- oo " means that On/On-4 as n-400. 
      nn 

   PROOF. It suffices to show that j-277 2d;p=J3-lndnj-2(3;ndi-p—>1as 
              _=mj=m 

n—>co. Let any s (0<s<1) be fixed. Choose with 0<e<1 such that (1+2s/3)(1+ ) 
<1-1-6 and (1—s/3)(1— )>1—s. Since (3jnt-ijan-a as n? j-->oo, there exists a positive 
integer mi (>m) such that 

(2.8) (1_ 3)~2an-2a<n<(1+)J2an2a  for n>_j>m1. 
It follows from (2.2) that 

(2.9)n2aI12<C3 for all n>_1. 

By the assumptions of the lemma we have 2(a-1)d. p*co as n—oo and 151n1-2ad1 
n j=m1 

    j2(a-1)ap-4 as n--~oo. Thus there exists a positive integer m2 (>7771) such that j=m1 
for n?m2 

(2.10)1—e<d31n1-2adn
jj2(a1)d-P<1+e 

                                                              n

1 

and 

               m1-1

yn (2.11)0<C32lJ2d7p/ j2(a-1)d7 p<   3 
             jmj=m1 

Hence by (2.8)'—(2.11) we obtain that for n>m2 

(2.12) j2P;n,d; p 
j=m 

                                    m 1        < -1n1-2a dp j2(a-1)di p.{(C3-2r7 2d.i p/ j2(a-i)dj p)+0 '33 
7=m13=mjm1 

      <(13s)(1+;)<1+E. 
On the other hand, by (2.8) and (2.10) we get 

(2.13)t~1 ~~,ndp>~i—3)~1n12adn~±j2(a-1)dip 

                                                                                 1
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           >(1— 3)(1—S)>1—s for all n>m2. 
Thus, by (2.12) and (2.13) we obtain the lemma . This completes the proof. 

   For any realvalued function 0 on  RP, let C(0) be a set of continuity of points of 
0 and let I1011.= sup 10(x)I. By Lemmas 2.1 and 2.2 of Isogai [7] we have 

.xERP 

   LEMMA 2.3. Let {dn} be a sequence of positive numbers converging to zero . Suppose 
that 0(x) is an integrable, realvalued Borel measurable function on RP and that K(x) is 

a bounded, integrable, realvalued Borel measurable function on R" satisfying (K1) . Then, 
for each x EC(0), 

             RPdn,PK((x—u)/dn)0(u)du->B(x)fpK(u)du as n—>00                                                     RP 
and 

                sup.0RPdnT'I K((x—u)l dn) 110(u) I du<M,                    n�i

where M is a positive constant depending on x .

   3. Strong pointwise consistency 

   In this section the strong pointwise consistency of mn(x) will be shown . In order 
to prove the strong pointwise consistency of mn(x) we shall give two lemmas . 

   LEMMA 3.1. Let (H1) be satisfied. Then, for each point x EC(f ). 

lim f n(x)= f (x) with probability one (w. p.1). 

   PROOF. By (2.3) we get 

(3.1)fn(x)—E[fn(x)]=rn TJ1a;U;(x) for each n>1 , 

where 

(3.2)Un(x)=Kn(x, Xn)—E[Kn(x, X.)]. 

It follows from Lemma 2.3 that 

(3.3) hgE[Un,(x)]<hgE[KEx, Xn)]<C3 for all n>1. 

From (H1) and (3.3) we get 

(3.4)E an,E[gi(x)]<oo • 
                                                   n=1 

Thus by making use of (3.1), (3.4), the KhintchineKolmogorov convergence theorem 

(see Chow and Teicher [3], page 110) and the Kronecker lemma (see Loeve [8] , page 
238) we have 

(3.5)f n(x)—E[ f n(x)]—*0 w. p. l as n-*oo. 

                        n Since E[ f n(x)i= jj a; j3;nE[K;(x, X;)]+ 1307,c and lim ion=0, it follows from Lemma 2.3 
    1=1n~oo 

and the Toeplitz lemma (see Loeve [8], page 238) that
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(3.6)E[f n(x)]--> f(x) as n---cc. 

