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Abstract

In a game each player holds a strategy based upon the actions
that he can actually take. The quality and the quantity of the fea-
sible actions are determined by his ability or power in the game.
Generally every player has no information on the others’ powers, so it
is one of the most important problems for them to know the powers.
We treat such unknown games, played periodically, from the view-
point of information theory. We discuss both non-cooperative and
cooperative games and prove some sufficient conditions under which
a player can get the full information on the other players’ powers
from sequential observations on the states. In two person games we
show also optimal strategies with respect to the information.

1. Introduction.

The main problems of the game theory established by von Neumann and Morgen-
stern [9] are to find some solutions for the competitions of players’ interests, and to
show optimal strategies for the solutions. In the theory it is generally assumed that
every player knows the game structure such as the sets of all feasible actions of the
players and the payoff system according to the actions. However, the assumptions are
not always satisfied in practical games. In complex games the skill and the experiences
determine principally the issues of the games. For example, the skill and the experience
in chess or ‘g0’ provide the set of the feasible actions, and those in athletic games provide
the force of every feasible action, which affects the payoff derived from the actions.
Such abilities of a player are not usually known to the other players, thus the game
structures are not always clear to the players. If the structure is unknown, each player
must play cauciously not to suffer a serious loss and should make a point of getting
the information on the others. Therefore in the present paper we discuss the unknown
games, treat the information as the principle subject, and study how much information
the players can gain.

We may mention that the powers and the strategies of the players decides the
issues of the games. The strategy is the way to choose actions, which effects the issue
directly. The power is practical abilities to play the game such as forces, proficiencies
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and feasibilities of actions, that is, the power shows the qualities and the quantities of
the actions, and the powers provide the game structure. Thus the player, who wants
to map out an optimal strategy, should make efforts to get the information on the
others’ powers as much and as soon as possible. We suppose, of course, every player
knows his own power exactly. The more a player gets the information, the more he
gains advantages over the others. We show an example of two-person zero sum
game. The players are denoted by P-1 and P-2, whose action spaces are 4 and B
respectively. Let r(a, b), ac A, be B, be a payoff function, the value of which is paid
to P-1 by P-2. If P-1 gets the information that the feasible actions of P-2 are
restricted to a subset B’ of B, he can expect more reward according to the following

inequality ;

max min #(a, b’)=max min »(a, b)
acA b eB acA beB

If the payoff depends on the proficiency in the actions and each player does not know
the one of the opponent, he will not able to estimate the value of #(a, b). Thus if a
player gets enough information on the opponent’s proficiency, he can choose more
effective actions.

On the other hand the information on the strategies is also valuable, because it
brings every player great benefit to know the ways that the others choose their actions.
Since a strategy of each player is determined according to his power, it is impossible
to estimate the other’s strategy without sufficient information on the power. Even if
the information on the powers is obtained enough, it is very hard to estimate the stra-
tegy, since the way to choose actions is very variable because of its dependency on
time, the past states, the past rewards and so on. Therefore we treat only the infor-
mation on the powers, which we call simply the information from now on. If a player
obtains the information enough and knows the game structure, he can take an optimal
strategy by means of the general game theory. Therefore, if the structure is not
known and the game is played periodically, every player should treat it as the main
subject to get the information as much as possible. We call such games the informa-
tion games and study the amounts of information that players can obtain from sequential
observations of actions, states and payoffs throughout all time.

We consider the information games as follows (see Fig.1). In n-person games each
player is called player 7 and is denoted P-;. The power of each player is determined by
some random system and is classified among finite grades G=/{g,, -, gn} according
to its quality and quantity. Every player does not know any other player’s grade. A
feasible action space of a player is determined according to his grade and is also not
known to the others, so observed actions contain some information on the grades.
Every player determine his strategy before the game begins. In the present paper we
treat only simple strategies which are sequences of actions and are independent of
history. At each time players’ actions bring them some results such as rewards and
states, called briefly states from now on. The states do not depend only on the actions
but on the grades of powers. Thus the players observe the actions and the states, and
obtain information on the grades. The main subject in this paper is to study how much
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amounts of information players can get from sequential observation of the actions and
states through all time. We discuss the subject, applying the results of Rényi [11],
[12], which treat the testing hypothesis theory and give some conditions under which
the full information on a parameter can be obtained from sequential observations. Kai
and Kand [4] studied the subject in special games such that the power grades strictly
determine the strategies, that is, the grades are essentially equivalent to the strategies.
In this paper we treat generalized games and study relation between the information
and the strategies.

