
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

SIGMA - AN INFORMATION SYSTEM FOR RESEARCHERS
USE

Arikawa, Setsuo
Research Institute of Fundamental Information Science, Kyushu University

Shinohara, Takeshi
九州大学大学院総合理工学研究科情報システム学専攻

Shiraishi, Shuji
Department of Information Systems, Interdisciplinary Graduate School of Engineering Science,
Kyushu University

Tamakoshi, Yasushi
Department of Information Systems, Interdisciplinary Graduate School of Engineering Science,
Kyushu University

https://doi.org/10.5109/13339

出版情報：Bulletin of informatics and cybernetics. 20 (1/2), pp.97-114, 1982-03. Research
Association of Statistical Sciences
バージョン：
権利関係：

 Bulletil: o_r Informatics and Cybernetics 20 (1982)

SIGMA—AN INFORMATION SYSTEM

 FOR RESEARCHERS USE

 By

Setsuo ARIKAWA"2', Takeshi SHINOHARA2', Shuji SHIRAISHI2'

and

 Yasushi TAMAKOSHI2'

 (Received November 27, 1981)

 Abstract

 This paper describes an information system SIGMA implemented

on the computer at our University Computer Center. The system

creates, for each user, a MEMO space for his private notebook and

SIGMA spaces for sharing data with other users. The system ass

umes, as data structure, only the strings of characters, and hence the

main access method is a linear search. We developed a general

purpose linear search method called one-way sequential search which
extensively makes use of pattern matching machines. Communica

tions between users and the system are automatically recorded in

log files, which function as command procedures.

 1. Introduction

 Scientific information system such as information retrieval systems came into

practical use, and there has been understood the importance of such system in scientific
research activities. Researchers can now retrieve some database which covers reason

ably authorized data in their study fields. However this passive way of use of infor
mation systems may not satisfy the researchers who are at once users and producers

of scientific data.

 To solve the problem, the Mcommittee of the Special Research Project, named

Formation Process of Information Systems and Organization of Scientific Information,

proposed in 1977 three levels of scientific information systems which manage PRF
(Private Researcher Files), UDL (User Data Library), and CDL (Center Data Library)
respectively [1]. Several years before the proposal, one of the authors (S. A.) with his

colleagues studied the so called PRF and UDL systems and developed an experimental

system MIR-RF at their laboratory [2], [3].

1) Research Institute of Fundamemtal Information Science, Kyushu University 33, Fukuoka 812.
2) Department of Information Systems, Interdisciplinary Graduate School of Engineering Science,

 Kyushu University 39, Fukuoka 812.

 97

98S. ARIKAWA, T. SH1NOH ARA, S. SHIRAISHI and Y. TAMAKOSHI

 Accepting the proposal and considering our study and experience, we have newly

developed an information system SIGMA at our University Computer Center. The

SIGMA system was intended to satisfy the following requirements :

 1) The system be able to cope with various types of data.

 2) The system be easily able to store, retrieve and edit researcher's private data.

 3) The system be able to work for constructing and organizing a researcher

group's data.
 4) The system be able to retrieve some authorized databases and to file necessary

data from them.

 5) Data typed by users, including commands and their operands, be never lost

but be effectively used.

 From these viewpoints we have adopted, at first, strings of characters as a basis of

data structure. This might sound negative, but the structure of strings is the simplest

and most fundamental, and has ability to compose any other data structure. As a basis

of access method we adopted the one-way sequential search method [5] based on the

pattern matching machines [4], which enables complicated retrievals, editing and
refiling of retrieved data. The requirements 3) and 4) have been solved by simplifying

copying of files within user's space between users' spaces, and between user's space

and external data set which is, of course, still in the computer system. We have

devised a physical data structure to prevent the stored files from vanishing by com

puter system's crash, user's careless hanging up and so on. Finally all communications,
excepting some commands, between users and our system are automatically recorded
in a log file, which functions as a kind of command procedure.

 2. Spaces and Files

 First we describe the basic organization of spaces and files of SIGMA system

implemented on FACOM M-200 at Computer Center, Kyushu University. The SIGMA

system is a computer program which creates, when it is initially invoked, directly

accessible data sets under the user identifier, and works on them. Thus the system

assumes no proper area in the computer.

