
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

A TWO-PERSON INFINITE GAME SUGGESTED FROM A
QUIZ OF GUESSING A NUMBER

Teraoka, Yoshinobu
Department of Applied Mathematics, Himeji Instiute of Technology

https://doi.org/10.5109/13342

出版情報：Bulletin of informatics and cybernetics. 20 (3/4), pp.23-32, 1983-03. Research
Association of Statistical Sciences
バージョン：
権利関係：



Bulletin of Informatics and Cybernetics Vol. 20, No. 3-4, 1983

A TWO-PERSON INFINITE GAME SUGGESTED 

 FROM A QUIZ OF GUESSING A  NUMBER

        By 

Yoshinobu TERAOKA

                    Abstract 

   This paper is purposed to formulate and analyze a two-person 

infinite game suggested from a quiz of guessing a number which is 

applicable to a plan of production under an uncertain demand, wait

ing for a person who arrives at a random time, etc. Shown are the 

two types of model, shopping and shooting.

   1. Introduction 

   The problem discussed in this paper concerns the two-person infinite game suggested 

from the following example. 

   Firstly an umpire chooses a random number T in [0 , 1] which has cdf H(t)=Pr IT <t} 
and does not inform the two participants (Players I and II) in this game of the realized 

value of the r. v. T. Then each of I and II chooses a number in [0, 1] independently 
from each other. Here two criteria which determine the winning player in this game 
are defined as follows : 

(i) To choose a number which is greater than what his opponent chooses but 
does not exceed the realized value of the r. v. T. 

   (ii) To choose a number which is nearest to the realized value of the r. v. T. 

   Related to this example, there are many applications . i. e., a plan of production 
level under an uncertain demand, a formulation of on budget , waiting for a person 
who arrives at a random time and so on. The first type of the above criteria is 

termed shopping and the second, shooting. 

   Next, the settlement of two kinds of payoffs in this game is arranged as follows : 

(a) If Player I wins, he receives units a from II and if II wins, on the other hand, he 
   receives units b from I. 

(b) The winning player only receives one unit from their umpire, that is, each player 
   wisher to maximize his winning probability. 

The former produces the zero-sum game and the latter leads to the nonzero-sum game . 
   For the sake of arguments in the remaining sections, we assume that cdf H(t) is 

continuous, increasing H(0)=0 and H(1)=1, and has pdf h(t)>0 on [0 , 1]. We shall 
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employ usual notations on expectation of payoff M(x, y) defined on the unit squase as 
 follows  : 

            M(F. G)=f1r1M(x, y)dF(x)dG(y) , and                   J00 

            M(x, G)=1M(x, y)dG(y) ; M(F, y)=‘1M(x, y)dF(x) 
  00 

where F(x) and G(y) are the mixed strategies (cdf on [0, 11) for Players I and II 

respectively. 
   The model mentioned above is very simple, but the author believes that it is highly 

applicable to various decision problems. In relation to this work, Teraoka [3] formu

lated and analyzed a twoperson game of timing in which the appearance of the object 

is random and whether the players are able to obtain the object or not is uncertain.

   2. The Shopping Model 

   In this model, each player wishes to choose the smallest possible number, since H(t) 
increases with t. However, if the player chooses too small a number, his opponent may 
choose such an appropriate number that is greater than his number but yet does not 

exceed the realized value of the r. v. T. 
   2.1 Twoperson zero-sum shopping game 

   Let x and y be the numbers which are chosen by Players I and II respectively, 
the assumption (a) in Section 1 gives the expected payoff kernel M(x, y) as follows : 

(a+b)H(y)—aH(x)—b , x < y 

(2.1) M(x, y)= (a—b){1—H(x)} x=y 

bH(y)—(a+b)H(x)+a , x>y . 

