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                     Abstract 

   Neuron impulse sequences are represented by doubly stochastic 

Poisson Processes and Kalman filtering theory is applied to estimate 

the random intensity functions of the processes. Models of nervous 

systems in which exitatory and inhibitory synapses have elementary 

operation, are studied by simultaneous states equations in the theory. 

The method of estimation is applied to neuron impulse sequences 

simultaneously recorded from preoptic area of a monkey by a micro

electrode.

   1. Introduction 

   In recent years, physiological experiments with microelectrode method have made 

it clear that information transmission and processing in the brain are carried out 

through neuron impulse sequences. However we can not identify the operation of a 

neuron impulse sequence only by the shapes or patterns of the sequence apart from 

original neuron. Each neuron impulse sequence fired from an original neuron has two 
roles. One is function of the neuron in brain and the other is concerned with the in

formation about activity of the neuron. For example, positions of auditory and visual 
areas are different in brain and neurons in their areas have proper roles about auditory 

or visual sense, but shapes of their neuron impulse sequences may be equal. This fact 

makes it possible to integrate neural information through corresponding neuron impulse 

sequences. Observed impulse sequences in experiments show somewhat complicated 

patterns which are based on their impulse frequencies. To study nervous systems we 
have to consider the frequencies of impulse sequences as basic variables of the system. 

   In this paper, some mathematical models of nervous systems are given and estima

tion for time dependent fluctuation of impulse frequencies is performed on the models. 
   For analysis of nervous systems, N. Wiener's stochastic nonlinear theory [1] has 

been used by the paper [2] and the others. The theory gives powerful tool for con

tinuous data of nerve action potential or brain waves. For discrete data of neuron 

impulse sequences we had no method to analyze. We apply Kalman filtering theory
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to random intensity functions of doubly stochastic Poisson processes which are models 

of neuron impulse sequences. The method of this paper is considered to be valuable 

for analyses of nervous systems by the impulse sequence and to increase the effectiveness 

of physiological experiments with microelectrodes still more.

   2. Stochastic models of neuron impulse sequences 

   We assume that neuron impulse sequence conducted by each axon in a nervous 

system forms a stochastic point process termed neuron point process in this paper. 
We have neuron input and output point processes for input and output impulse sequences 

of a nervous system denoted by  {Mt  ; t>_ to} and {Nt ; t> to} , respectively; or {Mt} and 

IN, for abbreviation. For multidimensional input and output point processes, we use 
Mt=(Mi1', • • •, Mim')'1) and Nt=(Ni1', • • , Nin')', respectively. Let intensity of neuron 

point process correspond to frequency of neuron impulse sequence and we denote those 
of input and output onedimensional point processes by 7rt and 2t, and H =(-i1), • • •, 7i'n')' 

and At=(Ain, • .., Ain')', for multidimensional point processes, respectively. In this 

paper, neuron point processes are assumed to be doubly stochastic Poisson processes, 
which are defined as follows according to [3]. 

   DOUBLY STOCHASTIC POISSON PROCESS. A stochastic point process {Nt ; t?to} is a 

doubly stochastic Poisson process with intensity process {At(xt); t?ta} if conditionally 

stochastic point process {Nt} for given stochastic process {xt ; t?to} is a Poisson process 

with intensity 2t(xt). Ndimensional doubly stochastic Poisson process {Nt ; t?to} with in

tensity process {At(xt); t>_to} is a stochastic point process such that its component processes 

{N1 i' ; t> to} , i=1, • • • , n, are doubly stochastic Poisson processes with intensity processes 

{V'(xt); t>to}, i=1, • • •, n, respectively, and are conditionally independent for given 
stochastic process {xt ; t?to} 

   From this definition we have 

(2.1)E(Nt)=E {2t(xt)} , E(Nt)=E {At(xt)}

   3. Modeling of nervous systems 

   We assume that stochastic process {xt} which gives the intensity function llt(xt', 

of doubly stochastic Poisson process is intensity function of input neuron point process. 

