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Abstract

Let Z=(X,Y) be a RPxR-valued random vector having a
(unknown) probability density function f*(x, ) with respect to
Lebesgue measure. We wish to estimate a regression function m(x)
=E[Y|X=x]. In this paper we propose a class of recursive esti-
mators {m,(x)} based on a random sample Z,= (X, Yy, Z,=
(X3, Yp), --- from Z, and show the strong pointwise consistency and
the asymptotic normality of m,(x) at a point x. We also deal with
the optimality in the sense of asymptotic minimum variance.

1. Introduction

Let (X, Y) be a R?X R-valued random vector having a probability density function
(p.d.f.) f*(x, y) with respect to Lebesgue measure. Based on a sequence Z,=(X,, Y),),
Zy=(X,,Y,), Z;=(X;, Y3), -, of independent identically distributed random vectors
defined on a probability space (22, &, P) with the common (unknown) p.d.f. f*(x, ¥),
we wish to estimate a regression function m(x)=E[Y|X=x] (of ¥ on X) which is
assumed to exist. Gyorfi [5] discusses about the estimators of a nonparametric regres-
sion function and investigates universal consistency of these estimators.

Ahmad and Lin [1] proposed the recursive estimator #,(x) of the form

(L1) o x)=Fo(x)=0
Fal)=(hn/ he )P F () K(x— X)) n)
M (X) =1 (%) FF 7 Y =1 (XN K((x— X0)/ 1)

where K(x) is a p.d.f. with certain properties and {4,} is a sequence of positive
numbers. They give pointwise and uniform convergence results with weak and strong
convergence. In addition they treat the joint asymptotic normality of (nhZ)*2(# ,(x,)
—m(xy), -+, Ma(xs)—m(x,)) at distinct points x,, -+, x; Devroye and Wagner [4]
proposed the still simpler recursive estimator than that of {#,(x)}. They discuss
weak and strong consistency in L.

In this paper we propose a class of recursive estimators {m,(x)} of the form

(1.2) mo(x)=0, fo(x)=c with ¢ being an arbitrary positive constant
Falx)=Fa-1(x)+an {Ku(x, Xp)— fri(x)}
Ma(X) =My -1(2)+ An G(f ()Y =10 (X)) K (2, Xo)
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for each n=1, where

1.3) a,=a/n with 0<ae=1,
G)=y=" if >0
=0 if y=0,
(1.4) Ki(x, s)=ha?PK({(x—5)/hn) for x, s€R?

and K(x) is a bounded p.d.f. on R? with respect to Lebesgue measure.

REMARK 1.1. It is easy to see that G(f,(x))=sz'(x) for each n=1 and each xR?
if either a+1 in (1.3) or K(x)>0 for all xeR?. Thus, in the case where a¢=1 in (1.3)
and K(x)>0 for all x€R?, m,(x) in (1.2) coincides with #,(x) in (1.1) for each n=1
and each x=RP?.

The purpose of this paper is to show the strong pointwise consistency and the
asymptotic normality of »,(x) at a point x. We also deal with an optimal choice of
the coefficient ¢ in (1.3) in the sense of asymptotic minimum variance. For a special
type of the sequence {h,} our estimators are shown to be asymptotically more efficient
than those of Ahmad and Lin [1], in the sense of Definition 5.1 given in Section 5, by
choosing the coefficient a suitably.

In Section 2 we shall give auxiliary results needed later. In Section 3 the strong
pointwise consistency of m,(x) will be shown. In Section 4 we shall give the asymptotic
normality of (nh2)Y%(m,(x)—m(x)) at a point x. Section 5 is devoted to the optimal
choice of the coefficient a and comparison between the estimators of {#,(x)} and

{ma(x}.

2. Preliminaries and Auxiliary Results

In this section we shall give some results which are needed for the sections that
follow.
Let the bounded p.d.f. K(x) in (1.4) satisfy

(K1) [x]?[K(x)] -0  as [x[—oo,

where ||-|| denotes the Euclidean norm on R?. Let {h,} in (1.4) be a sequence of
positive numbers converging to zero, on which some of the following conditions are
imposed :

3

(HI) > (n*hR)F <00
(H2) n*1pEt—0 as n—oo for some 7>0
(H3) nhi—oo as n—oo.