 COPY SIGMA

 space

YA

external

data SetsCOPY

V

 MEMO

 COPY space

Fig. 1. Spaces in SIGMA System

SIGMA—An information system for researchers use99

 We call the data set, which SIGMA system creates and manages, as a space.

SIGMA system makes use of two kinds of spaces, MEMO space and SIGMA space,

and also the usual data sets in the computer system which we call external data sets

(See Fig. 1). As in the figure, files are copied by the COPY command.

 2.1. MEMO Spaces

 A MEMO space obligatory on any user of SIGMA is divided into five subspaces

W, M, T, L and D as in Fig. 2, where W is a subspace for work files, M is for the

user's files with proper names, T is for work files in executing SEARCH command,

L is for log files and D is for deleted files. All the subspaces but M are of a stack

structure with bottom, and in each subspace the newest file is put on the top of the

stack. When the number of files in one of subspaces W, T and L exceeds a constant,

the oldest one is to be moved to the top of the subspace D. When MEMO space is

exhausted, the system will actually delete files in D in succession from the bottom to

the top to acquire necessary area. These garbage collections are made mostly in real

time while commands are executing.

 2.3. Physical Structure of Files

 Files in the subspace X are maintained by a B-tree which is constructed also in

the MEMO space. The B-tree used in SIGMA system is specially designed so that it

efficiently works in sorting of records. In fact, we avoided shifts of records within

 (Al)
_ MEMO files E-

 A

r

 (TV)
 work files

 A A

V Y
 (T)

work files(L)
 forlog files

SEARCH
,A

v v V

 (D)
 deleted

 files

Fig. 2. Structure of MEMO Space

100S. AR.IAW.A., T. SIIIN0IT ARA, S. SIIIR_1ISHI and Y. T NI A fosiil

 Fig. 3. Organization of B-Tree Page

Ri : record, KLP : key length position, LR : length of record, m : number of records

in the page, MAX : maximum number of records allowable in the page, KL : length

of key, pi: pointer to page, xi: pointer to record in the page.

a page of B-tree by using pointers to records in the page as shown in Fig. 3, where
the size of page is 2048 bytes and KLP (key length position) indicates the point where

the length of record is written.

 Insertion and deletion of records are carried out in new pages, and when these

processes finish the old root page is replaced by a new one. Note that the number
of pages influenced in the process of insertion or deletion is at most O(log n), where n
is the total number of records in the B-tree. This method protects the B-tree against

system crashes and careless breakes.

 Now the contents of files of SIGMA system are all strings of characters and are

stored in bilaterally chained sectors in blocks (See Fig. 4). Here a block is of the

same size as of a page in B-tree, and is divided into 16 sectors.

 The status of the sectors and blocks (pages) is grasped by a bit map. The system

issues necessary sectors and pages for a job, checking the bit map, and updates it at
the end of the job.

 2.4. SIGMA Spaces

 A SIGMA space is structually identical with the MEMO space but it has not the

subspaces W, T and L. The space is created when the first SIGMA file is made under

the user identifier. This space is, as in Fig. 5, for constructing data files for common

use and for sharing some data files. In Fig. 5, a dotted rectangle shows a space per one
user (identifier), and an arrow shows a permission of access. The privacy in SIGMA

system is protected by the permission set up for each SIGMA space and also by pass

number set up for each file in SIGMA system. MEMO space can not be shared, for it

was intended to be a user's notebook.

 SIGMA—An information system for researchers use101

Fig. 4. Physical Structure of Files

Fig. 5. Sharing Files in SIGMA System

 3. Functions of SIGMA System

 In this section we discuss the functions of SIGMA system by showing some basic

commands.

 3.1. Starting and Ending

 SIGMA system is invoked by a command procedure SIGMA in a READY state of

TSS. At the initial invoking, a MEMO space is created under the user identifier. If

MEMO space already exists, that is, at the second or later invoking, a command waiting

state SIGMA is immediately entered. Then any command becomes available.