Then, output of a nervous system is doubly stochastic Poisson process with intensity 

At(xt) and structure of the nervous system is represented by a relation of {xt} or an 

equation of {xt} . It is reasonable that as the relation stochastic differential equations 

are applied. Using the definition of Kalman filtering theory, the differential equation 

is called states equation and {xt} called states. Fitness of the equation to the nervous 

system is studied by estimation in which inputs {xt} are estimated by output data {Nt} 

   3.1. Estimation of Ht. 

It is assumed that intensity Ht of input_ process {Mt} is stochastic process which 

satisfies the stochastic differential equation, 

   1) M' represents transpose of vector or matrix M.
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(3.1) dllt=Atlltdt+btdt-}-utdt, Ilt0=l10, 

and intensity At of output process {Nt} is given by the stochastic equation, 

(3.2)lft=Stllt+ho , 

where 

At; known m X m matrix, 
bt ; known mdimensional vector, 

170 ; mdimensional random variable with known mean 170 and known covariance 
          matrix X0, 

ut ; mdimensional normal white noise with zero-mean and covariance matrix 
         E(utur)=Uto(t—v), 

St; known n X m matrix, 
h0; known ndimensional constant vector. 

   Then, following assertion is shown. 
   ASSERTION 1 (estimation of Ht.) Let Hbe a linear estimate of Ht in terms of 

output data {Nt}. Denote the linear estimate Ili that minimizes error covariance matrix 
E[(17t—HD)(Ht—HD'] by HP : here the minimization means that E[(llt—H)(Ht—H )']— 
E[(Ht-111)(11t—Jt )'] is nonnegative definite for all choices H . Then, using Kalman 

filtering theory in [4], we can obtain the estimate IIt by following equations: 

(3.3a) dllt=Atlltdt+ItCt diag (E(2ii'))1[dNt—CtHtdt] , 11*0=(17o, 1)' , 

(3.3b) t=(Ut Atrt+I diag (E(2ti)))1C t)dt , Ito=10 , 

where 

                  ti At bt 
                   At=; (m+1) X (m+1) matrix, 

                   0 0, 

Ilt=(H ', 1)' ; (m+1)dimensional vector, 

Ct=(St, ho) ; n X (m+1) matrix, 

            tit= Ut0\                             ; (m+1)X(m+1) matrix, 
                      ,0 0/ 

(fo 0 o= ; (m±1)x(m+1) matrix, 
               0 0 

/Et 0 
t= (in +1)x(m-I-1) matrix, ,0 0; 

It;  error covariance matrix of HP. 

    The assertion is shown as follows. 
    Equation (3.1) is rewritten as 

(3.4)d17t=At17tdt±utdt , 11t0=(1 o, 1)' ,
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where 

 II  t=(~t, 1)', u t=(ui, 0)' . 

Here, (3.4) is states equation of Kalman filter. Next, we give an observed process of 
the states by 

(3.5)rt=CzfI ±wt , 

where {Wt} is ndimensional normal white noise process and independent of {tit} such 
that E(wt)=0 and E(wtw))=diag (E(24''))d(t—v). From (3.2) and (3.5), 

E(rtdt)=E(At+wt)dt 

Since E(wt)=0, we have from (2.1) that 

(3.6)E(rtdt)=E(dNt) . 

And from (3.2), (3.5) and independency of wt and At, 

E[(rtdt)(rtdt)']=E[(Atdt)(Atdt)']+E[(wtdt)(wtdt)'] . 

Here, from the fact that normal white noise wt can be expressed as 

wt=E(wt)±diag (E(2it'))1/2------dt f t , 

where {19t} is ndimensional Brownian motion process, we have 

(3.7)E[(wtdt)(wtdt)]'=diag (E(2Y'))dt 

Furthermore, since from definition in Section 2 {NJ is conditionally Poisson process 
and its component processes {NP''} , i=1, • • • , n, are conditionally independent, we can 

get 

(3.8) E[(Atdt)(Atdt)]' ;diag(E(21'))dt=E[(dNt)(dN)'] • 

Therefore, we have from (3.6), (3.7) and (3.8) that 

(3.9)Cov (rtdt)=Cov (dNt) • 

Consequently, from (3.6) and (3.9), mean and covariance matrix of rtdt coincide with 
those of dNN. Thus we can use observed value dll t as rtdt in applying Kalman 
filtering theory to (3.4) and (3.5). That is, the estimate 17* of 11, in terms of output 
data {NJ is given by equations (3.3).

   3.2. Estimation of parameters in model systems 
   It is assumed that intensity H of input point process is given by a stochastic 

differential equation, 

(3.10)dIlt=AtjI tdt+btdt--utdt , II to=11 o , 

where



Modeling of nervous systems by doubly stochastic Poisson processes 47 

 At  =(a  r  i'1), i, j=1, • • • , in; unknown m x m matrix, 
bt=(bi1', • • •, bim')' ; unknown indimensional vector, 
ut=(ut1), • • •, utm')' ; uii', i=1, • • •, m, are mutually independent normal white noise 

        with zero-mean and covariance E {u4i' u (.i)'} =V ui'(t)o(t—r), respectively, 
Ho; indimensional random variable with known mean /70 and known covariance 

        matrix f0. 