We introduce some notations. Let

0=\ e, ndy, o= v ndy

g0)=| vz, ndy,
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VarlY | X=x1=(g(x)/ f(x))—(g(x)/ f(x))* if [f(x)>0

=0 otherwise
and
Q.x, 2)=yKn(x, u) for x€RP, z=(u, y)€R?XR and nz=l,
where K,.(x, u) is defined as (1.4). We assume that f(x), ¢(x) and g(x) are finite for
all x=R? and that m(x)=q(x)/f(x) if f(x)>0. Throughout this paper we assume that
ET|Y|J< o, which guarantees the existence of m(x). Define a sequence {g,(x)} as

follows:

(2.1) q:(x)=0

i

(0= 3 0,8,Q)x, Z)  for =12,

where
Bma= M (1—a;) if a>m=0
J=m+1
=1 if n=m=0
and a, is given in (1.3).

Let ;=1 and y,= II (1—a,) for all n=2. It is clear that Sn,=7.7%" for nzmz=1.
j=2

Throughout this paper Ci, Cs, --- denote suitable positive constants, not depending on
all positive integers n. Isogai [6] gives the result

(2.2) Cin =y, =Con¢ for all n=1.

By the definition of f,(x) we get

23) fal0)= 3 aipkix, X)+Bume  for n=l2, .
=

Define N as follows:

(2.4) N=smallest integer n=1 such that f,(x)>0 if such an n exists
=00 otherwise.
LEMMA 2.1. Suppose that for some w2 N=N(w) is finite. Then, for such an o,
mup(x)=qn(x)/ falx)  for all nzN
=0  for N>nz=l

ProOOF. We can easily get the following facts:

(2.5) Fo(x)>0 for n=N and f.(x)=0 for N>nx=l
and
(2.6) K.(x, X,)=0 for N>n=1.

By (2.5) we have G(f,.(x))=0 for N>n=1, which yields m,(x)=0 for N>n=1. By
(1.2), (2.5) and the definition of G(y) we get

2.7) Fol)ma(x)= z":vajﬁ,-anu, Z) forall nzN.
J=2

Since by (2.6) Q.(x, Z,)=0 for N>n=1, using (2.1) and (2.7) we obtain [,(x)m,(x)=
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g.(x) for all n=N. Thus, by (25 we get m,(x)=g¢.(x)/f(x) for all n=N. This
completes the proof.

LEMMA 2.2. Let {d,} be a sequence of positive numbers converging to zero. If it
holds that for some a>0 and some p>0

lim n'~2*d2=0

00

and

lim n'-**d?% ‘L“ 2a-bdzP=8 with some constant S>>0,

n-oo

then for any positive integer m
30T e Bndir) s oo,
where “ g,~¢n as n—oo” means that ¢n/¢n—1 as n—oo.
Proor. It suffices to show that 19"ndﬁr%,é}m]'-2r;2d;p:ﬁﬂndgé)m]'—z‘gg.nd[p_,l as

n—oo. Let any ¢ (0<e<1) be fixed. Choose & with 0<£&<1 such that (1+2¢/3)(1+&)
<1l4¢ and (1—¢/3)(1—£)>1—e. Since B;u~j*n"* as n=j—co, there exists a positive
integer m, (>m) such that

(2.8) (l—%>~7‘2“n‘2”<ﬁ§n£(14———)j“n‘” for n=j=m.
It follows from (2.2) that

2.9) ni<C,  for all a=l.

T
By the assumptions of the lemma we have jZ} 7¥ebd5?7—c0 as n—oo and fin'"%d2
=

n
- X j¥ebdiyP—1 as n—oo. Thus there exists a positive integer m, (>m;) such that
J=my

for n=m,
(2.10) 1—£< B ni2edE 3 2@ Dg7P< ]+
J=my
and
mi-1 n . e
2.11) 0=C, 3 j 557 ) 3 i< <.
j=m J=my 3

Hence by (2.8)~(2.11) we obtain that for n=m,

2120 B 'nd 3 jpi.dy
J=m

my-1

éﬁ‘lnl“ﬂadg é ]-fz(a—l)d]fz?{(c3 j:Em 7~2;,79d P jél].z(a—ljd;p)+<1+%>}

j=mq
<(1+ 77) +E)<1+e.
On the other hand, by (2.8) and (2.10) we get

(2.13) 8'nd% E J‘”ﬁmd:"-@__) nivtedp 3 jrecnd;v

Jj=my
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><1_%)(1—§)>1——e for all n=ms,.

