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                ABSTRACT 

   In this paper we consider incomplete tables over some attribute 
set and discuss the recovery problem under functional dependencies. 
An incomplete table is introduced as a table over an attribute set 
such that each table entry is a subset of the attribute domain instead 
of just a single value. The recovery problem we consider is to 
extend the given incomplete table so that each table entry contains 
only one value and the resulting table will be consistent with a given 
set of functional dependencies. We show that the recovery problem 
for incomplete tables such that each table entry is finite is NP-com

plete. We also give some observation on the unique recoverability. 
Furthermore, we consider timevariant tables. The recovery problem 
for timevariaut tables is shown to be PSPACEcomplete.

                      0. INTRODUCTION 

   Much has been written about management of data with complete information. 

However, there is a view that information we have in the real world is sometimes 

incomplete. By information incompleteness, we mean that we have a collection of 
values in which the actual value is believed to be in, but the actual value is unknown. 

   Recently several approaches have been made to give semantics for a query language 

for a database with incomplete information and logical problems about incomplete in

formation databases have been studied in the original work by Lipski (1979, 1981). 

The notion of functional dependency is extended for relational databases with null 

values and a complete axiomatization of inference rules for extended functional depen
dencies is given in Vassiliou (1980). A logic concerned with incomplete information is 

also developed in Ono and Nakamura (1980) and Nakamura (1981) and a mathematical 

model of an information storage and retrieval system with incomplete information is 

given in Jaegermann (1978, 1979).
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   In contrast with these approaches to the incomplete information management , we 
consider the problems arising from incomplete information recovery and study their 

computational complexity. In general, the problem we are now facing with is the fol

lowing interesting problem : 

   Given an incomplete information, for example, some part of the information is lost 

or has some mistakes, if we have some knowlege about the information with which 

we are concerned, how can we recover this incomplete information or is it at least 

possible to recover the incomplete information so that it will be consistent with the 
knowledge we have? 

   In this paper, we will focus our attention on the relational model of data and 

functional dependencies (Codd (1970, 1971)). We consider incomplete tables and discuss 

the complexity of the recoverability for incomplete tables of two types. One types is 

called the finite type meaning that each table entry is a finite set. The other type is 

called the infinite type meaning that each table entry is a single value or the attribute 

domain itself that is assumed to be infinite. We firstly show that the recoverability 

problem for incomplete tables of finite type is NPcomplete. Observing that there may 
be many recoveries from a given incomplete table, we consider the uniqueness of recovery . 
Our result states that deciding whether a given incomplete table of infinite type has 

the unique recovery requires only polynomial time amount. Furthermore, we show that 
this problem is complete for P, the class of problems solvable in deterministic poly

nomial time, with respect to log space reductions. On the other hand , in the case of 
finite type incomplete tables, the unique recovery problem is proved to be co-NP-hard . 
We also consider timevariant tables. A timevariant table is a two-way infinite sequ
ence of tables with the same attribute set and the same number of rows . The notion 
of timevariant table is realistic in the sense that the tables are updated from time to 

time obeying some rules. The problem we consider is the following : We are assumed 

to have timeinvariant knowledge about the relations between the tables of "yesterday" 
and "today" and the timeinvariant knowledge on the table itself . Then given a table 
at one time unit whose singly valued entries represent the timeinvariant information , 
can we recover the incomplete table to a complete table so that it will be at least con

sistent with the timeinvariant information and the relations which hold for every two 

consecutive days? Our result is that the recoverability problem for timevariant incom

plete tables of finite type is PSPACEcomplete.

           1. HOW HARD IS THE RECOVERY PROBLEM ? 

   Firstly, we give some basic definitions which are related to the relational model 

of data. 

   DEFINITION 1.1. Let U be a set called an attribute set. For each element A in U, 

we associate a set D(A) called the domain of the attribute values of A or the attribute 

domain of A. An incomplete table T over an attribute set U is a matrix indexed by 

{1, • • • , n} xU for some n�0 0 such that for each attribute A in U the entries in the 
column corresponding to the attribute A are nonempty subsets of D(A). 

    EXAMPLE 1.2.
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NAME AGESALSEX 

{AKIRA} [40,  co] (0, co) {M} 

{KAORU} [25, 40] (30000, 00) {M, F} 

{YOKO} [35, 45] (0, 50000) {F} 
{DANA} [6, 35] (0, 30000) {M, F}

   DEFINITION 1.3. An incomplete table T is said to be complete if each table entry 
of T is a singleton. 