   Since M(x, y) is strictly increasing in x and strictly increasing in y over the 
domains 0�x< < y <-1 and 0__<_y < x < 1 respectively, we suppose that the mixed strategy 
F(x) for I consists of a density part f(x)>0 over an interval (0, u) and a mass part a 
at x=0,  and that G(y) for II consists of a density part g(y)>0 over the same interval 
and a pass part 13 at y =0. Then we have 

               a(a—b)—.0{—(a+b)H(x)-}-a} f(x)dx,y=0 

0 a {(a+b)H(y)—b} ±.Cy{(a+b)H(y)—aH(x)—b} f(x)dx 
(2.2) M(F, y)=(u0                 +.0{bH(y)—(a+b)H(x)+a} f(x)dx, 0<ycu 

                                Y 

              a {(a+b)H(y)—b} +u {(a+b)H(y)—aH(x)—b} f(x)dx , u < y1 . 
a— 

which is continuous in y E(0, u]. Supposing that M(F, y)-v for yE(O, u], we get 

(2.3) h(y)/{1—H(y)} ={(a+b)f(y)}/{a(a+~yf(x)dx)+b} for 0<y_<u 
                                                                     a which leads to
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 aF(y)+b=K[1—H(y)]a/(a+b)  , 0< y=u 

where F(y)=atf f (x)dx so that 
0 (2.4)F(x)=(a±b/a)[1—H(x)]al(a+b)—b/a for 0<x<u. 

Considering F(u)=1 and 0<a<1, u satisfies the equation 

(a+bla)[1—H(u)]a/(a+b)=1+b/a . 
Thus we obtain 

(2.5)H(u)=1— {(a±b)/(aa+b)} (1+b/a) 

which has a unique root in [0, 11 When a=0 we denote the unique root of equation 

(2.5) by u1, that is, 
u1=H-1(1— {1+(a/b)} —cl+bia)) 

   Substituting (2.4) by (2.2), we find that 

=v+aa , y=0 

(2.6)M(F, y) =v, 0<yu 

>v, u<y<1. 

   Similar arguments on M(x, G) give us 

(2.7)G(y)=(alb+13)[1—H(y)]bi(a+b)—alb for 0<y<u , 

(2.8)H(u)=1— {(a+b)/(a+bj3)} (1+a/b) 

and when 15=0 0 
u2=H-1(1— {1+(b/a)} (1+a/b)) 

which is the unique root of (2.8). Moreover, we find that 

•v—j3b , x=0 

(2.9)M(x, G) =v, 0<x<u 

<v, u<x<1. 

Thus we arrive at a(3=0, which leads to u=min(u1, u2). After all we have the fol
lowing: 

(i) When a > b, since u= u2 we get 13=0 and 

a= {1+(b/a)} [1—H(u2)]a,ca+b,—b/a 

= {1+(b/a)} 1-(a/b)—b/a >0. 

(ii) When a=b, since u=u1=u2 we get a=(3=0. 
(iii) When a<b, since u=u1 we get a=0 and 

8= {1+(a/b)} 1-(bla)—a/b>0 

Since the Karlin's theorem [2; Chapter 6] holds, we have obtained the unique optimal 
strategies F*(x) for I and G*(y) for II of the zero-sum game (2.1). 

   Here we shall derive the value of the game v. When a=0, since
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 111(F, 0)=a—(a+b).CH(x) f (x)dx and 
0 11I(F, u)=(a±b)H(u)—b—arhH(x) f (x)d x 

                                                                0 we have 

      ~ 

                   u

0H(x) f (x)dx= {(a+b)/b} {1—H(u)} 

by using _11(F, y)-v for y E [O, u]. Hence we get 

v=M(F, 0)=a— {(a+b)2/b} {1—H(u)}. 

Considering u = u2i we obtain 

v=a—{(a+b)2/b}(1+a/b)(1+1%a), when a=0. 

In a similar fashion, we have 

v=6+{(a+b)2/a}(1 1 b/a)(1+arb> , when i3=0. 

   The above considerations lead to the following theorem. 
   THEOREM 1. Let 

u=H-1(1— {(1+b/a)(1+aib) U(1}-a/b)(l+bia>}) , 

then the optimal strategies F*(x) for I and G*(y) for II of the zero-sum game (2.1) are 
the following mixed strategies: 

(a+b/a)[1—H(x)]a/ca+b>—b/a,0<xc y 
F*(x)—

1,u<x<1 

(13±a/b)[1—H(y)]b1ca+b,—a/b, 0<y<u 
G*(y)= 

      1,u<y__<1, 

where two mass parts a and 13 at zero are determined as follows: 
   If a>b, then a={1+(b/a)}1aib—b/a>0 and 13=0. 