In section 2 we discuss non-cooperative 2-person information games, where we give
some sufficient conditions under which the full information on the grades can be
obtained. At 2.2 we treat the cases that the states’ sequences are Markov processes,
at 2.3 and 2.4 study the cases that states’ sequences are independent. At 2.4 we also
show optimal strategies when the states are normally distributed. In section 3 we study
n-person games, where we define the cooperation with respect to the information and
show sufficient conditions under which the full information can be obtained by each of
a cooperative group.

Actions

Force = Power =====> Strategy
Proficiency

(play)

Actions

States (Payoffs)

(observation)

Information

Fig. 1. Game system.

2. 2-person information games.

2.1. Introduction and essential theorems.

2-person information games are defined as follows. Let G={gy, -, gu}, (1< m< oo}
be the set of all grades of powers. We suppose that the power of each plaver is
determined by some random system, and let P={p;, =-, pn} be a probability on G such

that P({g:})=p;: (=0) and Tgn; p:=1. Let @, and 6, be parameters on G which show
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the grades of P-1's power and P-2’s power respectively, that is, P(0,=g)=P(0,=g,)
=pi. Let A; be the set of all feasible actions of a player whose grade is gi. A player
being in grade g, employs a strategy which is a sequence of actions 0:=(0s1, "+, O, -+*)
such that 6,4, for all t=1, 2, ---. We denote his grand strategy by the m~-tuple of
strategies ¢=(dy, ---, dn), by which he takes §; if his grade is g:. Let S be the state
space, assumed to be a Borel subset of a finite dimensional Euclidean space. Let &=
(S0, -+, $:)=5°*! be the sequence of states up to time ¢, and let 6{°=(d,,, ---, &) be
the first ¢ actions of 3;. For a Borel subset 2, let B(Q) be a o-field of Borel subsets
of 0.

Throughout this section we assume that for every grade g, of P-1 and gjof P-2:

Al. The initial state s, is given by a probability measure O () on B(S), assumed
absolutely continuous, whose density is denoted by ¢{¥(s,);

A2, When 4; and o; were employed, &_; occured, §;, and o; are taken, there
exists a conditional probability Q{¥(-; &, 6{”, ¢{?) on B(S), i.e. for every BeB(S)

Pri{s,eBl&i 1, 68V, 6y, 057, 051, O1=g4, O:=g}
=QF(B; &2y, 6P, ai);

A3, For every t=1,4, 7,60, ¢ and &_;, Q¥ (-; &_;, 6, o) is absolutely
continuous and let ¢{?(s.|&;_1, 6, 0P) be its density.

Let @(-; 6, ¢{”) be a probability on B(S**!) derived from DP(+) and {Q¥(-;
&1, 07, 057); v=1, -, t}, i.e. for every HB,CEB(S‘“)
v=0
L B 60, af)=] g0Gs0dsi|, gl 3, a)ds,

« = (t t
S gi5( Sil&e-1, 09, 0'( Nds;,.

Thus @5(-; 6{”, oi) is absolutely continuous and has a density @565 0P, o) such
that
1 $i7 &5 010, afP)= ¢§3)(80)Hq§?(s |§-1, 617, 05) a.s.

We suppose that both the players know all these systems.

Now we discuss the information about the grades of the players powers obtained
from &. When #,=g; and #,=g, every player knows his own grade and up to time
¢t observes 4{", o and &, but he does not know the opponent’s grade. To avoid
complexity, we discuss the information from the side of P-1. Under each condition
that 6,=g;, .=g,, 0; and o; are employed, the expected information on 6, that P-1
can get from &, is defined by

@ I8, 0)=H(0:)—Es,, [H(0:|0,, £)|0,=g:, O.=g;]

where H(8,) is the entropy of 6, defined by Shannon’s formula

H(8)=3, — p: log ps,



Information games 59

H(6,10,, ¢;) is the conditional entropy of ¢, when #, is known and &, is observed, i.e.