   DEFINITION 1.4. In this paper we consider incomplete tables of the following types : 

   (1) Each attribute domain contains infinitely many elements and for each table 
entry E, the set E is a singleton or E coincides with the domain of the attribute 

which corresponds to E. Incomplete tables of this kind are said to be of infinite type. 

   (2) For each table entry E, the set E is a finite set. Incomplete tables satisfying 
this condition are said to be of finite type. 

   REMARK.For the purpose of encoding, we assume each attribute domain consists 

of strings over some finite alphabet. For incomplete tables of infinite type, we use 

distinct variables x[i], i=1, to represent the entries which coincide with the attri

bute domains. We encode these incomplete tables by the conventional tuple by tuple 

arrangement. 
EXAMPLE 1.5. (1) Let T be

AGESALSEX 

{25, 26}{10000, 20000}{M} 

{30}{10000, 30000}{M, F}

Then the encoding of T is 

  [AGE SAL SEX] ({25, 26} {10000, 20000} {M}) ({30} {10000, 30000} {M, F1). 

  (2) Let T be 

    INSTRUCTOR ADDRESS PHONE# SPECIALIZATION 

GAUSSx[1]x[2] MATHEMATICS 

   EULERx[3]x[4] MATHEMATICS 

   EINSTEINx[5]x[6] PHYSICS 

    x[7]OAK_TOWN 672-1493 MATHEMATICS

Its encoding is 

  [INSTRUCTOR ADDRESS PHONE# SPECIALIZATION] (GAUSS x[1] x[2] 
MATHEMATICS) (EULER x[3] x[4] MATHEMATICS) (EINSTEIN x[5] x[6] 

PHYSICS) (x[7] OAK_TOWN 672-1493 MATHEMATICS). 

DEFINITION 1.6. Let T be a complete table over an attribute set U. Let X and 

Y be nonempty subsets of U. We say that the functional depencency X--*Y holds in T 

if all rows in T which agree on X also agree on Y. Given a family F of functional 

dependencies, we say that T is consistent with F if each functional dependency in F 

holds in T.
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   REMARK. Since a functional dependency X-> {A1i • • • , Am} derives functional depend

encies X->Ai, i=1, ,m and vice versa , we restrict our attention to functional 
dependencies of the form X *A, where A is a single attribute . 

   DEFINITION 1.7. An incomplete table T' is said to be an extension of an incomplete 

table T if T and T' have the same attribute set and the same number of rows and 
each table entry E of T' is included in the corresponding entry of T . 

   DEFINITION 1.8. An incomplete table T is said to be recoverable under a family F 

of funcitonal dependencies if there is an extension of T to a complete table which is 

consistent with F. 

   EXAMPLE 1.9. Consider the following incomplete table T:

SerPART#QTYPLACE 

S1{P1, P2}200FUKUOKA 

51P2{200, 100} TOKYO 

     S2{P2, P3}100KYOTO 

{Si, 52} P2100KOBE 

Then T is recoverable under a functional dependency S# • PART#->QTY to the following 

complete table : 

S#PART#QTRPLACE 

51P1200FUKUOKA 

S1P2100TOKYO 

   S2P2100KYOTO 

51P2100KOBE 

However, the following incomplete table is not recoverable under S# • PART:->QTY . 

S#PARTQTYPLACE 

SiP1100FUKUOKA 

    {S1, S2} P1200OSAKA 
     S2{P1, P2}100NAGOYA 

   S2P2300IWATE 

   We are now facing with the problem to decide whether there is at least one reco
very of a given incomplete table under a finite collection of functional dependencies . 
We consider the computational complexity of this problem. For the materials con

cerning the computational complexity theory, see Aho et al. (1974) and Garey and 

Johnson (1979). Formally, the problem we consider is

  RECOVERABILITY FOR INCOMPLETE TABLES OF FINITE TYPE 

INSTANCE : An incomplete table T of finite type and a finite set F of functional 

dependencies. 

QUESTION : Is the incomplete table T recoverable under F?
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   It should  be noted that we can check in deterministic polynomial time whether a 

complete table satisfies a given set of functional dependencies. Therefore we can see 

that RECOVERABILITY FOR INCOMPLETE TABLES OF FINITE TYPE is solvable 
in nondeterministic polynomial time just by guessing the elements from entries of a 

given incomplete table and checking consistency with the functional dependencies. 
   Furthermore, we can show the following theorem : 

  THEOREM 1. RECOVERABILITY FOR INCOMLETE TABLES OF FINITE TYPE 

is NPcomplete. 
   PROOF. For the reduction, we use 3SATISFIABILITY. 