Thus by (3.5) and (3.6) the lemma is proved. 
   LEMMA 3.2. Assume that E[Y2]<oo. Let (H1) be satisfied. Then, for each point 

x E C(q)r C(g), 
lim qn(x)=q(x) w. p.1, 

                                                     n-•~ 

where AnB denotes intersection of two sets A and B. 

   PROOF. Since by (2.1) E[gn(x)]= a;(3;nE[Q;(x, Z;)] for each n>-1, it follows 
j=1 

from Lemma 2.3 and the Toeplitz lemma that 

(3.7)E[gn(x)]—*q(x) as n—>°°. 

It is clear that qn(x)—E[gn(x)]=rn r;la;V;(x) for each n>1, where 
J=1 

(3.8)Vn(x)=Qn(x, Z.)—E[Qn(x, Z.)1• 

Since by Lemma 2.3 h~EM(x, Z7i)]_<C3 for all n>1, in the same manner as (3.5) we 

have that qn(x)—E[g7i(x)]—>0 w. p.1 as n—>oo, which, together with (3.7), yields the 
conclusion of the lemma. 

   The strong pointwise consistency of mn(x) is obtained in the following : 

   THEOREM 3.1. Assume that E[Y2]<c. Let (H1) be satisfied. Then, for each point 

x EC(f)nC(q)nC(g) with f(x)>O, we have 

lim mn(x)=m(x) w. p.1. 

   PROOF. By Lemmas 3.1 and 3.2 there exists an event 2 with P{Q} =1 such that 

onSl 

(3.9)lirn f n(x)= f (x) and lirn qn(x)=q(x) . 

Let any w Sj be fixed. Then by (3.9) and f(x)>0  N(w) defined by (2.4) is finite. 

Since M(X)=q(X)/f(X) we obtain, by (3.9) and Lemma 2.1, that lirn mn(x)=m(x), which 

concludes the theorem.

   4. Asymptotic normality 

   In this section we shall show the asymptotic normality of (nhg)112(mn(x)—m(x)) at 

a point x. It will turn out that we are able to express in a direct way the dependency 

of the asymptotic variance on the choice of the sequence {Tin} and the coefficient a. 

   Let Un(x) and Vn(x) be defined as (3.2) and (3.8), respectively. Also, let 

t(x)=J IyI3f*(x, y)d.y, Wn(x)=anrn1(Un(x), Vn(x))' 

and 

(4.1)B7i(x)=(nh0112rn W;(x) , 
                                                                                   .1=1 

where the prime denotes transpose and we assume that t(x) is finite for all x m RP. In 

order to prove the asymptotic normality we shall prove the following lemma.
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   LEMMA 4.1. Assume that  ELI Y13]<°°. Let Condition A hold. 
   Condition A: For some 0<a <1 

(Al)lim n12ahn=O, 

(A2) lim nl-"hg pai)h;P=p with some constant j3>0             n-+oo j=1 

and 

(A3)lim (nh~)3/2n-3a 13(a—i)1,~y 2p=0 
          ny~j=11 

Consider a point x EC(f)nC(q)nC(g) with f (x)>0 and Var[Y I X=x]>0. If either 

xEC(t) or IJt11.<co holds then 

Bn(x) --> N2(0, T(x)) as n->oo, 

L where 

(4.2)I'(x)=a2J3R~K2(u)du(.f(x) q(x)1 4(x) g(x)J 
Nk(0, T) denotes the kvariate normal with mean vector 0 and variancecovariance 
matrix 1, and " -->" means convergence in law. 

   PROOF. By the Cramer-Wold theorem (see Billingsley [2], page 49), it suffices to 
show that for any D'=(d1, d2) E R2 

(4.3)D'Bn(x) --> N1(0, D'i(x)D) as n-->°°. 

We may assume D�O. Let o;(x) be the variance of D'Bn(x). It holds that 

(4.4)D'Bn(x)/6n(x) -i N1(0, 1) as n-3oo 

if we verify Lyapounov's condition 

(4.5) (nhn)3J21' D'Wj(x)131/4(x)->0 as n-400. 