 The system is ended by an END command when it is in SIGMA state. If it is not

in SIGMA state, the user should get the state by some commands, say one or more

ENDs. Now it enters a READY state of TSS. If the user need not keep his MEMO

space, he may delete it by a DELETE command of TSS. A MEMO space is of 3

megabytes.

 3.2. File Names and Pass Numbers

 1) Names of MEMO files are of the form

<id>1. <id>2 ... <id>n ,

where each <id> is a string of letters and numerals beginning with a letter , n is
greater than or equal to one and the total length including the dots is not longer than
33 characters.

 2) Files in each of the spaces W, L and T are named, for example, by W. 1, TV. 2, •
in order from the top. Hence they are referred by W .3, say. The top files in W, L
and T are referred simply by W, L and T , respectively.

102S. ARIKAvv A, T. SHINOH AR A, S. SHIRAISHI and Y. TANIAKOSHI

 3) Names of SIGMA files are nearly the same as those of MEMO files mentioned

above, but the user identifiers are needed. The full form is

S. '<userid>. <id>1. <id>2 ••• <id> ' .

If we use a system constant

PREFIX=<userid>. <id> ••• <id>p,

we may simply write
 S. <id> +, ... <Zd>,

instead of the full name. The initial value of PREFIX is the user identifier, and the

value can be changed by a TERMINAL command.
 4) Deleted file names are referred as follows.

 (a) Deleted files in a MEMO space are referred just like the files in the spaces in
W, L and T, and also by using the old name that it had :

 D. oldname. <number> .

 (b) Deleted files in a SIGMA space are referred just like (a) but S precedes. The
PREFIX is also valid.

 5) External data sets are referred by

 X. dsname

 X. 'dsname'

where dsname is a usual data set name. Note that these external data sets are referred

only through COPY, LOAD and SAVE commands.
 6) We may set up pass numbers to MEMO files and SIGMA files. A pass number

is a nonnegative integer less than 10000, and is given after the file name as follows :

FILE : = filename

 PASS NUMBER : =nnnn

Hereafter we use "filename" to denote the filename including the pass number "nnnn"

unless otherwise stated.

 3.3. Making Files from Keyboards

 All files dealt with in SIGMA system, except the work files of the SEARCH

command, are strings of characters. To create such a file we may use a KEYIN command,

which puts the input string from keyboard on the top of the space W. The end of

input is given by ; ; ; CR. The carriage return CR is interpreted as CR as it is, if

the symbol just before it is not a continuation (normally "-" and changeable).

 3.4. Moving and Copying of Files

 1) Moving of files only by changing pointers is carried out by a MOVE command.

A general form is

 MOVE filename, filename2

SIGMA—An information system for researchers use103

by which the name filename is deleted from the space and the file of filename is
named filename2 instead. This command is naturally invalid between MEMO space

and SIGMA space. The system has simple commands PUT, GET and DELETE defined

by MOVE as follows :

 PUT filename=MOVE W filename

 GET filename=MOVE filename TV

 DELETE filename=MOVE filename D

For example, the command DELETE moves the file named filename to the top of the

space D.
2) Copies of contents of files are made by a COPY command ; a general form is

 COPY filename filename2.

Since the COPY command makes a copy of the contents, it is valid between any two

spaces. The system also has simple commands LOAD and SAVE defined by

 LOAD filename=COPY filename TV ,

 SAVE filename=COPY W filename .

 3.5. Display of File Names and Contents of Files
 1) Directories of files are displayed by a DIRECTORY command ; a general form

is

 DIRECTORY filename .

If filename is omitted, the list of all files in the MEMO space is displayed ; if it is one

of TV, T, L and D, the list of all files in the corresponding space is displayed ; other

wise the list of all files with filename as initial subname (including filename) is displayed.

 2) Contents of a file is displayed by

 LIST filename ,

and the top file in the space TV is by

LOOK,

which is equivalent to
 LIST W .