   Then, following assertion is shown. 
   ASSERTION 2 (estimation of parameters.) Assume that parameters aV') and 10 are 

constant value, and that observed value ;~Ci) of icomponent rrti' of IIt is given by 

(3.11)  i=1 • • m 

where wV' is normal white noise with zero-mean and covariance E{wzi'wti)'}=V1j'(t)d(t—r), 
respectively. Then meansquare estimates a*"') and b*(1) of parameters ari') and Ni) in 
terms of observed value of {IL} are given by following equations: 

(3.12a) dK*(i)=Xi)CtVvi)(t)1[dTi)—CtRP <ti)dt] , i=1, • • •, m, 

(3.12b) 1-:'=—(X~i)CtVvi)(t)-1Ctfti))dt, i=1, . . . , m, 

where 

               K*ci)—(a*(i1>•a*<im)b*ci))~           t—t~'~z,t 

                C=(i(1)•(nt)1)                     t~t~•~•t>1), 

                                                                                 m, 

           VV)(t)=Vui)(t)+Var (du4i)Idt)-i-i [(atii))2Vw'(t)] • 
                                                              ~=1 

   The assertion is shown as follows. 

   Rearranging (3.10) with regard to icomponent of II, we have following in equations : 

(3.13) dir)=(~(1>~..(                       ,tm)~t1)(a(i1)~•,calm),..ti))'dt'u(i,)dti=1>•,• •m .    tt'b(~t 

Using equations (3.11), we have 

(3.14) d;~ti)=(;,t1) .. • , , 1)(atil) ..., aiim), bii))'dt-vi°dt, i=1, ..., 111 

where 

741)=1W)+d10)Idt— aV•a)ivt>> , i=1, • • •, in. 
J=1 

Since parameters aP'' and Ni' are constant, 

                       d azi) (3
.15)=0,i=1, • • •, m,                 dtb(i)) 

where a(i)=(aii1), aiim1)'. Applying Kalman filtering theory to (3.14) and (3.15), 
we have equations (3.12).



48S. KANO and S. SHIGENAGA

    3.3. Estimation of  At 

    It is assumed that output process  {Nt} is ndimensional doubly stochastic Poisson 

process with intensity process {At} and that mean E(At) and covariance matrix KA(t, u) 
are known. Let Ai be a linear estimate of At in terms of output data {Nt} given by 

(3.16)At =at+JH(t, u)d~'u , 
                                                    to 

where at is ndimensional vector and H(t, u) is n x n impulse response matrix . Then, 
following assertion holds by [3]. 

   ASSERTION 3 (estimation of At.) Let the states equation 

(3.17)dxt=Atxtdt-}-Btdflt , xto=xo , 

where At is known m X m matrix, Bt is known m X r matrix, { fit} is rdimensional Brownian 
motion process and xo is random variable with zero-mean and known covariance matrix 
Eo, satisfy 

E(xt)=0 , for t�-to 

and 

                   KA(t, u)=CtE(xtxu)C. , for t, u>to , 

where Ct is known n X m matrix, that is, At=E(At)+Ctxt . Denote the estimate Al that 
minimizes error covariance matrix E[(At—AD(At—M)'] by A'. Then, the estimate A* 
is given by following equations: 

(3.18a) dx*=Atx*dt+ ItCt diag (E(AP)))'[dNt—A*dt] , x*0=0 , 

(3.18b) dIt=(AtEt+EtA;-I-BtB;—EtC; diag (E(2Y)))'CtEt)dt , Eto=fo , 

(3.18c) A'=E(At)+Ctx* 

Furthermore, error covariance matrix of A* is given by 

E[(At—At)(At—A*)']=CtftCt . 