®) H(8:|6,, 8= 5 —Pr(0:=g,1 01, 0)-log Pr(0:=g,16s, &),

and Ediaj[H(Hg_lﬁl, Z)l0:=g: 0.=g;] means the conditional expectation on the pro-
bability space (S, B(S*™Y), OL(; 6", ¢iP)) with respect to 6,=g; and f,=g,, ie.

@) Eso [H(0:104, 8)10:=g., 0:=g)]

—Pr(0,=g10y, &) log Pr(f,=gu |01, E)} 0165 087, a52)dé,.

H

‘\,55+1

Since a player in a grade g; can not take any action except the elements of A;, one
can define with no contradiction that

@& ; 08, 0§)=0 for all &S+,

if 62« A} or o =4l Therefore ¢{” contains some information on §,. When 0,=g;,
0" and o" are given, according to the Bayes’ theorem and the theorems on conditional
probability, we have from our assumptions that

6) Pr(0:=g410,, §)=Pr(0.=g:10:=g:, S0

_ 5pE 00, ai)
E pl¢(t)(st ’ 51(‘”, 0;('“)

Therefore, when the grand strategies 6=(d;, -, 6n) and o=(oy, -+, 0,) are employed,
P-1 can expect the following amount of information on #,;

(6) 1126, o)=Ep[I{P(0;, 0]
:H(Hg);tZ? ﬁiﬁaniaj[H<02|01:5t)[01:5’:‘; 0,=gjl.

It is easy to know that I{¥(d, ¢) is nondecreasing for ¢t=1, 2, --- and I{¥(9, o)< H(8,).
Thus lim ¥4, 0)=1%(3, o) alwayes exists. If I™(0, 0)=H(d,), we say that P-1
t—o

obtains the full information on &, from the sequential observations {%,}, t=1, 2, ---.

We note a lemma of Rényi [11].
LEMMA 1. There exists a universal constant C>0 such that for any sequence a;, s,
an of positive numbers forming a probability distribution (i.e. a;+ -+ +an,=1) we have

S—ailog a;=CXa;.
1=1 1=2

Applying this lemma, we prove the following result.
LEMMA 2. There exists a constant C such that for every 6, o, 1 and |

Eai”j[H<02[01; NG =g, O:=g;]

]’)k 1\2
<3 [l o0 a0, opgie a0, o)} Vs
E#jJ)St+1
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PrROOF. By Lemma 1 and (3), there exists a constant C>0 such that for any 1=
J=m

H6,10,, £)=C 2~V P(0:=gx10s, &),
Then from (4) and (5) it follows that
Eaio]»[H<ﬁzl 01, Et)ll?x:gi; Gz:gj]

<CVS { padir (€ 0i7, 05) }”2 (8,550, g)dE,
= ,'Q:j St+1 Zl:pl¢(t/(§h5£n’ ](z;) 1y\§t,0¢7, 05

liA

Pr@i(€e; 087, a5P) 12 s
A Pk;z‘”@i,é{“,o”) J oo, o

- De
=C Bl 5o 00, 0p(E; 60, of ) Hde.

THEOREM 1. If 0 and ¢ are employed and for every i, j, and k+j
lim{ (9000, opiE o0, o)) dE=0,

then P-1 obtains the full information on 0, i.e. I{(0, a)=H(6,).
Proor. By Lemma 2 it follows that for every t=1

2‘341‘3 p.piEs0 [H(O:16,, E)160,=g1, 0:=g;]

SCEST pevpsbe |, (080500, 066 00, i) dée

St+1

Then from (6) it implies the theorem.