   If a=b, then a=0 and /3=0 
   If a<b, then a=0 and /3={1+(a/b)}1-bia—a/b>0. 

Then value of the game v* is given by 

                    —b+ {(a+b)2/a}(1-{-b/a)c1+a~b'>0 if a>b 

    v*= 0if a=b 

                  a— {(a-Fb)2/b} (l4a/b) cl+bia> <0if a <b . 

REMARK : (i) According to the above theorem, the profitable player is forced to 
behave more timidly than his opponent, since his remaining probability at point 0 is 

positive. 
   (ii) When a = b, we have 

{1—H(x)} 1'2-1, 0<x<H-1(3/4) 
             F*(x)=G*(y)= 

                 1.H1(3/4)<x—<1 
and 

v*=0.
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    2.2 Two person nonzero-sum shopping game 

    Let  Mti(x, y) be the expected payoff kernel to Player i when x and y are the pure 
strategies for I and II respectively, the assumption (b) in Section 1 leads to the following : 

H(y)—H(x) , x<y 

(2.10)M1(x, y) 0,x=y ; 

1—H(x) , x > y 

H(x)—H(y) , y<x 

(2.11)M2(x, y)= 0,y=x 

1—H(y), y>x. 

We observe that M1(x, y) is strictly decreasing in x over the domains 0 < x < y �1 and 

0�y  < x <1 and strictly increasing in y over the domain 0 < x < y < 1. Since both the 

payoff kernels (2.10) and (2.11) are symmetric, the equilibrium strategy for one player 
remains also the equilibrium strategy for his opponent. 

   Here we shall employ the following Lemma without proof. 

   LEMMA 1. For the nonzero-sum infinite game M1(x, y) and M2(x, y) defined on the 
unit square, if there exist the distribution functions F°(x) and G°(y), values v° and v20, 
and intervals [ll, ul]C[0, 1] and [12, u2]C[0, 1] such that 

                          _ 

             .fu2M1(x, y)dG°(y){<}v° if x E {11iu1 } , 
where G°(l2)=0 and G°(u2)=1; 

             rMo(x,  y)dF°(x){<}v2iJyE{[12' 1,/214' 
where F°(11)=0 and F°(ul)=0, then (F°, G°) is the equilibribrium point for Mi(x, y) and 

M2(x, y), and v° and vZ satisfy 

                   v7—.C°\M1(x, y)dF°(x)dG°(y); 

1 

                                       0 01 

                     vz=JM2(x, y)dF°(x)dG°(y) respectively. 

   Now we shall define the following mixed strategy : 

—log{1—H(x)} , 0—<x <H 1(11/e)=H1(0.632) (2
.12) F°(x)= 

1,H1(1-1/e) < x�1. 

Then we shall state Theorem 2.2. 

   THEOREM 2. A pair of equilibrium strategies of nonzero-sum game (2.10) and (2.11) 

is given by (F°(x), F°(y)). The equilibrium payoff of the game to each player is 1/e 

0.632. 

   PROOF. Supposing that both of the mixed strategies F(x) for I and F(y) for II 

consist of a density function f(.) over the support [0, u], we get
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                     F(x)—H(x)+-.0 H(y)f(y)dy ,0<x �u (2.13)  M1(x, F)_ 
1—H(x),u<x<1. 

We also suppose that 

(2.14)M1(x, y)=v° for all x E [0, u] , 

which yields 

f (x)=h(x)/ {1—H(x)} for x E[0, u] . 

since F(0)=0, we have 

F(x)= —log {1—H(x)} for x E[0, u] . 

The boundary condition F(u)=1 gives u=H1(11/e)=H1(0.632). Thus we have 

derived the mixed strategy F°(x) defined in (2.12) which satisfies the intergral equation 

(2.14) which has a unique solution under an appropriate boundary condition. Then we 

get 
M1(u, F°)=1—H(u)=1/e, 0<x<u 

M1(x, F°)= 
1—H(x)<1—H(u)=1/e, 0<x<_1 

from (2.13). 

