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                     Abstract 

   We introduce a new interpretation of a phenomenon followed by 
certain subsequent learning experiments such as shift problems in 
discrimination learning, and show some limit theorems representing 
the rightness of such experiments on the basis of our interpretation. 

   In this paper we treat a regular Markov chain {X,,}7,>0 as a 
mathematical model for subjects' behavior in the first phase and a 
family of stopping times {Ng (d) } d>o for selecting the time when 
we change the first phase into the second phase, and show that the 
asymptotic distribution of { f (XNg (d)) } d>o is the same as the asym

ptotic distribution of If (Xn) } n5o under some conditions.

   1. Introduction. 

   Since R. R. Bush and F. Mosteller proposed a linear model as a mathematical model 

for twochoice simple learning experiments in 1951, many psychologists have proposed 
various Markov chain models and studied them. These models were generalized and 

analyzed by means of probabilistic methods by M. Iosifescu and R. Theodorescu [4] and 

M. F. Norman [7]. On the other hand learning experiments have come specific and 

complex in recent years. In this paper we shall introduce a new interpretation of a 

phenomenon followed by certain subsequent experiments which cause different events 
in reinforcing each other as the results of a series of the socalled shift problems. 

And we shall show some limit theorems representing the rightness of such experiments 

on the basis of our interpretation. Hereafter the word ` an experiment ' is used to re

present the whole one of a series of subsequent ` phases'. 
   First we describe the abovementioned experiments more precisely. For the sake 

of simplicity we treat the experiment composed of two phases. Each phase consists 

of a sequence of trials. On each trial a subject is given a stimulus in accordance 

with a schedule settled in advance, and responses are observed. Such trials are re

peated until he learns sufficiently. A rule for stopping the phase is to stop it when 
the probability of his correct response approaches one, although his inner state he
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has had at the stopping time is not necessarily near from the state obtained by the 

perfect learning. 
   Peculiarities in the two phases are as follows. Main differences are how to give 

the stimulus to the subject by experimenters and how to respond by the subject. The 

two phases can be represented by a common model except directions of the change of 

state. The spaces of inner states of the subject are same between two phases. The 

subject does not know the time when the second phase starts. His initial state for 

the second phase coincides with his final state for the first one. 
   Considering these points we introduce the following interpretation different from 

the conventional one. Main aims of the experiment are to know the behavior of the 

subject relative to his learning at the first phase, and to observe a quantity attained 

by the subject as a consequence of his learning at the first phase. This quantity can 
not be observed by the experimenter at the first phase. So, we prepare the second 

phase in order to observe the quantity. Namely, at the second phase we estimate the 
final state of the first phase the subject obtained and we study how he learned from 

his observations in the first phase. 
   In this paper we study the behavior of the subject in the first phase represented 

by a Markov chain and we give a limit theorem which is satisfied by the observations 
in the second phase if the subject sufficiently learns in the first phase. 

   In Section 4, we shall treat the ZHL model and the overlearning reversal effect as 

examples of  `  an experiment ' and ` a phenomenon ', and apply our results to them.

   2. Formulation. 

   In this paper, we consider a Markov chain '= an} n,c, with state space (X, 2) 

and transition operator U, as a mathematical model for subjects' behavior in the first 

phase in such experiments. Next let B(X) be the Banach space of bounded 2measur
able real valued functions on X under the supremum norm I • ! and let L be a Banach 

algebra, contained in B(X), under a norm II • II such that 

c;.= 
IsupToIlf„ C 00 

In addition, the transition operator U is assumed to satisfy one of following conditions. 

   DEFINITION 1. The operator U is aperiodic if there is a bounded linear operator 

U°° on L such that IIU"—U°°II—>O as n--“oc. 