   The assertion is shown in [3] as follows. 
   The estimate. Ai in the form of (3.16) that minimizes error covariance matrix 

E[(At—M)(11 —Ap'] is given by 

                                             t (3.19)Ai =E(At)+ to1-10(t, u)[dNu—E(Au)du] , 

where the optimum impulse response matrix Ho(t, u) satisfies 

                                      t (3.20) Ho(t, u) diag (EO,ut'))-F.0 Ho(t, a)KA(a,u)do=K,i(t,u),for to—                                                            u<t                                         t
o 

Seeing (3.19) and (3.20), two intensity processes lead to the same linear intensity 

estimator if their means and covariance matrices are identical . So we can give outside 
stochastic process of At by {xt} that satisfies states equation (3.17). Now, we give 
an observed process of the states by
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 (3.21)rt=At+diag (E(2n)112wt , 

where wt is ndimensional normal white noise and independent of At such that E(wt)=0 

and E(wtw-)=In (t—r). Then, it is shown that mean and covariance matrix of rtdt 

and those of dNt are identical by the same way as Section 3.1. Therefore, we can 

use observed value dNt as rtdt. Thus, applying Kalman filtering theory to (3.17) and 

(3.21), we have equations (3.18). 

   4. Analyses of physiological data 

   Applying the method stated in the preceeding sections, we try to analyze physio

logical impulse data [5] which were obtained from the monkey in sexual behavior at 

Oomura Laboratory of Physiology, Kyushu University, in January 1981. See Fig. 1.

Fig. 1. Impulse sequence in physiological experiment. See [5].

   As shown in Fig. 1, two impulse sequences, large and small ones, called X and Y 

respectively, were simultaneously recorded from a neuron in preoptic area by a micro

electrode during 5 minutes. In the figure, impulse sequence for first six seconds is 

shown. The large impulses were action potentials of the neuron inserted by the elec

trode and the small impulses corresponded to action potentials of neighboring neuron. We 

expected that there were some synaptic connections between the neighboring two 

neurons. However it was difficult to display any connection organically through broken 
neurons. 

   Then, following two connections were assumed between the neighboring two neurons 

firing large impulse sequence X and small impulse sequence Y, respectively. 

   (1) Y is input point process {Mt} and X is output point process {Nt} . 

   (2) X is input point process {Mt} and Y is output point process {Nt} . 
   In each case, estimation of parameters in states equation is performed and then 

using the estimated parameters and output data {Nt} , we obtain estimates 1711. 

   Lastly, regarding each X and Y as {NJ with uniformly distributed independent 

process {2}, we obtain estimates {2*} in terms of IN,}. Then {2*} are compared with 
impulse frequency (impulse numbers per second) of {Nt} .

   4.1. The case with X= {Nt} and Y= {Mt} . 

   Assertion 2 is applied for estimation of parameters. Equations (3.10) and (3.11) are 

reduced to 

dr t=at«tdt btdt ' utdt , 

                                     ;.t=7rt+u't
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Variances of u t and Wt are selected as 

                         V,,,(t)=1 , V u,(t)=4. 
Observed valuet is considered as impulse frequency of Y. 

   Then, we obtained estimates a* and bi giving perturbation to error covariance 

matrix Et by resetting their diagonal elements at 1.0 and nondiagonal elements at 0.0 

every 10 seconds (100 steps). Estimates a* and bi are shown in Table 1.

       Table 1. Estimates at and b* of parameters at and b in terms of Y. 

t (sec) 30 60 90 120 150 180 210 240 270 300 

—0.295 —0.845 —0.117 —0.761 —0.762 —0.461 —0.875 —0.723 —0.292 —0.192 
b 1.497 1.935 2.542 2.923 2.911 3.140 2.974 3.039 2.856 2.793

Next, fixing the estimates at and bi, we perform estimation of rrt in terms of X 

by Assertion 1 in Section 3.1. Equations (3.1) and (3.2) are given by

         Fig. 2. Estimate ;r* compared with impulse frequency of Y. 
Upper : solid line shows impulse frequency of Y and broken line shows estimate 7*. 
Lower : meansquare error ft of -*.
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 d;rt=a*7rtdt+b*dt-+utdt  , 

At=0.27rt . 

As the observation of ,t, we use impulse frequency of X. Estimate -* is calculated 

and the graph is shown in Fig. 2. 

   4.2. The case with X= {Mt} and Y= {Nt}. 

   In this case, numerical calculation is carried out by the same way as Section 4.1, 

except the exchange, X= {Mt}, Y= {NJ , and 2t=5.07rt. Estimates at and b* are 

shown in Table 2. Estimate 771 is shown in Fig. 3.