Thus, by (2.12) and (2.13) we obtain the lemma. This completes the proof.
For any real-valued function # on R?, let C(8) be a set of continuity of points of
6 and let |@].= sup |6(x)|. By Lemmas 2.1 and 2.2 of Isogai [7] we have

zeRP
LEMMA 23. Let {d.} be a sequence of positive numbers converging to zero. Suppose

that 6(x) is an integrable, real-valued Borel measurable function on R? and that K(x) is

a bounded, integrable, real-valued Borel measurable Sfunction on R? satisfying (K1). Then,
for each x=C(8),

Skpd;pf(((x—u)/dn)o(u)du—>0(x>SRpK(u)du as n—oo

and

sup |, da?| K(x—w)/d.)] 10G) | du=M,

where M is a positive constant depending on x.

3. Strong pointwise consistency

In this section the strong pointwise consistency of m,(x) will be shown. In order
to prove the strong pointwise consistency of m,(x) we shall give two lemmas.
LEMMA 3.1. Let (H1) be satisfied. Then, for each point x<C( I}

lni_IP Fa(x)=f(x) with probability one (w. p-1).

PrROOF. By (2.3) we get

(3.1) Fr(x)—=ELfo(x)]=7x Zn) 77'a;Ux)  for each n=1,
j=1

where

(3.2) Un(x)=Kn(x, X;)—E[K,(x, X.)].

It follows from Lemma 2.3 that

(3.3) hEE[U%(x)]=hBE[K%(x, X,)]1=<C, for all n=1.

From (HI) and (3.3) we get
(3.4) 21 a2E[U%(x)]< 0.

Thus by making use of (3.1), (3.4), the Khintchine-Kolmogorov convergence theorem
(see Chow and Teicher [3], page 110) and the Kronecker lemma (see Lodve [8], page
238) we have

(3.5) Sr(x)—E[fa(x)]>0 w.p.las n—oo.

Since E[f.(x)]= Zn‘, a;BinE[Ki(x, X;)]+ Bonc and lim B,,=0, it follows from Lemma 2.3
Jj=1 N—co
and the Toeplitz lemma (see Loéve [8], page 238) that
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3.6) Elfu(x)]—>f(x) as n—co.

Thus by (3.5) and (3.6) the lemma is proved.
LEMMA 3.2. Assume that E[Y*]<co. Let (Hl) be satisfied. Then, for each point

xeClgNC(g),
lim ¢,(x)=¢(x) w.p.l,

where ANB denotes intersection of two sets A and B.

ProOF. Since by (2.1) E[g.(x)]= é a; B E[Qix, Z;)] for each n=I, it follows
from Lemma 2.3 and the Toeplitz lemma that
(3.7 E[gn(x)]—q(x) as n—oo.

It is clear that g,(x)—Elg.(x)]=7x i r7'a;V (x) for each n=1, where
j=1

3.8) Va(x)=Qn(x, Zn)—E[Qn(x, Za)].

Since by Lemma 2.3 h2E[Q%(x, Z,)]=C,; for all n=1, in the same manner as (3.5) we
have that ¢g.(x)—E[¢g.(x)]—0 w.p.1 as n—co, which, together with (3.7), yields the
conclusion of the lemma.

The strong pointwise consistency of m,(x) is obtained in the following:

THEOREM 3.1. Assume that E[Y*]<oco. Let (H1) be satisfied. Then, for each point
1 eC(HINCQNC(g) with f(x)>0, we have

lim ma{x)=m(x) w.p.L.
Proor. By Lemmas 3.1 and 3.2 there exists an event 8 with P{@}=1 such that
on @
(3.9) liin fa(x)=f(x) and lim g,(x)=¢(x).
Let any w=$ be fixed. Then by (3.9) and f(x)>0 N(w) defined by (2.4) is finite.