   An aperiodic operator U is regular if U-f is a constant function on X for each 

fEL. 
   Examples of the Markov chain a' and the Banach algebra (L, I • li) are described 

in [7]. We suppose that functions observed in both phases belong to L, then the ob

servation in the second phase is expressed as follows. Let g(E L) be the function we 
observe for selecting the time when we change the first phase into the second phase. 

As stated in the previous section, the time is a stopping rule in the first phase, and 
it is the time when g(X„) sufficiently approaches to U°°g to which the observed values 

approach if we don't change the phase and keep on making experiments of the first 

phase. Let N be this time and let f(E L) be the function we observe in the second
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phase. Then we can express the observed value in such an experiment by  f(XN).  So 
if we use these expressions, we may formulate the problem mentioned in the previous 

section what value f (X N) approaches to when the difference between g(XN) and UM 
is very small. In this paper we show that f(XN) approaches to U=`f as well as f(Xn) 

does and survey conditions for f and g to satisfy. 

   We cite some results which were proved by M. F. Norman [7]. 

   LEMMA 1. If U is aperiodic, and V=U —U-,  then 

                         r(V)= lim IlVniIl/n<1 . 

   It follows from this that for any r(V)<a<1 there is a D=Da such that 

II V nl) <Dan 

for all n>0. 
   For n�1,  u ` Z and f = L, let 

                                    {n-1{                            Sn(J)_J(Xj) , 

Zn(f)=(Sn(f)—nU-f)/ n 

                         pu(f)=U°°(fv~u~f) , 

and 

(72(f)-= E pu(f) 
                                                  u=-~ 

We use abridged notations Sn, Zn, pu and 0.2 as far as we don't demand. 
   THEOREM 1. If U is regular, then 

   (1) Sn/n converges to U°f almost surely as n—>cc, and 

   (2) the distribution of Zn converges to the normal distribution with mean 0 and 
variance a2. 

   Let {tn}n,1 be a sequence of positive numbers such that for all n>_1, tn<n and 

tn—>~ and to/n—*0 as n--°° 

and let 

                                                                 n-1-lul      —V(Xi){/              Qn6n(f)= 1~ ~—~)(J\Xti+lul)n). 
n iui<_tn j=on12 

   Then 

   (3) the truncated estimator an converges to a2 in quadratic mean as n—>co. 
   We use the well-known Anscombe theorem to introduce stopping rules into these 

limit theorems. 

   THEOREM 2. Let {Yn} n>1 be a sequence of random variables. We suppose that there 

exist a sequence of positive numbers {tun}, and a random variable Y such that Yn/wn 

converges to Y in distribution as n-*oc. Let {Nr} r>1 be a sequence of positive integer

valued random variables defined on the same probability space that {Yn} n>1 is defined. We 

assume that Nr/n, converges in probability to 1 as r-'cc where {nr}r>_1 is an increasing 

sequence of positive integers tending to infinity when r tends to infinity. Then the sequence
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YNr/Wn, converges to Y.° in distribution as r—*oo if the following condition is satisfied; 

   For every e>0  and 72 >0 there exist a small positive number c and a natural number 
no such that for every n > no 

P( max I Yin—Yn >s)<r . 
m>1;[m—nl<cn 

   The last condition is called the Anscombe condition.

   3. Main results. 

   While we assumed the condition only for the Markov chain a.' in Theorem 1, we 

add an assumption for f e L which is satisfied in many mathematical models and give 

some results corresponding to each one in Theorem 1. 