  3SATISFIABILITY (3SAT) 

INSTANCE : A collection C= {c1, , cm} of clauses on a finite set V of variables 

such that I ci', =3 for i=1, ••• , in. 
'QUESTION: Is there a truth assignment for V that satisfies all clauses in C ? 

  Since we have already seen that RECOVERABILITY FOR INCOMPLETE TABLES 

OF FINITE TYPE is in NP, we show a log space reduction from 3SAT to this problem. 

Let C be an instance of 3SAT and let V= {x1, • • • , x„} be its variable set. We con

struct an incomplete table and functional dependencies in the following way : The set 

Uc of attributes consists of literals x1, xl, ••• , xn, xn and all clauses ui+vi+wi in C. 
The set Fc of functional dependencies over Uc contains xi—xi for i=1, , n and 

{Lit, vi, w,1- is, ' vi+wi for all clauses in C. The incomplete table Tc is constructed 
as follows : 

   For the first row, the entries corresponding to the attributes xi and xi for i=1, 
• • • , n have the set {0, 11. The entries of u i+vi+wi for all clauses have the single 

value 1. 
    For dependencies xi--~1, we use two rows to represent the negationfunction as 

follows :

The remaining entries of these two rows corresponding to clauses are filled according 

to the rule of the orfunction and the values of the entries corresponding to literals. 

   For each dependency {u1, vi, zvi}->ui+vi+wi, we use eight rows to represent the 

orfunction as follows :
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Then we determine the values of entries of literals by using dependencies xZ— Z, for 

i=1, • • • , n. The remaining entries of literals of the form x; and are set to be 0 

and 1, respectively. The entries for the attributes corresponding to clauses are deter

mined by the orfunction and the values of literals in these eight rows. 

   Then it is easy to see that C is satisfiable if Tc is recoverable under F. It is 

also easy to see that this reduction is done in log space 

EXAMPXE 1.10. We show the construction in Theorem 1 by an example. Consider 
the formula C=(x+y+z)(.r + y + 2). The functional dependencies are 

{x, y, z}—*x+y+z, y, 21—A7+5+2. 

The incomplete table Tc is the following :

                  2. UNIQUE RECOVERABILITY. 

   In Section 1 we considered the recoverability of incomplete tables of finite type. 

For infinite type incomplete tables, we will see that the recoverability can be checked 

in polynomial time and if an incomplete table is recoverable but not uniquely recover

able, then there are infinitely many recoveries for this incomplete table. On the other 

hand, for finite type incomplete tables, there are at most finitely many recoveries. 

The purpose of this section is to study the complexity of the unique recoverability 
for infinite and finite type incomplete tables.
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   DEFINITION 2.1. An incomplete table T is said to be uniquely recoverable under a 

family F of functional dependencies if there is exactly one extension of T to a complete 
table that is consistent with F. 

   We now see the UNIQUE RECOVERABILITY FOR  INCOMPLETE TABLES OF 

INFINITE TYPE is solved in polynomial time. Before showing the procedure which 
checks the unique recoverability, recall that entries of infinite type incomplete tables 

are singletons or variables x[il. 

   The procedure UNIQUE _RECOVERY checks the unique recoverability of infinite 
type incomplete tables. 

   procedure UNIQUE_RECOVERY (F, T) 

//F is a set of functional dependencies// 

//T is an infinite type incomplete table// 
..S--CLOSURE (F, T) ; 

    while ST do 

SF—CLOSURE (F, T) 

    end while; 

    if T is not consistent with F then return (false); 

    if T has a variable then return (false) //recoverable but not// 

                                     //uniquely recoverable/,' 
    else return (true) //T contains the unique recovery// 

  end UNIQUE_RECOVERY 

   procedure CLOSURE (F, T) 
     for each functional dependency X—A in F do 

      for each pair (t1, t2) of distinct rows of T do 

       if t1(X)=t2(X) then //t2(X) is the projection of ti to X// 

            case 

: ti(A)=x[i] and t2(A)=x[j] for some i and j : 
               if i < j then t2(A)—t1(A) else t1(A)—t2(A) 

: ti(A)=x[i] for some i and t2(A) is a constant : t1(A)—t2(A) 