Since m(x)=g(x)/f(x) we obtain, by (3.9) and Lemma 2.1, that lim m,(x)=m(x), which
concludes the theorem.

4. Asymptotic normality

In this section we shall show the asymptotic normality of (nhZ)*(m,(x)—m(x)) at
a point x. It will turn out that we are able to express in a direct way the dependency
of the asymptotic variance on the choice of the sequence {h,} and the coefficient a.
Let U,(x) and V.(x) be defined as (3.2) and (3.8), respectively. Also, let

(o)={ 131540, )y, Wal)=aura'Uae), Valx)
and
A1) Ba(x)=(nhD)"?y, ;: Wx),

where the prime denotes transpose and we assume that #(x) is finite for all x&R?. In
order to prove the asymptotic normality we shall prove the following lemma.
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LEMMA 4.1. Assume that E[|Y |¥]<co. Let Condition A hold.
Condition A: For some 0<a=1

(AD) lim n'"22h2=0,

(A2) lim n'-%*h® P >, J¥Vh7P=B  with some constant B>0
and

(A3) lim (nhB)*/*n-2a E Jrebpr=(.

n—oco

Consider a point xC(HINCQNC(g) with f(x)>0 and Var[Y|X=x1>0. If either
x€C(t) or |t]e<oco holds then

Bn(X)—L—>N2(0, I'(x)) as n—oo,

where

2 . f(x) g(x)
4.2) Ix)= ﬁS K¥u)d (q(x) g(x)),

N0, I') denotes the k-variate normal with mean vector 0 and variance-covariance
matrix I, and “ —> 7 means convergence in law.
L

Proor. By the Cramér-Wold theorem (see Billingsley [2], page 49), it suffices to
show that for any D’=(d,, d,)=R*

(4.3 D’'B,(x) - N0, D'I"(x)D) as n—oo,

We may assume D=0. Let o%(x) be the variance of D’B,(x). It holds that
(4.4) D’'B,(x)/g.(x) - Ni(0, 1) as n—oo

if we verify Lyapounov’'s condition

(45) (s 3 ELID'Wx)|*)/oh(x)0  as n-roo.

It is easy to see that

(4.6) ox(x)=nhfr% fi afri AELUK )1+ GRELVH(x)]4-2d1d-ETU {x)V (x)1}.
By Lemma 2.3 we get as n—co

@n WRECUS I~ ()| K wdu,

h,eE[Va<x>]~g<x>§K2<u>du
and
RRETU ()Y (3]0 | K e,
where the domain of integral is R? unless otherwise specified. According to Lemma

2.2, (Al), (A2) and (2.2), we have that il a%r7thi? /oo as n—oo, which, together with
F~
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(4.7) and the Toeplitz lemma, yields that

n -1 n
8 (E atrihi®) 2 ot BLUY - f0) [ K aw)du
J=1 Jj=1
as n—co, Thus by making use of Lemma 2.2 and (4.8) we obtain
4.9) nhir? il a_%r}‘zE[Uf-(x)]—»aZﬁf(x)SKZ(u)du as  n—oo,
£
By the same argument for (4.9) we have as n—oco
(4.10) nhir: ‘Z‘,l a§r;2E[V§(x)]aazﬁg(x)gKZ(u)du
F=
and
4.11) nhir: fn‘_,l a?r,’-?E[Uj(x)Vj(x)]ﬁazﬂq(x)gf(z(u)du .
P

Combining (4.6), (4.9), (4.10) and (4.11) we get

4.12) gi(x) —> D'I'(x)D as n—co,

By the assumptions that f(x)>0 and Var[V|X=x]>0 we get

(4.13) D'I'(x)D>0.

It can be easily shown that

4.14) ELID'W ()" 1=4(1d:1°+ | d2|")a3r;® max{EL|U(x)|*], ELIV (x)|*1}.
It follows from Lemma 2.3 that

(4.15) EC|ULx)|*1=Csh5?*  for all j=1.