It is easy to see that 

(4.6) ai(x)=nhnrl a;r; 2 {diE[U;(x)]-1dE[V;(x)]}2d1d2E[U;(x)V j(x)]} . 
j=1 

By Lemma 2.3 we get as n->oo 

(4.7)hr,E[M,(x)]-, f (x).CK2(u)du , 
hgE[V ,(x)]4g(x)K2(u)du 

and 

hnE[Un(x)Vn(x)]-q(x) f K2(u)du , 
where the domain of integral is RP unless otherwise specified. According to Lemma 

                                                   n 2.2, (Al), (A2) and (2.2), we have that± a,21 2h; P/co as n-*co, which, together with 
                                                     1=1
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(4.7) and the Toeplitz lemma, yields that 

(4.8)(~a3772h; P)-1E a;r; 2E[U3(x)]-->f(x4K2(u)du             =1/ j=1 

as n—>co. Thus by making use of Lemma 2.2 and (4.8) we obtain 

(4.9) nhgr;, a.V. 2E[U;(x)]--a213 f (x) K2(u)du as n-3oo. 
j=1 

By the same argument for (4.9) we have as n—>oo 

(4.10)nhnr;, a;r.2E[V3(x)]->a213g(x)K2(u)du 
                                             ~=1 

and 

(4.11) a;rj 2E[U;(x)V;(x)]—>a2J3q(x)K2(u)du 
                                          ~=1 

Combining (4.6), (4.9), (4.10) and (4.11) we get 

(4.12)c4(x) D'T(x)D as n-aoo. 

By the assumptions that f (x) > 0 and Var[Y I X= x] > 0 we get 

(4.13)D'T(x)D>0. 

It can be easily shown that 

(4.14) E[ I D'W;(x)13] c4(I di113-I I d213)(2,/,' max {E[ I U;(x)13], EC I V;(x)13]}. 

It follows from Lemma 2.3 that 

(4.15)E[ I U;(x)13]C3h j 2P for all j�1, 1. 

It is easy to see that 

(4.16) E[ I V;(x) I3]___811KNoh. 2PS.h; PK((x—u)/h;)t(u)du 
for all j�1. 1. If x E C(t), then we get, by Lemma 2.3 and (4.16), E[ 1 V;(x)13] <C4h; 2 ' for 
all j>1. If Ilt11.<oo, then by (4.16) we get E[IV;(x)13]<8 for all j?1. 
Thus we have, under either x E C(t) or Il t 11. < co, 

(4.17)E[ I V;(x) 13] <CSh; 2p for all j > 1. 

Combining (4.14), (4.15) and (4.17) we obtain 

(4.18)E[ID'W;(x)13]<Csa3r;3h;2p for all j>_1. 

Since by (2.2) and (4.18) 

                                                                              "~ 

             (nhgt)3/27"n.ECID'W;(x)13J5C7(nhp)3/2n-3a j3c¢-1)h7 22) , 

it follows from (A3) that 

(nh03/271 EC I D'W;(x) I3]-->0 as n--400, 
;=1 

which, together with (4.12) and (4.13), implies (4.5). In virtue of (4.4) and (4.12) we 
obtain (4.3). Thus the lemma is proved. 

   The following theorem is concerned with the asymptotic normality of inn(x) at a
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point x. In the remainder of this paper, let K(x) satisfy the following additional  con
ditions : 

(K2), Rpu,K(u1, ••• , up)dui ••• dup=0 for i=1, ••• , p 

and,J 

(K3) •CRpll u112K(u)du<ca 
   THEOREM 4.1. Assume that E[ I Y 13] < oo. Suppose that there exist bounded, continu

ous second partial derivatives a2f(x)laxiax; and a2q(x)/axiax; for i, j=1, ••• , p and that 

g(x) is continuous on R. Let Condition A in Lemma 4.1, (H1), (H2) and (H3) be fulfilled. 
Consider a pointx with f(x)>0 and Var[YI X=x]>0. Then, under either xEC(t) or 

Il t ll. < co, we have 

(n14)112(mn(x)-m(x)) - > N1(0, Q2(x)) as n--+oo, 

where o2(x)=a2p Var[YI X=x].fRpK2(u)du/f(x). 
   PROOF. We note that by the assumptions Lemma 4.1 holds. Setting B*,(x)= 

(nhn)112(f n(x)-f(x), qn(x)q(x))', we get 

(4.19)13n(x)Bn(x)=(nhn)1127"n a.iY.i 1D;(x)-I-(nhn)112PonDo(x) , 

where Bn(x) is defined as (4.1) and let 

d;1(x)=E[K,(x, X;)1-f(x), d;2(x)=E[Q,(x, Z,)]-q(x) 

D;(x)=(d;1(x), d;2(x))' for j>_1 

Do(x)=(c-f(x), q(x))'. 