2.2. Sufficient conditions under which the full information is obtained in the
case of Markov state-variables.

We suppose that the states’ sequence {s,; t=1, 2, ---} is a Markov process, that is,
for every i, j,t, a;€A, b, A and s,;€S there exists a conditional probability U{¥
(+ 384, @z, by) on B(S) such that for every BeB(S), 68 Ve A", ot 2= Ayt and &,

E(BVEia, Sio1, 0879, @y, 0570, b)=UH(s,€B; s.-1, ay, bo).
We denote the density of U(-; s,-1, Oir, 0509 DY ui¥(Se; Se-1, 01, 05, then the density
t
G(E; 80, i) of OB(-;8P, o) is a.s. equal to &P (so) }':[luf-;ﬁ(sp;s.,,l, biy 05). De-
noting for each =1

_ . N . 1/
zz(jlz(()tb; 0jz>—3upSS {uf‘?(st y S¢-1, Oit, (szﬁl;}la)(sc ; St-1, Oiss 0';':)} dss,
St-1

we have the next result from Theorem 1.
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THOREM 2. If 6 and o are employed and for every i, j and k+]

BmTT 28460, 0 )=0,

t—o0 y=1
then P-1 obtains the full information on 8,.
¢
PrROOF. Since ¢{¥(&,; 012, o) =@ (so) 1L ufP(s,; Su-1, 0usy 05) a.s, it follows that
y=1

gsH-l{ (55 080, 0§ (G ; 610, o)} 1dE,

I

{ t
\qubé%)(so)ﬂl {uf (5,5 801, Oiny 05)0U1(S55 Su1, Ony 030} 2dE,
o v=

t
§ Hl 21(332 (aiw Ujv)-
v=

Thus by Theorem 1 P-1 gets the full information on 4,.
We say that the Markov process is stationary if for every a, b, s, s’ and ¢, u{(s’;
s, a, b)y=uP(s"; s, a, b) a.s.

COROLLARY. If the states’ sequence is a stationary Markov process and for every
i, 7, k*j
sup A{(a, b)<1,

acdbsEd;

then, employing any strategy, P-1 can get the full information on 6,.
PrOOF. By the assumption, for every d, ¢ and ¢

A5K0ie, 050)= sup Aia, b)
aEA{bEB;

<1,

then the result is derived by the theorem.

2.3. Sufficient conditions under which the full information is obtained in the
case of independent state-variables.

We suppose that the states’ sequence is independent, that is, for every 7, 7, ¢, a€ A,

and be A; there exists a probability V{¥(-; a, b) on B(S) such that for every BeB(S),
oY, git-® and &,

QE(B; &y, 670, a, a0, =V {¥(B: a, b).
Denoting the density of V(- ; a, b) by f{¥(s:; a, b), one has

t
3P ; 0, ai)=0{P(so) Hj%’(s,; 01, 07) A.S.
=

Then we have the following result immediately from Theorem 1.
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THEOREM 3. If 6 and ¢ are employed and for every i, j and R+]

hmH i {f(y)(sy; 512:/, Ujv)fik(su;aiuy 0j;>}1/2dsv:0;
l—ooy=1
then P—1 obtains the full information on 6,.
We show an application of this theorem.
ExPMPLE 1. Let S=R? A,C[0, ) for every i, and f{¥(s,; 6:,, ;) be a density of
a 2-dimensional normal distribution, defined as follows;

(7 f%’)(xzy Vi Oits th)
:*7*_1‘”77“ f'EXpl:—*lf { (‘C: 0(1;)
27040 ;v 1— o} 2(1—p}) H

oy ima)ye— i) | (ve—Biy)*
200 S 2 H

(4271 alk

Let at)i=—" 5 “-and ,5’(t)m—*ﬁ”;_§’ikn We suppose that p, is independent of
it it

5” and g ji.
PROPOSITION 1. Let 6 and ¢ be strategies of P-1 and P-2 respectively. If for
every 1, j and kxj
e 1
=

= 1" {C((t)wk Zptaa)zjkﬁ(t)uk'fﬁ(t) Jk}"oo

then P-1 obtain the full information on 0,.

a'ij'%_aik

PROOF. Let ay= "5 B

and b”k—-rﬁ” 5 It follows

Sﬂz{ffﬁ)(\xz, Yt Oit, 0500 ie(Xe, Vi3 ity Uﬂ)}llz dx; dyt

1 Cex p[ 1 {,,U’t—(ﬁf,k)i
270”0]5\/1 p 2(1— ,Oz) %
_Zpt_(xt_aijkxyt_bijk) +"('Y‘t‘:,zbiii

0yt Ojt Ojt

1
i Bt B Ay,

1 . v
:eXP[*’S'('lf_p.@ {a@®?:—2p.a)i5 B)ijn+ 13@3;%}]-
Hence

t
H SRQ {fi?(xn Yy 51’»: Ujk)f'ﬁ’})(xxv Vv 5iw Uj»)}l/zdxvdyv

y=1

{13

52 1 @O 20.aW B HOD),
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and we have the result by Theorem 2.