   THEOREM 3. If U is aperiodic and U-f 2=(U-f)2, then 

   (1) f(Xn) converges to U°f almost surely as n--“)9, 

    (2) Zn converges to 0 almost surely as n--.00, and 

    (3) an converges to 0 almost surely as n—*oo. 
   PROOF. We shall assume that U°f 2U°f-0. The general case is obtained by apply

ing this special case to 1=f—U°f EL. For n>_0, let n=a(Xi; 0i<n) be the smallest 

Borel field with respect to which Xo, X1, • • •, X, are measurable. 
   Firstly, for m, j�0 

 {/                  ECf2(Xm+j)I gm1Uif2(Xm)=Pf2(Xm) a. s. 

since U"f 2=0, so that 

E'CJ 2(Xm+j)I ¶mlI C I V"f f2i1 <CDaj ,J 2 

where r(V)<a< 1, by Lemma 1. This is expressed 

Elf 2(Xm+j)I gm]=0(al) 

in this paper. We use such abbreviated notation when the order of magnitude is uni

form over all relevant variables that don't appear on the right. It follows that 

(3.1) ECf 2(X5)1=ECECf °(Xj) 19 o» =0(a') , 

hence 

EC E f 2(Xj)1 < no 
j=o 

f 2(X j) < 00 a. s. , 
                                            j=0 

and f(Xj)--0 a.s. as j—*oo. 

   Next it follows from nonnegativity of the bounded linear operator U on L that for 

g, hEL 
U°(g12)<( g2)'"(U1.2)1", 

so that U'°(fg)=0 for g E L since U°f 2=0. Thus if 0<i< j < k in we can write 

ECf (X i)f (Xj)f (X k)f (X m)1—ELV i(f V j-z(f V k-J(f V m  kf)))(Xo)1 ,
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and get 

(3.2)I  E[f(Xi)f(Xj)f(X  k)f(X  m)1 1=0(am) . 

It follows that 

(3.3)E[St]=0(1) , 

since 

                                                n-1 

          

1 E[SO I  I E[f(Xi)f(Xj)f(X k)f(Xm)1I 
z, 7, k, m-0 

! E I E[f(Xi)f(Xj)f(Xk)f(Xm)II , Osisjsksm<n-1 

and 

am=1/(1—a)4<c0 . 
0sisjs_ksm 

On division by n2, (3.3) yields 

E[Zj]=0(1/n2) 

hence 

E[ E Zn]=0(1) , 
n=1 

                                 Zt<oo a. s. 
                                                         n=1 

and Zn- 0 a. s. as n--co. 
   Clearly 

6n=4n+En 

where 

1 n-1-1u1 4
n=— EE f(Xi)f(Xi+tul) 

                                             n lulstn i=0 

and 

n-1n-i 

                           En=-2.1                        n—2 

                     1E S
n(f(Xi)+Ef(Xi)) • 

                              nlulstn i=n-lul z=lul 

From (3.2) we get 

                        E[f 2(Xi)f 2(Xi+',ul)]=0(ai+;ul) 

for i>0 andaEZ, SO 

                                                              / 

                     E[f2(Xi)f2(Xi+lul)]1/2=0('ul) 

where ;3=a1". By the Minkowski inequality\\~J 

                                    1 n-1-1u1                          E.,J[4n-11/2=E E 0(i+lu 
                                    n lulstn i=0\J 

=0(1/n) , 

and 

                         E[J;,]=0(1/n2) .
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By the estimation similar to show (3.3) we get 

n-1 n1 

E[Sn( E f(Xi)+E f(Xi))21=0(1) , 
i=n-luli=,ul 

and similarly 

E[s27,1=0(1/n2) . 

Therefore do and sn, then an converges to 0 almost surely. Thus the proof is 

complete. 

   Of course, Theorem 3 (2) gives the Anscombe condition for the central limit theorem 
in Theorem 1 by taking Yn=Zn and wn=1 in Theorem 2. Under the same assump

tions as Theorem 3, we also get the Anscombe condition generally used ; 

   For every s>0  and 7 >0 there exist a positive number c(<1) and a natural num

ber no such that for n�-no 

                 P( max I Sr,n(f)I s^n)<r) 
m?1;Im-nI<cn 

where 

n-1' 

f(Xi)—(n—m)U°fif m<n 
i=m 

Sm, n(f )= 0 if m= n 
                                             m-1 

E f(Xi)—(m—n)U°f if m>n . 
i=n 

   PROPOSITION. If U is aperiodic and U°f2=(U°f)2, then for s>0 and 0<c<1 

                 P( max I Sm, n (f) I ? s4/ n)=0(1) 
m_1;Im-nl<cn 

as n—>oo. 