 3.6. Catenation of Files
 All files, except some, in SIGMA system are strings of characters. Hence joining

is catenating. The catenation is carried out by a CATENATE command ; a general

form is

104S. ARIKAwA, T. SIIINOH AR A, S. SIIIRAISHI and Y. T NI 1KOsHI

CATENATE

(Ai•A2 ••• An=>B (7z<21))

FILE Al : =filename,

FILE A2 : = filenanze2

FILE Am : =filename„,

FILE Am+l : =CR

FILE B: =filename ,

by means of which a file named filename is obtained by successively concatenating files

named filenanze1, filename2, • • • , filename72.

 3.7. Multiple Replacement of Strings

 Let X= {x1, ••• , xn} and Y= {yi, ••• , yn} be finite sets of words. Then we can

get a file on the top of W space, which is obtained from a file f by replacing all
occurrences of word xi in the f by yi (1<i<n). This replacement is carried out by
a REPLACE command of the form :

REPLACE

 (REPLACE A BY B)

FILE : =filename

Al =x1

B1: =y1

A2 : = x2

B2 —y2

An . =xn

B77:=yn

An+i : =CR ,

where yi is possibly empty but xi is not.

 The command REPLACE makes use of the pattern matching machines [5]. When

REPLACE is invoked, the system constructs a pattern matching machine PMM from

the set X= {x1, ••• xn} and runs the PMM along the file named filename in one-way
from left to right. In the meantime the PMM detectes all occurrences of words in X.

The PMM devised here will try to detect another longer word (say x;) even if it has

already detected a word. This trial will continue until there are no words longer than

those already detected, that is, until the PMM goes again into its initial state by a

failure transition or it scans m characters, where in is the maximum length of words

SIGMA—An information system for researchers use105

Fig. 6. Multiple Replacement

in X. Then it replaces the longest word x; it has detected by y; and repeats the

process from the character next to the occurrence of x; in the file.
 We show an example in Fig. 6. Here let I x5 =~~T I x11 < 1 x2 <in, x:,, <i/I, x31

< ! x4 I and 1 a x4b 1 = rn. Then in the file f, the x2 is replaced by y2 somewhere at the

point A and x3 by y3 at the point B.

 3.8. Retrievals

 Retrievals of SIGMA system are carried out by a SEARCH command. which makes

use of the pattern matching machines [4], [5]. Files are all strings of characters
including the carriage return key. Hence some record delimiters are needed to mark

off virtual records from a long string. Thus the command requires to set up some

record delimiters, keywords to be detected and logical formulae. The SEARCH command
is essentially the one-way sequential search system, which we discussed in the first

author's previous paper [5]. Here we only list its remarkable features and explain

the functions by an example. For further details, the reader should refer to the paper

[51.
 The SEARCH command has the following features :

 1) Detection of records of the form x 1 • • • x2 • • • x3 x 4, where the triple dot

means "some string". This function is useful for check of some contextual conditions

concerning the occurrences of keywords.

 2) Independence of record formats. SIGMA system does not assume any definite

formats on records, i. e., on files, to be scanned, but assumes the whole file as one

very long string of characters. The system successively marks off virtual records

intervening between a pair of record delimiters which users can freely set up like the

usual keywords.
 3) Restriction of universe. The command defines a subset of I* as shown in [5].

The alphabet is the set of characters usable in the computer system. Hence it is

not small. We sometimes want to restrict the universe s* into a reasonably small

subset. It is not difficult but tedious to restrict the universe. Thus we have introduced

a mode (no reset mode) to inhibit loop transitions in the initial state induced by any
characters except some characters used in the keywords and delimiters. By this

inhibition we can restrict I* into H*, where H is the set of keywords and delimiters

and their initial substrings.

 4) Use of two kinds of delimiters. A delimiter is nonempty string of characters.

We can use two kinds of delimiters in the SERACH command, record delimiters and

item delimiters3'. The record delimiters work for marking off some virtual records in

the file just stated in 2). The item delimiters work for telling when to evaluate the

3) In the previous paper [5] we called the record delimiter an output delimiter and the item
 delimiter as an input delimiter.

106S. ARniAyVA, T. S1IINoH aR A, S. SiIR Aisui and Y. TAMAIiosH1

logical formulae. The system evaluates the formulae every time it detects item

delimiters. If the value of a logical formula is true i. e., nonnegative at time a record

delimiter is detected, then the system will memorize, in the work file in the space T,
the data about the virtual record intervened between the present and the last record

delimiters.