REMARKS. Concerning the information on ¢, which may be obtained by P-2 we
can prove the same results that we have shown with respect to the information on @,
that P-1 can get. Defining the information that P-2 gets about &, by

(8) 13200, o)
-_—H(ax)_§§;; piijéiaj[H(ellﬁzy 0l 0:=g:, 0.=g;],

one has:
THEOREM 1'. If d and o are employed and for every i, J and k=i

lim {16000, 0B 00, af)dE=0,
then P-2 obtains the full information on 6,.

Both in independent case and in Markovian case we can show the same conditions
under which P-2 obtains the full information on 4.,.

2.4. Optimal strategies when state-variables are independent and normally
distributed.

In the previous subsections we discussed the sufficient conditions under which a
player can get the full information on the opponen’s grade. However, every player
should take account of both the information he gets and the information obtained by
his opponent. Thus the object of P-1 in the game is to maximize the following quantity
as soon as possible :

9 I, o)=1"(0, 0)—1:"(9, o).

Conversely P-2 wants to minimize the value of I¢(§, ¢) as soon as he can. For each
time ¢ the system can be seen as a 2-person zero sum game, where the sets {6 =(d{",
e, 08} and {o=(0{P, -+, o)} are action spaces of P-1 and P-2 respectively.
Hence, for example, it every action space A; is finite, there exists the game value and
exist optimal mixed strategies for both the players. Our problem in the present paper
is to study optimal strategies through all time. We define 6* and ¢* to be optimal
strategies for P-1 and P-2 respectively ; if

10) sup inf 7“(d, o)=inf sgp 14, o)
=inf I*?(6*, o)
=sup 1°(3, %),

where 1¢(4, a):ltim 1900, o).

We suppose the states’ sequence is independent, S=R?, A; is a subset of [0, o) for
every 7, and the probability density of s,=(x,, y.) is given by

1n fﬁ)(xu Ve Ot D
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- % . ex [_ 1 {jxn‘ui)g
T 2rduopv1l—pt Pl 20—} 82

g, HmHd ) | i H

51t012 U]t

cov(x,, v¢)

LEMMA 3. If p,= 5o
itvjt

is independent of 0y and oy, then I{P(8, o) is in-

dependent of 4.
Proor. For every 7 anf j

E‘;i,,j[H(l?zEﬁl, §)10,=gi, 0.=g;]

) Mg U G©
N (L TN IR LAt )
el ¥ i@ 01, 0f) 8 pugBE 01, 0

bop@Es 810, o)ds,

where

¢1(%)(§z . 51“), 0‘]”) ¢1( )(xl)y yo) Hf ’(x,,, y»; 51'1.'; O'jv)~

Xy— Uy

From (11), letting x,= 5

for every v, we see E;,o [H(0:10,, £)10,=g;, .=g,] is

independent of 4.

If a grand strategy does not depend on powers’ grades, i.e. d,= -+ =, Or o,= -+
=o0,, we call it “an identical strategy”.

THEOREM 4. Let us suppose that for every t, 8 and o, p. is independent of &, and
dj. Then for identical strategies 0 and 0’ such as 6,,=61;, for all t=1, we have

I, 6)=I0(07, o).

Proor. From the assumption and Lemma 3, I{"(d, ¢) is independent of 8. Thus
we treat only 7§9(d, o). Denote §,=6,. Since 6,=--- =4d,, we have

Zi} PiEa‘iaj[H(01|02y El0,=g:, 0.=g,]

I 0 g > ngﬁfﬁ)(fa; asv, UJ(‘L))
Pr@i(Ee; 068, o5P) 7

=34, >

T p’gnzctm‘?{ 2 0i6{7E; 53", 01 8 T g 00, o)

7

B17(Ee; 00, 05)dE,

pi9iyEe; 657, 0i") } -
g..