   PROOF. We can assume that U- .12--=0 without loss of generality. By the Schwaltz 
inequality and (3.1) 

E[ max ISm,n(f)I1 
m_1;im-nl<cn 

<E [ max s/ I m—n I (Sm, n(f 2))112J 
m1;Im-nl<cn 

-^ c n E[( E f 2(X i))1'21 
i?1;1i-nl<cn 

"V c n ( E E[f 2(X i)1)1/2 
il;li-nl<cn 

=0 (-^ n • r5(1-c)n) 

where 0<13  (=a1/2) < 1. Hence, by the Markov inequality 

P(maxm>i; I m-n,<cn I Sm, n(f) I __E1/n) 

                                                       E[maxm?i; Im-ni<cn I Sin, n(f)I1/ E. Vn 
=0(p_c)n)=0(1).
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This completes the proof. 

   The following lemma gives a procedure to constitute the families of stopping times 

that satisfy the condition for  {  Nr}  r>-1 in Theorem 2. 

   LEMMA 2. Let {Y.} n>1 be a sequence of random variables that converges to a positive 

random variable Y almost surely as n—*c, and let k(n) be a sequence of positive constants 

such that 

k(n)                    li
m k(n)=oo and lim =1 . k(

n-1) 

For each d >0, define 

                      Nd=inf {n>_1;0<Yn<d2k(n)} • 

Then the stopping times {Nd} d>o are welldefined and d2k(Nd) converges to Y in pro

bability as d 0. 

   PROOF. As well as the proof of Lemma 1 of Y. S. Chow and H. Robbins [3] we 

can obtain that {Nd} d>o are welldefined, 

limdio Nd=oo a.s. , 

limd YNd=limdlo YNd-1=Y a.s. , 

and 

YNdcd2k(Nd)<[k(Nd)lk(Nd1)]YNd-1 

on Ad= 1Yd-1> d2k(Nd-1)} . Then for s>0 

P(1 d2k(Nd)-17 i -?-6) 

                             <P(Ad (1 { I d2k(Nd)—Y I s} )±P(Acd)—>0 

as d 1 0. This completes the proof. 

   Particularly if Y is a constant function y, the stopping times {Nd} d>o satisfy the 

condition of Theorem 2 for n d = [ y / d 2]. 

   In the remainder of this section we get these results into the limit theorems of 

processes of the form f(XN). Henceforth let g and f be, respectively, the function 
observed in the first and second phases as these were in the previous section. We 

suppose that U is regular and f(EL) satisfies the Anscombe condition above mentioned. 

For d >0, let 

N1(d)=inf {n1; I Sn(g)—nU°gI <n(nd2-1)} 

N2(d)=inf {n?1; I g(Xn)—U°gI <nd2-1} , 

and 

T2(d)— 1   (d) f(X.,) —U°° fl dN
i(d)I 

Then the distribution of T1(d) converges to the normal distribution with mean 0 and 

variance U2(f ), and if U°g2=(U°g)2, the distribution of T2(d) also coverges to the same
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distribution. And if an(g) converges almost surely, let 

A3(d)=inf {n>_1; 0<o-,i(g)nd2} 

N4(d)=inf {n>_1; 6n(g)I <nd2—s} (r >0) 

for d>0.  Then if o.2(g) is positive, the distribution of T 3(d) converges to the normal 

distribution with mean 0 and variance a2(f)/o-2(g), and if not, for any s >0 the distribu

tion of 714) converges to the normal distribution with mean 0 and variance a2(f)/r 
as d 0.