 5) Use of counters. Every keyword variable A with A : = x counts the number

of occurrences of the keyword x in a virtual record. The counter was realized simply

by A : = A H--1.
 6) Generalization of logical formulae. A logical formula is composed by using

keyword variables, formula variables, svariable E, integers, logical operators (, , • , A),

comparison operators (_, <=,>=, < , >, < >), arithmetic operators (+, X, —, /) and brackets

[,1. Here the logical operators are interpreted as follows :

A, B=1 if A>0 or B>0

A•B=1 if A>0 and B>0

AA=1 if A<0 .

The svariable E is for detecting the empty string e. A logical formula may end with

a slant (/) like Zi : =f1. In this case the formula variable Zi works for a temporary

memory and hence it is not considered as a question. The system evaluates the set

of logical formulae in the order of Z1, Z2, • • • . Hence, for example, the value of vari
able Zi on the right in a formula

Zi=Zi+fi

is one at the last evaluation. This suggests that finite automata are easily realizable
in our system.

 Now we show an example in Fig. 7, where the surrounded parts are inputs by the

user and the others are responses from the system. In the second line the user chose

a version D, which is a simple version mainly for document retrievals. Record deli
miters in the version D function also as item delimiters. The symbol ! in the fourth

line stands for a carriage return symbol. The keyword to A4

 (AR) • • • BOOK • • • (TI)

means that BOOK is not a substring of HANDBOOK, say but is author's name which
is between (AR) and (TI), because in this case the file is formed as a string of

characters like the second half of the figure.

 When the listing of keywords is finished, a PMM is constructed from the set of

strings IS !, COMPLEX, NONDETERMINISTIC, (AR), COOK, BOOK, (TI)} . Then the
PMM runs on the file named MIYANO with a pass number 1111. The second half of

Fig. 7 is a result of the retrieval. The numbers in the parentheses on the right ends

mean the lengths of the retrieved records.

 3.9. Refiling of Retrieved Records

 Data on retrieved records, which includes file names, starting points of the records,

lengths and questions satisfied by the records, is memorized in the top file of the work

 SIGMA—An information system for researchers use107

DO: SEARCH
 VERSION (D/E)? D

 RECORD DELIMITERS
D1:=$1
02:=

KEYWORDS
A1:=COMPLEX
A2:=NONDETERMINISTIC
A3:=(AR)..•. COOK
A4:=(AR)... BOOK...(TI)
A5:=

 LOGICAL FORMULAE
21:=A1.A2.[A3.A4)
Z2:=A1.A2
23:=A3,A4
Z4:=A3.AAI
Z5:=A4
Z6.=

FILE:=MIYANO 1111

 RETRIEVED TEXTS
TOTAL= 30
QUESTION I (21) = 1
QUESTION 2 (Z2) = 5
QUESTION 3 (Z3) = 26
QUESTION 4 (Z4) = 6
QUESTION 5 (Z5) = 18

FILE:=
LIST OF RESULTS (N/Y)?,Y

QUESTIONS:=1 2

 QUESTION 1 (21) = 1

(AR) COOK. S.A.NO. 1(97)
(TI) A HIERARCHY FOR NONDETERMINISTIC TIME COMPLEXITY
(JP) JCSS 7 (1973) 343-353

 QUESTION 2 (Z2) = 5
 NO. 1(97)

(AR) COOK. S.A.
(TI) A HIERARCHY FOR NONDETERMINISTIC TIME COMPLEXITY
(JP) JCSS 7 (1973) 343-353

 NO. 2(104)
(AR) IDARRA. 0.H.
(TI) A NOTE CONCERNING NONDETERMINISTIC TAPE COMPLEXITIES
(JP) JACM 19 (1972) 608-612

Fig. 7. Use of SEARCH Command

space T. Using such data a REFILE command refiles the retrieved records in the top

file of the space IV. We explain its function by an example in Fig. 8, which is to

refile the answers to the question in Fig. 7 in lexicographic order of authors and in

order of years for the same authors.