— é(l WE 5([) O.(l/ 10 -
3 g P18 810, 019 10g 2 065G 600, af)

k

. Xy—U; u
Putting v,=""_* and y,="

97 for every v, 1<uv<t, we get
5ou O'jy

2DiEois LH(0:10, E010:=gs, 02=g,]
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_ D ePiP (%, }0)

";Sm Zﬂ\/l p dxndy

g Texplet (3220, x,7,—y2)]
B2 =i 2(1__ > v 0. XY, y»[

tog 3 Freo 72 2552 =)t

Denoting the last integral on R* by F{(d,, o;), we get for every n, 1=n=t,

aFlgﬁ)(Bo, Uj)
000n

=l {g 1,02)( 2o D)
{Z,&(zz:u‘k),( STt p.,)

¢ Ug— Uy Up—Up
Hexp s =0 (5= 260, —pu))

/E*;bl'erXp Up—Up ( —il_uk_vau>dEL

Tope i Oull—p)) 200,
- _1_ \Wicl(g) (ny __ i
- Oon R”{ 7 1—“0% (cii Xn 10"3)71)

: 1
Tl exp (e —2puy (ramcit )3

L ety ey -
/;pl yI;II eXp]:;PZ (.’C»_42 P»yy>d>£ »

v

U —u .
where ¢y = lal— *_. Then it follows
oy

0F{§(do, 0;)
000n

1
=5 [ e TP

T exp oy~ (el P20, Cro i)+ D)

(n)
i t

ik iy ey |
{2 1-pf T exP_ (v —02)]

v

) () 2
exp lcikpg (X,,'— Csz *PJ»)} d::t
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Hence for every j and 1=n=t¢

s A% Eayo [H(G:10,, £)10,= g1, 6:=g,1) 20,
on ¢

Thus from (6)
0
= T >
950n1 (0, 6)=0

for all 1=n=t, which implies the theorem.
THEOREM 5. Let us suppose that Ay=---=An,=[a, 8JC[0, o) and both the players
take only identical strategies. If for every t, 6; and a;, p, is independent of 6, and o,

then a strategy 0f=(0%, -, 88), 6&=48 for all t=1, is optimal for both the plavers.
Proor. By Lemma 3 and Theorem 4, for any identical strategies ¢ and ¢ we have

1800, 0HEIO(GF, 0H=ID(E, o) for all t.
Thus, since for every ¢ and o, I¢¥(d, o) converges to [<(d, o), we hold
16, 65)=1(3F, 68)=1(0F, o),

which implies the theorem.

3. n-person information games.

3.1. Definition.

We define n-person information games which are extension of 2-person inferma-
tion games. Let N={1, ---, n} be the set of players, G={g,, ---, gn} be the set of grades
with respect to the powers, P=(p,, ---, pn) be a probability on G such that Plg,)=p;
and X p;=1, S be the state space which is assumed to be Borel subset of a finite di-

mensional Euclidean space, and A;, (=1, ---, m) be the set of all feasible actions of a
player being in grade g;. Let &, (=1, -, n) be a parameter on G which shows the
grade of the [-th player P-Il. A stretegy of P-/ being in grade g, is a sequence of
actions 0;(0)=00:;)y, 6:(Ds, -+, (D¢, -++), where 0;([); is an element of A, for all t.
Let 62(0)=(0:D)y, ---, 0:(1);) be the first ¢ subsequence of 4,(/) and let 6(\)=(6,{0), -+,
dx(0)) be a grand strategy of P—/. Let g;, ({=1, -, n) be a grade of P—I['s power
and denote m-tuple of their strategies by d(iy, -, iz)=(0:,(1), -+, 04,(n)) and denote
G, o, i)=(05D), -+, 02(n)). Let &=(so, =, s)E S be states’ sequence up to
time t.