It follows from (2.2) and (Al) that (nhn)1i2430n *0 as n-*co. Thus, if we show that for 
each i=1, 2 

                                         n (4.20)(nhn)112Yna~r>1I d,i(x) I —*0 as n-*oo, 
1=1 

then, it follows from (4.19) that lim II Bn(x)Bn(x)11=0 with 11.11 denoting the Euclidean 
                                                     n~oo 

norm on R2, which, together with Theorem 4.1 of Billingsley [2] and Lemma 4.1, yields 

that 

(4.21)B*,(x) -> N2(0, T(x)) as n---*co. 

We shall now show (4.20). By the Taylor theorem, (K2), (K3) and the boundedness of 
a2f(x)/axiax; and a2q(x)/axiax;, we get that for each i=1, 2 Id;i(x)I <C3h; for all 

j>1, which yields that for each i=1, 2 
   nn 

(4.22)(nh4')112rn a;Y.i' I dii(x) I CC4(nhpt)112?"n j-vh; 

By making use of the CauchySchwarz inequality we obtain 

(4.23)nhnrl( j-17-3:1h3)2(E j(1+0)nhPrn 
7=1j=1 .7=1



42E.  ISOGAI

where 72 is given in (H2). It follows from (H2) and the Toeplitz lemma that                    

t j 2r; 2h~ pl 1 nj_l+r~I 2h;->0 as n->00,              \,=1/1 J=1 

which, together with Lemma 2.2, yields that 

(4.24)nhnrn j-1+12r; 2h;->0 as n-,00. 
,=1 

Thus the relations (4.22), (4.23) and (4.24) imply (4.20). Let us define a function T on 
R2 as 

                        T(u, v)=v/u if u#0 
                        =0 if u=0 . 

By the Taylor theorem and (2.5) we get 

(4.25) An(x)=(nh0112{T(fn(x), qn(x))T(f(x), q(x))} 
=L'B*n(x)-I end B;(x)II for all n>N, 

where N defined by (2.4) is assumed to be finite and L =(-q(x)/ f 2(x), f 1(x))', and 

(4.26)En—*0 if II(fn(x)-f(x), qn(x)—q(x))'11-40. 
It follows from Lemmas 3.1 and 3.2 that en->0 w. p.1 as n->oo. Hence by (4.21) we g.'l 

(4.27)EnIIB*,(x)II—>0 in probability as n-->00. 

Since by Lemma 3.1 P{N=00} =0, using (4.21), (4.25) and (4.27) we have 

(4.28)An(x) i N1(0, a2(x)) as n->oo. 

On the other hand, by Lemma 2.1 and (2.5) we get 

P{ I An(x)(nhg)112(mn(x)-m(x)) I > s} 
<P{n<N}-*0 as n->°° for each E>0, 

which, together with (4.28), yields that 

(nh4)112(mn(x)-m(x)) -* N1(0, a2(x)) as n-*co. 

Thus the theorem is established.

   5. Optimal Choice of a 

   In this section we shall give an optimal choice of the coefficient a, under a certain 

criterion, for a special sequence of {hn}. A comparison between the estimators of (1.1) 

and (1.2) is also given. The following definition gives our criterion. 
   DEFINITION 5.1. Let {bn} be a strictly increasing sequence of positive numbers 

with lim bn=oo. Suppose two sequences of estimators of some constant 0, {Un} and 

{Vn} satisfy 
bn(Un-O) —~ N1(0, (4(0)) as n-->oo 

L and 
bn(Vn-0) ---> N1(0, a2(0)) as n->oo, 

L
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where  a7(0) and (4(0)  are two positive constants depending on 0. Then we define 

e f ({Un} , {V,l}) as e f ({Un} , {170 )=01(0)101(0) a1(0)/62(0) and call ef({Un} , {Vn}) the relative 

asymptotic efficiency of {V7,1 to {Un} . If e f ({Un} , {177,1)<1 then the sequence of 

estimators {Um} is said to be asymptotically more efficient than that of the estimators 

{Vn}. 
   The following theorem gives the asymptotic variance of the estimators {nzn(x)} 

and the optimal choice of the coefficient a, in the sence of the asymptotic minimum 

variance, for a special sequence of {hn}. 