: t1(A) is a constant and t2(A)=x[i] for some i : t2(A)—t1(A) 

          end case 

      end for 
    end for ; 

    return (T) 

  end CLOSURE 

   The applications of the procedure CLOSURE find the least extension of the given 

incomplete table under the given functional dependencies, if any. Therefore if the 

resulting table contains a variable x[i], then the given incomplete table is not uniquely 

recoverable. 
   In addition to this polynomial time solution, we can prove the following theorem : 

  THEOREM 2. UNIQUE RECOVERABILITY FOR INCOMPLETE TABLES OF 

INFINITE TYPE is complete for P, the class of problems solvable in polynomial time, 

under log space reductions
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   For the proof of Theorem 2, we use the pebble game on and/or graphs. An and/ 

or graph is a triple G=(V, E, f), where G'=(V, E) is a finite directed graph and f is 

a function f : V---> {and, oil. The rules of the pebble game are the following : 

   (1) One can always place a pebble on a node which has no incoming edges. 

   (2) One can place a pebble on node v, when f(v)=and and all nodes from which 
an edge is directed to node v contain pebbles. 

   (3) One can place a pebble on node v, when f(v)=or and at least one node from 
which an edge is directed to node v contains a pebble. 

   We use the following problem : 

AND, OR GRAPH ACCESSIBILITY PROBLEM (AGAP) 

INSTANCE : An and/or graph G=(V, E, f). 

QUESTION : Can a pebble be placed on one of the nodes which have no outward 
edges ? 

   The following theorem is known (Cook (1974), Lingas (1978)). 

   THEOREM 3. AND/OR GRAPH ACCESSIBILITY PROBLEM is complete for P 

under log space reductions ^ 

   PROOF OF THEOREM 2 :Without loss of generality, we may consider and/or graphs 

having exactly one node which has no outward edges since we can transform in log 

space the instances of AGAP to and/or graphs of this kind without violating accessi

bility. Let G=(V, E, f) be an and/or graph which has exactly one outward edge free 

node. We construct an incomplete table TG of infinite type and a family FG of func

tional dependencies in the following way : Let V= {v1• • • , vn} and assume that vn is the 
unique node without any outward edges. The attributes of TG are A1, A2, • • • , An, B, 

where A corresponds to the node vi for each i=1, ••• , n. The attribute B is an 

auxiliary attribute. The set FG of functional dependencies consists of the following : 

   (1) For each node vi with f(vi)=and, {Ai: vi is a predecessor of vi} is a 
functional dependency in FG. 

   (2) For each node vi with f(vi)=or, Aj--A1 is a functional dependency when v; 
is a predecessor of vi. 

   (3) AnB–Ai is a functional dependency for each i=1, • • • , n. 
   Let L'i 1, • • • , vi k be the nodes without any incoming edges and let v;1, , v j n _ k be 

the remaining nodes. The incomplete table TG is the following :

where a is a constant value. 

   It should be noted that if the node vn is pebbleable then TG is uniquely recover

able by using the functional dependencies An B—Ai for all i=1, • , n and vice versa. 

   It is easy to see that the set FG and the incomplete table TG are computable within 

log space 

   We give an example of construction in Theorem 3.
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 EXAIPLE 2.2. Consider the following and/or graph G. Then the set FG is

A6—>A3 A2A3A5 > 46 As-->A9 

A7—~A4 A4A5 —4A7 A8--,A10 

A1 A5 AO, —A8 As—A10 

A2—*A5 A5 —>A9 A10B— A1 , i=1, •.• , 10 .

The table TG is

Al A2 A3 A4 A5 A6 A; A8 A9 A10 B 

a a x [1] x[2] x[3] x[4] x [5] x [6] x[7] x [8] a 

a a a a a a a a a aa

   If an incomplete table is shown to be uniquely recoverable, then we may consider 

the information which is lost is redundant. Recall that the variables appearing in an 
infinite type incomplete table T are distinct. As long as an incomplete table is uni

quely recoverable under a given family of functional dependencies, the larger number of 
variables means the less redundancy of representation. Thus the maximum number of 

variables means the minimum redundancy. Then the following problem will receive 

attention : 

   Given a complete table T and a family F of functional dependencies, where T is 

consistent with F, then find an incomplete table T' with the maximum number of 

variables such that T' is uniquely recoverable to the complete table T under F. 

   Formally, we consider the following problem : 
  REDUNDANCY MINIMIZATION PROBLEM FOR INFINITE TYPE INCOM

  PLETE TABLES 

INSTANCE : A complete table T with a finite set F of functional dependencies 

and a nonnegative integer K. 