 After invoking a REFILE command, the user types question numbers punctuated

by blanks, and a new record delimiter, and selects a mode on numbering and a mode on
listing. If Y's are selected, records in the new file are numbered and listed. Sorting

of records is carried out according to the instruction following the prompt SORT ON : .

The instruction is a string of capital letters and minuses (—). The specification of

the instruction is given after the prompts SPECIFIED BY and X: =, where X is any

108S. ARIKAvVA, T. SHINOHARA, S. SHIRAISHI and Y. TAtiIAKOSHI

DO: REFILE

QUESTIONS:=1 2
 TOTAL RECORDS = 5

 RECORD DELIMITER:=$
 NUMBERING (N/Y)? Y

LIST (N/Y)? N
 SORT ON: AY

 SPECIFIED BY
A:=/(AR) ',A8<','/'2ZZZZZZZ'
Y:='(JP) ',<'(19',12/'99'

 CAPS CONVERT (N/Y)? N
DO:

Fig. 8. Use of REFILE Command

letter in the instruction string. In the example above, the specification

A : ='(AR) ' , A8<', '/'ZZZZZZZZ'

means the following :

 1) Find a string (AR) , then

 2) extract at most 8 characters before a comma (A8(') and

 3) supplement lack if any with necessary Z's (/'ZZZZZZZZ').

 In the sequel, a keyword IBARRAll is extracted by the specification A and a

keyword 72 by Y and hence a keyword IBARRAll72 by AY from the bottom
record in Fig. 7.

 A negated letter in the instruction string means to sort in reverse order of the

keywords extracted by it. Hence, in the example, if the instruction string is replaced by

 SORT ON : A—Y ,

then the records are sorted in lexicographic order of the author and in reverse order

of years for the same authors.

 In case such instruction is omitted at all, the records are refiled as they are.

 Finally lower case letters in the extracted keywords can be converted into the

corresponding capital ones by selecting Y at the CAPS CONVERT.
 For further details on keyword extractions, readers should refer to Section 4.

 3.10. Sorting of Records
 Virtual records in the usual files can be sorted by a SORT command just like the

above. In this case users should give record delimiters as well as file names. Fig. 9
is an example, which sorts records in the same order as the example in Fig. 8, and

should be selfexplaining.

 3.11. Use of TSS Command Procedures

 Most TSS command procedures under the OS are available from our SIGMA system.

A TSS command changes DO state and SIGMA state into a TSS state. Then any TSS

 SIGMA—An information system for researchers use109

DO: SORT
FILE:=PAPERS
 RECORD DELIMITERS OF THE FILE
D1:=$!
D2:=
 NEW RECORD DELIMITER:=$

 NUMBERING (N/Y)? Y
LIST (N/Y)? N

 SORT ON: AY
 SPECIFIED BY

A:='(AR) ',A8<','/'ZZZZZZZZ'
Y:=1(JP) 1,<'(191,I2/199'

 CAPS CONVERT (N/Y)? N
DO:

Fig. 9. Use of SORT command

command procedure except a few becomes available. An END command changesthe

state TSS back to DO state or SIGMA state.

 4. Keyword Extractions in Sorting

 Keyword extractions in the sorting by the REFILE and SORT commands are

carried out according to extraction_specifications as we have stated in Section 3.9.

 4.1. Syntax of Extraction_Specifications

 This specification is nearly the same as a format in Fortran and is defined as

follows.

 An extraction_specification is a string of the form

 item _delimiter, fist

where the item_delimiter is a pattern or a pattern_list, and the fist is an extraction_

item or a sequence of extraction_items punctuated by commas.

 A pattern is a string of characters beginning and ending with a single quotation
mark, or a string of letters A, I and D, which is called a picture. The A, I or D

stands for a string of alphabetic letters, numerals or characters other than alphanumeric

characters, respectively. A pattern_list is a parenthesized list of patterns which is

punctuated by commas. An item_delimiter here may possibly be an empty string
denoted by a double quotation " .

 An extraction_item is one of the following

 [r] extraction_specifier ,

Er] (fist),

where r is a positive integer called a repetition specifier. Omission of r is equivalent

to r=1.