       Table 2. Estimates at and b* of parameters at and bt in terms of X. 

t (sec) 30 60 90 120 150 180 210 240 270 300 

et — 0.521 — 0.637 — 0.467 — 0.682 — 0.540 — 0.389 — 0.462 — 0.597 — 0.643 — 0.609 
b*0.532 0.633 0.610 0.684 0.753 0.838 0.806 0.824 0.577 0.353

         Fig. 3. Estimate ;ri compared with impulse frequency of X. 
Upper : solid line shows impulse frequency of X and broken line shows estimate r*. 
Lower : meansquare error ft of *.

   As compared Fig. 3 with Fig. 2, a question arise : which is better model 4.1 or 4.2 

to explain the physiological data in Fig. 1? To see some significant differences between 

two models, we need more experimental facts and analytical study. But, since intensity 

processes {7rt} satisfying the stochastic differential equation (3.1) are Markov processes, 
models of nervous systems given in 4.1 and 4.2 may be called Marcov nervous systems. 

   4.3. Estimation of At in terms of {Nt} 

   We apply Assertion 3 in Section 3.3 for each X and Y which is considered as IN . 

   In this case, Kalman filterting theory is applied only for a method of estimating 

At in terms of {Nt} without assuming any structure of nervous system. Then, stochastic 

process {At} is considered as independent stochastic process. This section was selected 
as a simple control model for the modeling of nervous systems in Section 4.1 and 4.2. 

   At first, in the case of X= {Nt} , At is given as follows.
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2t=0.9at , 

where {at} is independent stochastic process and uniformly distributed in [0, 8]. Then, 
we have 

E(2t)=3.6 

and 

4.32, t = u 
K2(t, u)= 

0 , t�u. 

Coefficients at and bt in applied equation (3.17) and ct are calculated as 

7.2 
at=2.0, bt=1.0, ct= -^3 • 

Then estimate 2* is obtained and shown in Fig. 4.

  Fig. 4. Estimate 2* obtained in terms of X and compared with impulse frequency of X. 
Upper : solid line shows impulse frequency of X and broken line shows estimate 2p. 
Lower : meansquare error X't of At. 

   In the case of Y= {Nt}, 2* is obtained similarly except that 

2t=5.0at , 

E(2t)=20 

                           400 t =u 
K;(t, u)=< 3 

,0 , t u , 

and coefficients 

40  
at=2.0, bt=1.0, ct= -V-3 

The result is shown in Fig. 5. 

   Comparing Fig. 4 and Fig. 5 with Fig. 3 and Fig. 2, respectively, the models in
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Fig. 5. Estimate i.i obtained in terms of Y and compared with impulse frequency of Y. 
 Upper  : solid line shows impulse frequency of Y and broken line shows estimate 2p. 

Lower : meansquare error ft of ),*.

4.1 and 4.2 are better than the models in 4.3 to describe the physiological data in Fig. 

1, as we expected.

   5. Results and Problems 

   In this paper, we gave some methods of mathematical modeling and analyses of 

nervous systems by following two lines. 

   (1) Neuron impulse sequences are represented by doubly stochastic Poisson processes. 

   (2) The structure of nervous system is described by stochastic differential equa
       tions in which random variables are intensity processes. 

   Then, experimental data recorded from a neuron in the nervous system, preoptic 

area of monkey, were analyzed by given methods. The system equations were selected 

to obtain minimum error variance. Good fitting of the estimates to data showed effec

tive modeling. However, when we try to form a model accounting some functions of 
a nervous system, following questions arise. 

   (1) Why are a great number of neurons, of 103 or 10', needed for an area which 
      controls single function of a brain? How are these neurons mutually related? 

   (2) How are many control areas in brain mutually related and integrated to a 
      function? 

Basic principle of the two interrelations may be identical each other, that is, neural 
network within an area may operate similarly to that between many areas. Methods 

of multidimensional doubly stochastic Poisson processes and of simultaneous stochastic
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differential equations, both stated in this paper, may be effective for each study of the 
two interrelations. 

   There are some problems in the study. 

   (1) More than three impulse sequences which are simultaneously recorded in 

       physiological experiments are needed. 
   (2) A method in which some basic networks between two or three neurons are 

       connected for increasing the functions of their networks, must be attacked. 

   (3) Modeling of nervous systems is to be studied in connection with changes of 
       neuron impulse patterns caused by animal behavior, that is, taking food, learn

       ing and so on. 

   Experiments designed on the solutions of these problems may give us interesting 
data forming multidimenisonal neuron impulse sequence. We believe that the method 

given in this paper becomes powerful tool to analyze these data and to explain advanced 
functions of nervous systems.
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