QUESTION : Is there an incomplete table T' of infinite type such that T' is uni

quely recoverable to T under F and the number of variables x[i] is not less than K ? 
   Our result asserts that redundancy minimization is computationally hard.
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  THEOREM 4. REDUNDANCY MINIMIZATION PROBLEM FOR INFINITE 

TYPE INCOMPLETE TABLES is NPcomplete. 
   PROOF. We reduce the VERTEX COVER PROBLEM (see Garey and Johnson (1979)) 

to this problem. The VERTEX COVER PROBLEM is stated as follows : 

  VERTEX COVER PROBLEM 

INSTANCE : An undirected graph G=(V, E) and a positive integer K<' V . 

QUESTION: Is there a vertex cover of size K or less for G, i.e., a subset V' of 
V with V' I <K such that for each {u, v} in E at least one of u and r belongs to 

V' ? 

   Given an undirected graph G=(V, E) and a positive integer K, we construct a 

complete table TG over an attribute set UG=V JE and a finite set FG of functional 
dependencies in the following way : The complete table over UG is defined to be a 

complete table with two rows whose entries are the constant value a. The functional 

dependencies in FG are as follows : 

   (1) For each edge e= {u, v}, the functional dependencies u—*e and •--*e are in FG. 
   (2) For each node v in V, the functional dependency E--*v is in FG. 

The integer K' is defined to be 1E1+11/1—K. 
                                       Assume that G has a vertex cover V' of size at most K. Let V'= {i 1, • • • , t',„} , 

V-171=- {v1, • • • , vn} and E_ {el, • • • , e}. Then consider the following incomplete 

table T':

V1 V2 ••• Vm V1V2Velep 

a a ax[1] x[2] ••• x[n] x[n±1] ••• x[n+p] 

a a ••• aa a ••• a a ••• a

By using the functional dependencies of (1) and by the assumption that V' is a vertex 

cover for G, the variables x[n±1], ••• , x[n+p] are uniquely recoverable. Then by 

using the functional dependencies of (2), the variables x[1],  • • • , x[n] will be recovered. 

Observe that the number of variables in T' is J V I— I V' 1+ 1 E 1> I V 1+ 1 E 1—K. 

   Conversely assume that there is an incomplete table T' such that T' is uniquely 
recoverable to TG under FG and the number of variables in T' is not less than I V I 

+ !El  —K. Note that if there is an attribute such that two entries of this attribute 
are variables, then the uniqueness of recoverability will be violated. Thus for each 

attribute, at least one of the entries for the attribute must have the value a. We 

convert T' in the following way : If both entries corresponding to an edge e= {u, v} 

have the value a, then we replace the entry of the first row of the attribute e by a 

new variable and we also replace one of the variables, if any, appearing in columns 

of the attributes u and v by the value a. Let T" be the resulting table. Note that 

the above conversion does not decrease the number of variables and T" is still uni

quely recoverable if T' is. Let V' be the set all attributes whose both of the first 
and second entries have the value a. Then V' c V and by the assumption on the 
number of variables in T', we see that I 17'1�K. Since all variables in columns for 

edge attributes are recoverable, V' is a vertex cover for G. It is easy to see that TG 
and K' are computable in log space. Since UNIQUE RECOVERABILITY FOR INCOM
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PLETE TABLES OF INFINITE TYPE is solvable in deterministic polynomial time, 
the problem is, in NP. This completes the proof  ^ 

   By the above theorem, actually to minimize the redundancy is an NP-hard problem. 
   For the finite type incomplete tables, the situation of unique recoverability is 

different. We consider the following  problem  : 
  UNIQUE RECOVERABILITY FOR INCOMPLETE TABLES OF FINITE TYPE 

INSTANCE : An incomplete table T of finite type and a finite set F of functional 
dependencies. 

QUESTION : Is T uniquely recoverable under F? 
   In contrast with the case of infinite type incomplete tables, we have the following 

theorem : 

   THEOREM 5. UNIQUE RECOVERABILITY FOR INCOMPLETE TABLES OF 
FINITE TYPE is co-NP-hard ^ 

   For the proof of Theorem 5, we use the following problem, which will be shown 
to be co-NP-hard. 

  UNIQUE 4SATISFIABILITY (U4SAT) 
INSTANCE : A finite collection of clauses C on some variable set V, where for 

each clause c in C, I c I =4. 

QUESTION : Is C uniquely satisfiable, i.e., is there only one truth assignment 
which satisfies all clauses in C ? 

   LEMMA 6. UNIQUE 4SATISFIABILITY is co-NP-hard. 
   PROOF. We show a reduction from 3SAT to coU4SAT, the complement of U4SAT. 