It is easy to see that

(4.16) ECIV ()1 "’]éSHKHih}“’gh}pK((x—u)/h,-)t(u)du

for all y=1. If x=C(t), then we get, by Lemma 2.3 and (4.16), E[ |V (x)|*]1=C,h;?*? for
all j=1. If |[{|.<co, then by (4.16) we get E[|V (x)|*1=8 | K||Z|t|-h7?? for all j=1.
Thus we have, under either x=C(t) or |jt].<co,

4.17) EL|V(x)}[¥]=Csh5?? for all j=1.
Combining (4.14), (4.15) and (4.17) we obtain
(4.18) ECID'W {x)|*1=Csaly72h7?? for all j=1.

Since by (2.2) and (4.18)
()% 33 ELID'W ()| ISCinhgp n=se 33 j*@ b5,
it follows from (A3) that
(k275 3 ELIDW ()]0 as n—oo,

which, together with (4.12) and (4.13), implies (4.5). In virtue of (4.4) and (4.12) we
obtain (4.3). Thus the lemma is proved.
The following theorem is concerned with the asymptotic normality of m,(x) at a
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point x. In the remainder of this paper, let K(x) satisfy the following additional con-
ditions :

(K2) nguinl, o updus o dup=0  for i=1, -, p
and
(K3) [ ol K du<co.

THEOREM 4.1. Assume that E[|Y |¥]<co. Suppose that there exist bounded, continu-
ous second partial derivatives 0*f(x)/0x:0x; and 0%*q(x)/0x0x; for i, j=1, -, p and that
g(x) is continuous on R?. Let Condition A in Lemma 4.1, (H1), (H2) and (H3) be fulfilled.
Consider a point x with f(x)>0 and Var[Y|X=x]>0. Then, under either x=C(t) or
ltle< oo, we have

(nh?i)‘”(mn(x)*m(x»~L—>N1(0, o (x)) as n—ooo,
where o*(x)=a*f Var[Y]szngpKz(u)du/f(x).

PrROOF. We note that by the assumptions Lemma 4.1 holds. Setting B¥(x)=
(AR fa(x)— f(x), gu(x)—q(x)), wWe get
(4.19) B¥(x)— B (x)=(nh®)?r, il a1 D{x)+(nhB)*BonDo(x),

=

where B,(x) is defined as (4.1) and let
dp(x)=E[K(x, X)1—f(x), dp(x)=E[Q\x, Z;)]—q(x)
Dix)=(du(x), djn(x))  for ;=1
Dy(x)=(c—f(x), —q(x)).
It follows from (2.2) and (Al) that (nh2)"*B,,—0 as n—co. Thus, if we show that for
each /=1, 2
(4.20) (nh2)77s 3} a7 di(x)| =0 as noo,

then, it follows from (4.19) that lim || B#(x)— B.(x)|=0 with ||-| denoting the Euclidean

norm on R? which, together with Theorem 4.1 of Billingsley [2] and Lemma 4.1, yields
that

(4.21) B¥(x) -5 N0, I'(x)) as n—oco,

We shall now show (4.20). By the Taylor theorem, (K2), (K3) and the boundedness of
0 f(x)/0x,0x; and 9%(x)/0x.,0x; we get that for each i=1, 2 |d;(x)|=Csh} for all
j7=1, which yields that for each /=1, 2

(4.22) (nhB)r, il ;77| d5a(x) | Cinh) "7 E, J7Tih;
Jj= j=
By making use of the Cauchy-Schwarz inequality we obtain

n 2 [ 3
f=1ly— 2 y—(1+7) D2 y—1+ —21,4
(4.23) nhars( 5 ) <( B 5 )nhars 3 5y,
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where » is given in (H2). It follows from (H2) and the Toeplitz lemma that
(i J"'erzh?p)_l -0 as n—oo,
j=1 j=1
which, together with Lemma 2.2, yields that
(4.24) nh2r% S I 0 as  n—oo.
j=1

Thus the relations (4.22), (4.23) and (4.24) imply (4.20). Let us define a function 7 on
R as
T(u, v)=v/u if u+0
=0 if u=0.
By the Taylor theorem and (2.5) we get
(4.25) An(R)=mhB)VH{T(falx), gu(x)—=T(f(x), ¢(x))}
=L'B¥(x)+e, || BE(x)] for all n=N,
where N defined by (2.4) is assumed to be finite and L=(—q(x)/f*x), f~(x))’, and
(4.26) e,—~0 i [(falx)—f(x), galx)—q(x))"|—=0.
It follows from Lemmas 3.1 and 3.2 that ¢,—0 w.p.l as n—oo. Hence by (4.21) we get