   Since both the payoff kernels (2.10) and (2.11) are symmetric with respect to x and 

y and Lemma 1 holds, we have proved Theorem 2. 
REMARK : Though the proof of Theorem 1 is very simple, the implication is very 

interesting, that is, 1-1/e is the lower bound of the neglecting region for H(t) and 1/e 

is the expectation of the winning probability under the equilibrium condition. We are 

interested in the extention to nperson model. Perhaps the equilibrium payoff to each 

player will be (1/e)r and its equilibrium mixed strategy will be F°(x) for all players.

   3. The Shooting Model 

   In this model, each player wishes to choose his number which is nearest to the 

realized value of r. v. T., however, both the two have no information about cdf H(t). 

Intuitively we can conjecture that the optimal number will relate to one of the three 

values of cdf H(t), E(T), H1(1/2), and max h(t). Moreover, from the gametheoretical 

viewpoint, if the optimal strategy exists then it will be given by H1(1/2). Thus we 
shall define to as follows : 

(3.1) H(t0)=1/2, i.e., t°=H1(1/2), 

which exists uniquely in [0, 1]. 

   3.1 Twoperson zero-sum shooting game 
   Let x and y be the pure strategies for I and II respectively, the expected payoff 

kernel M(x, y) to Player I is given by 

(a+b)H((x+y)/2)—b , x < y 

(3.2) M(x, y)= 0(a, b),x 

a—(a+b)H((x+y)/2) , x>y ,
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where  0(a, b) depends only on a and b but not x and y . Since M(x, y) is strictly 
increasing in each of x and over the domain 0 < x < y �1 and strictly decreasing in 

each of x and y over the domain 0<y < x <1, we have 

M(to, y)>(a+b)H(to)—ba—bif>                   {a—(a+b)H(to)}=2.y{<}to: 
                       (a+b)H(to)—b a—b<              M(x, to)<{a—(a+b)H(to)}2ifx{>}to, 

from the definition on to, i. e., Equation (3.1). 

   Here we shall define the mixed strategy e(x) for any E >0 as follows : 

0, 0<x<to-3 

(3.3)e(x)= Jx(1/23)dt, to5<—x<to+o to-3— 

                1,to+o<x<1 
where 

3=min[to—H1(to—r/(a+b)), H1(t0+E/(a+b))—to] . 

Then the definitions on e(x) and to lead to 

                        to+S

toS 
                Ca—(a+b)H((x+y)/2)](1/25)dx,y<to—o 

                                           y [(
a+b)H((x+y)/2)—b](1/23)dx 

me, .Y)to—ato+S 
                + .[a—(a+b)H((x+y)/2)](1/23)dx , to—o_<y_<to+b V—  

(tp+S 

'1J [(a+b)H((x+y)/2)—b](1/23)dx ,y>—to+3 . to—S

An analysis of the first case (y <to—o) yields 

               Me, y)>—rt
o-So+S[a—(a+b)H(to)](1/25)dx=(a—b)/2 . 

                  —
t 

The second case (t0-3�y <to+3) gives 

M(, 3))?(1/23)[{(a+b)H(t03)—b}(y—to+5)}{a—(a+b)H(to+5)}(to113—y)] 

23          [{a+(_2 a-I-b)—b}(y—to+o)+{a—(a+b)(1 +------a+b)}(to+-o—y)] 
=(a—b)/2—E . 

The third case (y > to+5) leads to 

                 M(,y)?
to-S                         00+5[(a+b)H(to)—b](1/25)dx=(a—b)/2. 

                         Thus we obtain 

                  M(, y)>(a—b)/2—E for all y E[0, 1] . 

Similar arguments on M(x, e) give 

M(x, e)<(a—b)12+e for all xE[0, 1] . 

   The above considerations lead us to the following theorem .
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    THEOREM 3. Let  to and e(•) be defined by (3.1) and (3.3) respectively, then: 

(i) The game has value (a-b)/2. 

(ii) If 0(a, b)=(a-b)/2, then (to, to) is the saddle point of the game. 

(iii) If 0(a, b)<(a-b)/2, then e(x) is an soptimal mixed strategy for Player I and to 
is the optimal pure strategy for Player II. 