 An extraction _specifier is a read_specifier or a skip_specifier. A read_specifier is of
the form

110S. ARIKAWA, T. SHINOHARA, S. SHIRAISHI and Y. TAIvIAKOSIII

 Apattern
 [r]<[/'string'] ,
Ipattern _list

where the length of the string is not greater than r, A stands for character strings

and I stands for numeral strings. According to the read _specifier of the form above,
the system reads a character string (A) or numeral string (I) of length not greater

than r which is before (<) the pattern or pattern _list, and supplements lack or missing
with a necessary suffix of the string. If the slant / and the string for supplement are

omitted, then a string of blanks or 9's for A or I, respectively, is assumed .
 A skip_specifier is one of the following

pattern
-X [r] <

pattern_list

 pattern
<•
 pattern_list

According to the first skip _specifier, the system skips at most r characters until (<) it
finds pattern or pattern_list. The meaning of the second one should be clear.

 We show two illustrative examples of extraction _specification in Fig. 10.

Fig. 10. Extraction_specifications

 4.2. Keyword Extractions

 The system constructs a PMM (pattern matching machine) from the set of all

patterns used in the extraction_specifications and also in record delimiters in case of SORT
command, and then extracts keywords by running the PMM on the records. The

SORT command marks off virtual records in a file while the PMM is running. The

extracted keywords are successively inserted into our B-tree. Thus the sorting , includ

SIGMA—An information system for researchers use111

ing keyword extractions, is completed while the PMM runs on records or a file to the

end. The total time of sorting is still O(n log n), where n is the length of the file and
the coefficient should be very small.

 Now according to the extraction _speciflcation the system extracts keywords from a
record R as follows.

 1) Try to find an item _dlimiter in R. If the i-th iteni_delimeter is found out, then

go to 2). In case an empty item_delimiter exists, go directly to 2).
 2) Extract a keyword according to the extraction _specifier beginning with the i-th

item_delimiter. If another item _delimiter is found out in the meantime, then finish the

present extracting by the extraction_specifier and supplement the lack if any and then
repeat 2) for the newly found item _delimiter. If the keyword extractions are completed
for all extraction _specifications or an end of record is reached, then go to 3).

 3) Compose a complete keyword from the (sub)keywords extracted at the stage 2)

according to the instructions following the prompt SORT ON : and the selection at the

CAPS CONVERT. At this stage a (sub)keyword corresponding to a negated letter

should be reversed, and also it is converted into a string of capital letters if Y is

selected at the CAPS CONVERT. Then go to 4).
 4) Insert the complete keyword into the B-tree to sort.

 The process above is repeated until the records are exhausted.

 5. Log Files and Their Use

 Communications between a user and SIGMA system are automatically recorded in

a file of the space L. We call such a file a log file. The log file is a string of

characters like other usual files of SIGMA system, and it consists of records of prompts

by the system and responses by the users. We can give a proper name to the log

file and treat it in exactly the same way as the usual files.
 In SIGMA system we can give commands and their operands from any files as

well as from keyboards. Thus a log file is used as a kind of command procedure.

The essential difference between the usual command procedures and ours is in the point

that ours are automatically and unconsciously constructed while we are working on

SIGMA system.
 Changes of input streams from keyboards to files and vice versa are possible by

. filename

at any time. The filename is of any file in SIGMA system and the expression above

also includes the following special ones
 .K

. K. 1

.E,

where . K changes the input stream to the keyboard and at the same time starts a

new logging, . K. 1 changes the input stream to the keyboard while just one line is

typed, and . E finishes the current input stream and returns to the last input stream.

112S. ARIK AvVA, T. SHINOH AR A, S. SIIIRAISHI and Y. TAMAHOSHI

In the second case no record is stored, and in the last case the current log file is

closed and put on the top of L if the current stream is from the keyboard.

 The SIGMA system has two main states, SIGMA state and DO state, which are

notified by the corresponding prompts SIGMA> and DO:. When SIGMA system is

invoked, it is in SIGMA state. Then it opens a log file by a command of SIGMA

other than END and some special commands, and it begins to record the communi

cations, and enters DO state. The usual commands are now available. The END

command ends the SIGMA system in SIGMA state, but it has the same function as . E

in DO state. Note that . E is available at any time except the system is in SIGMA

state, which is different from END. The system in DO state goes into SIGMA state

when a log file on the top is closed by . E or END. (See Fig. 11 below).