(4.27) ex|| B¥(x)||—0 in probability as n—oo.
Since by Lemma 3.1 P{N=oc}=0, using (4.21), (4.25) and (4.27) we have
(4.28) An(x) - Ny(0, a%(x)) as n—oo,

On the other hand, by Lemma 2.1 and (2.5) we get
P{| An(x)—(nhE)"*(ma(x)—m(x))| Z e}
<P{n<N}—0 as n—oo for each &>0,
which, together with (4.28), yields that
(A2 ma(x)—m(x)) —> Ni(0, 0*(x))  as n—eo.

Thus the theorem is established.

5. Optimal Choice of a

In this section we shall give an optimal choice of the coefficient @, under a certain
criterion, for a special sequence of {h,}. A comparison between the estimators of (1.1)
and (1.2) is also given. The following definition gives our criterion.

DEFINITION 5.1. Let {b,} be a strictly increasing sequence of positive numbers
with lim b,=oco. Suppose two sequences of estimators of some constant 8, {U,} and

{V,} satisfy

b (Un—86) - Ny(0, 6¥(6)) as n—oo
and

bo(V—8) —L>N1(0, o%(6)) as n—oo,
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where o¢3(#) and ¢}(§) are two positive constants depending on 4. Then we define
ef({U.}, {V.}) as ef({U.}, {V.})=0¥%60)/030) and call ef({U,}, {V,}) the relative
asymptotic efficiency of {V.} to {U,}. If ef({U,}, {V.})<1 then the sequence of
estimators {U,} is said to be asymptotically more efficient than that of the estimators
{V.}.

The following theorem gives the asymptotic variance of the estimators {m,(x)}
and the optimal choice of the coefficient g, in the sence of the asymptotic minimum
variance, for a special sequence of {h,}.

THEOREM 5.1. Let

(5.1 ha=n""2 with p/(p+4)<r<1.

Let the coefficient a in (1.3) satisfy 1=za>(1—r)/2. Then, under all conditions of Tkeo-
rem 4.1 except the conditions about the coefficient a and {h,}, we have

n 2 (x)—m(x)) — Ni(0, *(x)) as n—co,

where 02(.~c):a2(2a—}—r—1)“Var[YIX:x]SRpK%u)du/f(x). Furthermore, o%(x) attains
its minimum value (l—r)Var[Y[X=x]SRpK2(u)du/f(x) at a=1—r for fixed r.

PrROOF. We shall verify (H1), (H2), (H3) and Condition 4. As r<1, (H1) and (H3)
are satisfied. Since p/(p+4)<r, there exists a positive number n such that p(l147x)
/[(p+4)<r, which implies (H2). After some calculations with »>1—2a, (Al), (A2) with
B=Q@a-+r—1)"* and (A3) hold. Thus by Theorem 4.1 the first assertion is established.
Since a*(2a-+r—1)"* attains its minimum at a=1—7r for fixed 7, so does ¢%x), and its

minimum value is (l—r)Var[YlX:x]SRpKz(u)du/f(x). This completes the proof.

We shall now compare two estimators of {,(x)} and {m.(x)} under the criterion
of the relative asymptotic efficiency. Let {h,} be given in (5.1). The following corol-
lary is concerned with the comparison of {#,(x)} and {m.(x)}, and show that the
sequence of the estimators {m,(x)} is asymptotically more efficient than that of the
estimators {s,(x)}.

COROLLARY 5.1. Let K(x) be positive for all xR?. Then, under all conditions of
Theorem 5.1 with 1>a>1—r)/(147r) we obtain ef =ef({ma(x)}, {Ma(x)})=a¥1+7)
/Qa+r—1) (<1). Furthermore, ef attains its minimum value 1—r® at a=1—r for fixed
r with p/(p+4)<r<1.

PrROOF. Note that 1—7>(1—r)/(1+7)>(1—#)/2 for 0<r<1. It follows from Remark
1.1 that s#,(x) is obtained by putting e=1 in (1.3). Thus by Theorem 5.1 we get the
first assertion. The second assertion is easily obtained. This completes the proof.
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