(iv) If 0(a, b)>(a-b)/2, then to is the optimal pure strategy for Player I and (y) is 
an soptimal mixed strategy for Player II. 

NOTE: (a) Usually, 0(a, b) equals to 0, a-b or (a-b)/2. (b) The difference be

tween a and b has no inference on the strategies stated in Theorem 3, but relates to 

the value of the game. 

    3.2 Twoperson nonzero-sum shooting game 
   According to the assumption (b) in Section 1, we have the expected payoff kernel 

1v11(x, y) for Player i as follows: 

H((x+y)/2) , x<y 

(3.4) Mi(x, y)= 0,x=y; 

1H((x+y)/2), x>y 

                         H((x+y)/2), y<x 

(3.5) M2(x, y)= 0,y=x 

1H((x+y)/2), y>x. 

Then we get 

<H(to) >1-H(t0)< 

          14,(x, to)=0 ; M2(x,to)=0 if x = to 

<1-H(to)> H(to) > 
and <H(to) 1<1-H(to) > 

1L11(to, y). =0 ; M2(to, y) =0 if y = to , 

>1-H(to)<H(to) < 

where H(t0)=1H(t0)=1/2 from (3.1). 

   As in section 3.1, we also define the mixed strategy 27(x) for any s>0  as follows: 

                0,0<x<to-5 

(3.6)i(x)= S.x (1/23)dt, to3<x<to+3 to-3 
1,to+3<x<_1, 

where 3 is given by 

3=min[toH-1(to-s), H1(to+s)-to] • 

Then, for any s>0  the following inequalities are held: 

M1(x, i)<1/2-I-e for all xE[0, 1] 
(3.7)• 

M1(77, y)>_1/2-s for all yE[0, 1] 

                  M2(x, 72)�1/2-s for all xE[0,  1] 
(3.8) 

M2(77, y)<1/2-j-s for all yE[0, 1],
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By putting  a=1 and b=0  in the proof of Theorem 3. Thus we have Theorem 4. 
   THEOREM 4. (i) The twopevson nonzero-sum game (3.4) and (3.5) are the almost 

strictly competitive game. 

   (ii) Let to and ri(•) be defined by (3.1) and (3.6) respectively, then (r(x), ri(y)) is a 

pair of aequilibrium mixed strategies and a pair of stwisted equilibrium mixed stratigies, 
that is, ri(x) and r2(y) are the soptimal mixed strategies fov I and II respectively. 

   (iii) The value of the game is 1/2. 
NOTE : The almost strictly competive game was discovered by Aumann [11. And 

then he defined the twisted equilibrium point and suggested a reasonable optimal 
strategy and value of the game for some classes of twoperson nonzero-sum games.

   4. Concluding Remarks 

   In this paper four problems for a twoperson infinite game suggested from a quiz 

of guessing a number have been formulated and analyzed. Theorems 1-4 mention that 
all the four values of the game are dependent only on the returns to both players and 

not on cdf H(t). This fact is convincible, since H(t) has the same weight to both 

players. All the optimal strategy pairs, however, are dependent on the returns to both 

players and H(t) intrinsically. Now the validity of convergence is assumed as follows : 
   Letting alb—÷00 then G*(y)—of°(y) and v*-4/e, without proof, since M1(x , y) of 

Section 2.2 is formulated by puttiing a=1 and b=0 in M(x, y) of Section 2.1. 

   Here, it is remarked that the problem discussed in this paper is closely related with 
the competitive bidding problems and games of timing , especially our shopping model 
further relates to the problem where the highest bid wins, and to the model of silent 

duel. Though the structure of payoff in our model is very simple, the form of com

petition is essential to the problems mentioned above. 
   Finally, it is noted that we were left with more interesting cases such as follows : 

   (a) The winning player receives the return which is a function of the difference 

(or its absolute value) between his selected number and the realized value of r. v. T, 
especially in the case where the return is increasing (or decreasing) function with 

respect to the difference. 

   (b) Generalization to multiperson game, which is more realistic but very difficult 
even for threeperson model. 

   (c) Extension to a multi-stage game suggested from incnrporating the learning 
structure and information about the realized value of r. v. T. by selecting a number, 

such as search theory.
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