 Now we show an illustrative example of input streams in Fig. 12, where . L is a

top file in log space L, which is the communication record in the second real line.

When the system returns to SIGMA state, three log files are constructed in the log

space L in the order of 1, 3 and 2 from the top.

 Finally we show a simple use of log file in Fig. 13, which should be selfexplaining .

Fig. 11. State Transition of SIGMA System

 Real lines are from keyboard and

 dotted lines are from files.

Fig. 12. Input Streams of SIGMA System

 6. Concluding Remarks

 We have described an information system SIGMA and discussed its functions. The

system assumes no other data structure than that of the strings of characters, and has

one-way sequential searches as its access method. The users of the system can share

files with other users and can easily copy data from SIGMA files to external data sets

SIGMA—An information system for researchers use113

READY
 SIGMA
SIGMA> LOOK
This is a text.

DO: END
SIGMA> LIST L
DO: LOOK
DO: END

DO: .L
LIST ? (Y/N) Y
DO: LOOK
This is a text.

DO: END
DO: END
SIGMA> END
READY

Fig. 13. Use of Log File

and vice versa. Hence they can use any other resources and facilities the computer
system has. Thus we expect SIGMA system to be a friendly interface to other data

base systems as well as ordinary programs of users.

 We have a plan to extend the present version of the system so as to function as

a usual database system. In fact, a proper editor has been developed [6] and a data

description language and a language for application programs are being studied and

developed.

 The use of log files discussed here should be a new idea. The users of SIGMA

system will easily be possible to have their own system in SIGMA by using this

function. We can say that such use of log files is a simple but practical realization

of learning systems and is another automatic programming. In this connection we have

observed that a practical data entry system with learning ability is realizable. One of

the authors (T. S.) has obtained an important class of languages which are easily

inferrable from positive data, i. e., input data [7].

 Acknowledgements

 The authors should like to express their sincere thanks to Professor S. Kano,

Director of Computer Center, for his constant support and encouragement. They are

grateful to Mr. S. Miyano at Department of Mathematics for his cooperation in
implementing the experimental version of SIGMA system and for his valuable dis

cussions. Last but not least they are also grateful to Lecturer F. Matsuo, Head of

Research and Development Division, and to his staff, especially to Mr. S. Futamura and

Mr. T. Suenaga for their advice and help during the course of implementing at the

Center.

114S. ARIKAWA, T. SHINOHARA, S. SHIRAISHI and Y. TAMAKOSHI

Ref erences

[1] INOSE, H. (ed) Scientific Information Systems in Japan, NorthHolland, (1981) .
2] ARIKAWA, S. and KITAGAWA, T. Multistage Information Retrieval System Based upon

 Researcher Files, Proc. 2nd USA-JAPAN Computer Conference, (1975), 149-153.

 3] ARIKAWA, S., KANO, S., KITAGAWA, T. and TAKEYA, S. Organization and Use of Private
 Researcher Files in Scientific Research Works, Scientific Information Systems in Japan (H.

 Inose, ed.), NorthHolland, 43-50, (1981).

[4] AHo, A. V. and CORASICK, M. J. Efficient String Matching: An Aid to Bibliographic
 Search, C. ACM, 18, (1975), 333-340.

[5] ARIKAWA, S. One-Way Sequential Search Systems and Their Powers, Bull. Math. Stat.,
 19, (1981), 69-85.

[6] SHINOHARA, T. On an Editor TEDIT, Project Report "Knowledge Representations and
 Their Applications to Information Retrievals", (S. Arikawa, ed.), (1981), 247-258, (Jap

 anese).

[7] SHINOHARA, T. On Inferring Pattern Languages, MC Memorandum, Kyushu Univ., (1981),
(Japanese).

[8] ARIKAWA, S. Pattern Matching Machines to Detect Longest Keys, Res. Rept., Res. Inst.
 Fund. Inform. Sci., Kyushu Univ., (1981, to appear).