   4. Example. 

   In this section we take up the ZHL model which was proposed by D. Zeaman 

and B. J. House [9] and E. Lovejoy [5] as an example of the mathematical model for 

discrimination learning stated in introduction and we describe briefly about the phe

nomenon called the overlearning reversal effect and then we show that this example 

satisfies the framework and the conditions in this paper. 

   First we describe the typical experiment in discrimination learning. In this ex

periment stimuli vary along two dimensions such as form and color, position and 
brightness, etc. Each dimension is represented by two values such as circle and triangle , 
green and red, right and left, etc. In this section A and B stand for the two dimen
sions and the values in A(B) is represented by a and a (b and b). We select the 

correct value to reinforce (a) and then we say that the dimension A is relevant. On 

any trial, the subject must choose one of two stimulus objects. On half the trials, the 
objects are (a, b) and (a, b). On the remaining trials, they are (a, b) and (a , b). The 
symbol (a, b) denotes the stimulus with both a and b such as a red circle and a green 
triangle. And his choice is rewarded only if his chosen stimulus contains the correct 

value. Such trials are repeated until the subject's performance meets some criterion 

representing that he learned to choose the rewarded stimuli. 
   Secondly we describe the ZHL model for the above experiment. The state space 

(X, 3) of the Markov chain = an} 72,0 is [0, 1] x [0, 1] with its Borel a-field and 
its element is represented by x=(v, w). The variable v denotes the probability of 

attending to the relevant dimension and then he choose the correct value with condi

tional probability w, that is, 

                      v=P(A) and w=P(a ! A) . 

We now describe how x change on each trial. This depends on what he attends to 

and whether his response is correct or incorrect. While the variable v changes on all 

trials, the variable w does only when he attends to the relevent dimension. And 

the variables approach to the state which perfectly learned the events reinforced on 

that trial. These changes are effected by linear transformations. The following table 
lists the values of changes of v and w corresponding to the combinations of attention 

and outcomes.
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  attentionoutcome probabilityiviw 

   Acorrect vw¢ (1-v)O(1-w) 
  (relevant) incorrect v (1— w)— ¢v0 (1— w) 

  Bcorrect (1—v) /2—¢v0 
(irrelevant)¢ (1— v)0                   incorrect (1— v) /2 

(0<¢, 0<l)

This Markov chain a' is a regular compact Markov chain with single absorbing state 

x~=(1, 1) [7]. Consequently this satisfies the regularity stated in formulation if L=L(X) 

or B(X) where L(X) is the set of bounded Lipschitz functions. Besides the condition 
'U°f 2=(Uf )" often assumed is satisfied by all functions in L since U°f is represented 

by f(x.). 

   Next we describe the overlearning reversal effect (ORE) as an example of the 

phenomenon ensued from subsequent experiments. There are two phases in this ex

periment. The experiment in the first phase is done in the same way above mentioned, 
but in the subsequent phase the correct value changes a into a in the relevant dimen

sion. As an interesting question it is whether extra trials before reversal in the first 

phase facilitates or retards the reverse learning on the second phase. The phenomenon 
that overtraining facilitates reversal is famous and is called the ORE, but Mackintosh 

reported the opposite result. In [6] huge results for this experiment are well arranged. 

   Now we consider the phenomenon on our interpretation described in introduction. 

The criterion to finish the first phase is that the subject's state x=(v, w) satisfies 

vw+(1—v)/2=1 .

Fig. 1
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Fig. 2

But we can know no more about the stopping state. Then let f be the expected total 

number of errors on the second phase and this is the function of the initial state of 

the second phase, that is, the final state of the first phase. And we analyze the 
increase or decrease of this function as the result of one additional trial in the first 

phase. These results are illustrated in the above figures. When his state enters 
into the dark shading on figure 1, we change the phase and, in addition, if it is in 

e(Q) on figure 2, the function f increases (decreases). It comes to this that if the 
final state of the first phase is in T(G), the overlearning retards (facilitates) reverse 

learning.
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