    THEOREM 5.1. Let 

(5.1)hn=n-T'P with p/(p+4)<r<1. 

Let the coefficient a in (1.3) satisfy 1>_a>(1—r)/2. Then, under all conditions of Theo

rem 4.1 except the conditions about the coefficient a and {hn}, we have 

n(lr)/2(mn(x)—m(x)) --* Nl(0, 62(x)) as n—oo, 

L where a2(x)=a2(2a+r1)1Var[Y IX= x]K2(u)du/f(x). Furthermore, a2(x) attains                         JRP its minimum value (1—r)Var[YI X=x].0K2(u)du/f(x) at a=1—r for fixed r.                                            RP 

   PROOF. We shall verify (H1), (H2), (H3) and Condition A. As r<1, (H1) and (H3) 
are satisfied. Since p/(p1-4)<r, there exists a positive number ri such that p(1+77) 

/(p+4)<r, which implies (H2). After some calculations with r>1-2a, (Al), (A2) with 

13=(2a+r-1)-1 and (A3) hold. Thus by Theorem 4.1 the first assertion is established. 
Since a2(2a+r-1)-1 attains its minimum at a=1—r for fixed r, so does o2(x), and its 

minimum value is (1—r)Var[Y1X=x]
RPK2(u)du/f(x). This completes the proof. 

   We shall now compare two estimators of {rn (x)} and {mn(x)} under the criterion 
of the relative asymptotic efficiency. Let {hn} be given in (5.1). The following corol
lary is concerned with the comparison of {YYIn(x)} and {mn(x)}, and show that the 
sequence of the estimators {mn(x)} is asymptotically more efficient than that of the 
estimators {r n(x)}. 

   COROLLARY 5.1. Let K(x) be positive for all xeRP. Then, under all conditions of 
Theorem 5.1 with 1>a  > (1—r)/(1+r) we obtain ef  e f ({mn(x)} , {Y n(x)}) = a2(1-I-r) 
/(2a+r-1) (<1). Furthermore, ef attains its minimum value 1—r2 at a=l—r for fixed 
r with p/(p+4)<r<1. 

   PROOF. Note that 1—r>(1—r)/(i+r)>(1—r)/2 for 0<r<1 . It follows from Remark 
1.1 that y (x) is obtained by putting a=1 in (1.3). Thus by Theorem 5.1 we get the 
first assertion. The second assertion is easily obtained. This completes the proof.

                                 References 

[ 1 ] AHMAD, I. A. and LIN, P.: Nonparametric sequential estimation of a multiple regression 
    function, Bull. Math. Statist., 17, No. (1976) , 63-75. 

[ 21 BILLINGSLEY, P.: Convergence of probability measures, John Wiley and Sons, Inc., New 
    York, (1968). 

[ 3 ] CHOW, Y. S. and TEICHER, H.: Probability theory: Independence, interchangeability, mar
    tingales, SpringerVerlag, New York and Berlin , (1978) .



44E. ISOGAI

 

[  4  ] DEVROYE, L. P. and WAGNER, T. J.: On the L1 convergence of kernel estimators of regres
     sion functions with applications in discrimination, Z. Wahrscheinlichkeitstheor. Verw. Geb. 

    51 (1980), 15-25. 

[ 5 ] GYORFI, L.: Recent results on nonparametric regression estimate and multiple classifica
     tion, Probl. Control. Inf. Theory, 10 (1981), 43-52. 

[ 6 ] ISOGAI, E.: Strong consistency and optimality of a sequential density estimator, Bull. 
    Math. Statist., 19, No. 1-2 (1980) , 55-69. 

[ 7 ] ISOGAI, E.: Strong uniform consistency of recursive kernel density estimators, Sci. Rep. 
    Niigata Univ., Ser. A, 18 (1982) , 15-27. 

[ 8 ] LoEVE, M.: Probability theory, 3rd ed. Van Nostrand, New York, (1963) .

Communicated by N. Furukawa 

Received May 10, 1982