We suppose; when players’ grade are gy, '+, g:,, 09, ++iz) are employved and &,
is observed, a state s, at time ¢ is determined a conditional probability Q.. (-; ¢
{1, =+ in)) on B(S), which is assumed to be absolutely continuous. Let 9. (-) be a
probability on B(S), which determines the initial state s, and is assumed to be absolutely
continuwous. Thus a probality @{.; (-; 0@, -, ix) on B(S™') is derived from
Q© ;. () and {Q..i (-5 0¥°3,, -, in); v=1, -+, t}. From the assumptions each @ _;
{+; 69, -+, 7,)) has a density, then we denote it by ¢{.;,(&:; 6@y, -+, 72)). Since
every player can not take any action except the elements of feasible actions’ set re-
stricted by his power, we define that
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¢;i)"'il—11iz+1'--in(5t; 03y, v, 12))=0
for all &, if an observed sequence of actions 6{P(/) of P—/ is not an element of Al
To avoid complexity, we treat only P—1’s information about P—n’s power. When
players’ grades are g;, -, g;, and 0,(1), -, 8;,(n) are employed, the expected in-
formation that P—1 obtains about &, is defined by

1i(0n: 0G5, -, 10))

:H<(9n>—EJ<i1,--»,in?[H(ﬁn101: Ez>i91:gil, ) (9n:gfn]7
where
E&(il ..... LH(0,106,, fz\)wlzgil, ) 0n:gin]

is the conditional expectation of H(§,|0,, &) given gi, -, g+, With respect to the
probability @{ . ; (-; 6y, -+, i), and H(6,]6,, &) is a conditional entropy of £,
given #, and &, i.e.

H(ﬂniﬁh §t>:;_Pr(6‘n:gj\01» 51) IOg PT’(gn:gj‘i 01, ’Et\ .

According to the Bayes’ theorem and the theorems on conditional probability, we have
for 0,=g;, and 9“0, -, iy)

. Dinitin€r; 0Py, -, 12))

(12) Prif,=g;,0,=g4, E)=G 200 . NS
. o ZE plnqgfi)ln(gt; 5([>(Zl) T le>> ’
n
where

Qi) (S 0y, o, 1)

- E V‘ pjz'"pjn—xqjlfi}z"'fn—lln(gt; 5“)(1'1’ Ty lhn)) s

Ja Jn-1
which is a conditional probability density on B(S‘*') when #,=g, and f,=g,, are
given and 6“(7y, .-+, 7,) is observed. Hence we get

(13) E(J‘ffl.-u.ini[[[(&n‘.01» Et):(%:gily ) 0nigin:|
~{ = PoniuanSe; 600, o i)
S TS pu, il 50, i)
n

S P dilhaEes 600, -, ) }
tn_ I .
108y G (Ees 00, -, i)
By (Ees B, o, F)dEL

Therefore the expected information on €, cbtained by P—1 with respect to the grand
strategies o(1), ---, d(n) is defined by

(14) 1V 5 0(1), -, 6(n))
=E,[LP(0n; 00y, -, 10))]
:H‘fﬁﬁl\lA 2 2 pil ]()1‘"
11 in

Bty ipLHO2101, §010,:= g4y, -+, 02=g:,].
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It is easy to show that I{®(f.; 6(1), ---, (n)) is nondecreasing for t=1, 2, --- and
I9(8,; o), -, 6(n)=H(f,). Hence }Lm I9(8,; 6L, -, 6)=I{(0,; 6(1), -+, 6(n))

always exists. We say that P—1 gets the full information on 6, if I{*(6.; o(1), -,
6(n)=H(8,). We show a sufficient condition under which the full information is ob-
tained.

THEOREM 6. If for every iy, -, i, and jn%in
(15) 1Eim Ksm{(yi’li (&e; 090G, -, lO)Qii}n(Sz; 0y, oy IS =

then P—1 obtains the full information on 0.
ProoF. By Lemma 1 there exists a constant C>0 such that

E«;(ilmin>[H(ﬂni¢9x, Ez)wl:gil, T 0njgin]

= 3 APr0,=gi,10:= g, EOV ${00,(Ge; 000, -y da))dE

- gs[+1 Jn®in

Since
Diy Pin @iy (Ees G, o, TNEGN(Er; 6P -, 10,

from (12) and (14) we obtain the conclusion.

Applying this theorem we can hold sufficient conditions similar as Theorem 2 and
Theorem 3 under which the full information is obtained when the states’ sequence is
Markovian or is independent.

3.2. Cooperation with respect to information.

Let K={l, ---, k} CN be a cooperative group. Considering the cooperation between
the players in K, we must not treat only the strategies to be employed, but take ac-
count of the information they have. Even though they cooperate each other in some
way, they can hardly map out effective strategies without enough information about
every player in the group. Therefore we discuss the cooperation from the viewpoint
of information and study conditions under which the full information on the opponents
to the cooperative group is obtained. We define that the cooperation in a group is to
offer each other all information they have about the others and themselves. In the
present paper the cooperation is defined to offer the information on tneir own power,
then every player in the group knows the powers of other members. We define the
information each of K gets about &, under the cooperation as follows: for (1), ---, d(n)

(16) I1§0,; 6(D), -, o(n)
=H(0,)—EplEsciri)pLH(O41 04, o, 04, E010: =81, 5 02=g:1,1],

where

E&iz’l,---.i,ﬁ[H(@n‘01y . 0kr "{tj 01 8ip s Hn:giﬂ]

1 |

o S = PrOu=g.,10.= g0 ) 0:=g0,, &)

10g P}'(ﬁniginlﬂlzgi, . (9k “Zip E )}SDH i (5!; er Yy Z*l))dgl
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and

~ ntlnsya (Zy",n))
Pr(ﬁn:ginwl:gip o 0e=giy 0= éjj)z 1¢llkjkl {5“ F18 >2,;7.7 ; ))

where
Ditigin(€e; 093, -, 1))

Z E p1k+1 pin-1¢£i-)~ikjk_l---jn_lln(ft; 5(”(7.1: ) ln))

Tk +1 In-

By the definition each player in K obtains the same amount of information on 6,,.
According to the theorems on conditional entropy we obtain

an (05 6(1), -, d(mN=IH (045 6(L), -+, 6(n))

for all t=1, 2, ---. Thus the cooperation brings each member more amount of informa-
tion than he gets by himself. We show a sufficient condition under which a player in
K can get the full information on 4,.

THEOREM 7. If for every iy, -, i, and j,>i,

a8 tim | {00000 096, i) 16 59 -, i) G0,

then every player in K obtains the full information on 6,.
PrOOF. By Lemma 1 there exists a constant C>0 such that

Eoa[H(04101, -+, 84, 8010, =gi,, -, 0n=gs,]
<C{ 0 B Pr0a=g,,10= g1, Oa=gey, £

i Ee; 0P, -, 1n))dE
Din ii) lkln(ét: 5“)(11; =, 7)) }1/2

=
*Cgs”l J'n;n{pl 11 lkJn(Ef’ 5(0(11; “y 1n))

(Pipan ey 6P, -, n)dEe .

Since
Piger Dig Pipi(Ees 0D, ) LNSGEL 145,605 003, -, 10)),
it follows
EPEJ(il,m,in)l:H(ﬁnlﬁly Ty (9,,, 5L)|01:gi1, ) ‘9n:gin:|

SCJ i B 00000 80, o i epsaCes 80, -, ) S,

which implies the theorem.

Considering Theorem 6 and Theorem 7, the inequality (15) implies (18). Thus tak-
ing account of the inequality of (17), we can say that the cooperation brings every
member of the group much more benefits than he gets by himself.
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4. Notes and remarks.

We have defined optimal strategies with respect to the amount of ultimate informa-
tion. However, in practical games another important problem is how soon one can
get the maximum information on the opponents’ power. Thus our next problems is
to consider optimal strategies with respect to the time to get the maximum informa-
tion. In the present game the information obtained at each time is not used to modify
the strategies. In the next problem we also wish to consider such system that a player
can employ the obtained information to determine his action at every time.

The information games can be treated from the viewpoint of learning theory. In
the game player’s object is to get information about another player, thus he learns
some knowledge from the player. On the other hand a learning process of a teacher
and a student can be considered as a kind of 2-person cooperative information game,
where a optimal strategy of a teacher is a optimal reinforcement to teach the student.
Therefore learning processes might be treated as information games.
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