Let C be an instance of 3SAT and let V= {x1, ••• , xn} be its variable set. We con
struct a new set of clauses in the following way : Let x n+1, x n+2, x n+3, x n+4, x n+5, and 
xn+6 be new variables not in V. Let C= {c1, ••• , cni} and let ci=u1+vti u'i for 
i=1, , in. For each i=1, ••• , m, we use the clause c=u1+vi+wi xn+1• In addition 
to these clauses, we use the clauses c;l+;=; xn+1 for j=1, ••• , n. Then C' consists 
of all such c;. 

   Note that the assignment (x1, • • • , x n 1)' (0, • • • , 0, 1) satisfies all clauses in C'. 
Thus C' has at least one satisfiable assignment. If C is satisfiable, then let (x1i • • • , xn) 
~(al, ••• , an) be one of the truth assignments that satisfy C. Then we can see that 
the truth assignment (x„ • • • , • • • , an, 0) also satisfies all clauses in C'. 
Therefore, there are more than one satisfiable assignments for C'. Conversely, assume 
that C' has at least two truth assignments that satisfy all clauses in C'. Let 

(x1, • • • , xn+1)—(a 1, • • • , a n+1) be one of such truth assignments. If a n+1=1, then al= • • 
=an=0. If (4+1=0, then (x1, ••• , xn)*--(a1, ••• , an) must be a truth assignment that 

satisfies C. Therefore, C is satisfiable iff C' is not uniquely satisfiable. Finally, we 
replace the clauses xi+xn+1 by xi+xn+1+2n+2+xn+3 for all i=1, ••• , n. In order to 
force xn+2—xn+3=O, we add to C' the clauses xk+u + v-I-w, where k=n+2, n+3, and 
u=xn+4, xn+4, u—xn+5, xn+5, w—xn+6, xn+6 ^ 

   Proof of Theorem 5 can be done by reducing U4SAT to UNIQUE RECOVERA
BILITY FOR INCOMPLETE TABLES OF FINITE TYPE in a similar manner to 
Theorem 1 except that in this case four argument orfunction is used ^ 

   As an upper bound, it is not hard to see that this problem can be solved by a
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deterministic polynomial time bounded oracle Turing machine that has RECOVER

ABILITY FOR INCOMPLETE TABLES OF FINITE TYPE as its oracle. Thus this 

problem is in 42 , the class of problems solvable in deterministic polynomial time oracle 
Turing machines with oracles in NP (Stockmeyer (1977)).

            3. RECOVERY OF TIMEVARIANT TABLES 

   In this section we will deal with timevariant tables. We use "day" for time unit. 

Informally, a timevariant table is a two-way infinite, past and future, sequence of 
tables with the same attribute set and the same number of rows. For this time
variant table, we will pay attention to the timeinvariant properties of "everyday" and 
the timeinvariant relation between "yesterday" and "today". This timeinvariant 
relation is expressed by functional dependencies over the attribute sets of "yesterday" 
and "today". 

   NOTATION. Let U= {A1, • • • , An} be a finite set of attributes. We mean by U° 
the set {A,(t): 1 <_ j < n, and t is an integer} . The attribute A,(t) will denote the 
occurrence of the attribute A; at time t. The set U"" is defined to be {A,(t) : 1�j-�n} 

                                                                    for each t. For each attribute A;, we assume that D(A;)=D(A,(t)) for all t. 
   DEFINITION 3.1. Let U and U° be as above. A timevariant incomplete table over 

an attribute set U is an incomplete table over U. We define in the same way time
variant complete tables over U. 

   DEFINITION 3.2. Let X "' _ {Ai1(0), • • • , Aim(0), A;1(1), • • • , A(1)} and let A(°' be 
Ali), where i=0 or 1. Given a functional dependency X(')--+A"),  we define the dynamic 
expansion of X (0'—>A(0' as a family of functional dependencies {X")--A"" : t is an 
integer) , where for each integer t we define X(t)={A1/t), • • • , Aim(t), A;1(t+ 1), • • • , 
Ajk(t ; 1)} and A"'=A;(i+t). In the same way we define the dynamic expansion F° when 
we are given a family F of functional dependencies over U(0'UU">. 

   DEFINITION 3.3. Given an incomplete table T over U, we define an incomplete 

timevariant table T°° over U called the dynamic expansion of T by repeating T at 
each time. More formally, T°° has the same number of rows and for each attribute 
A; in U, (r, A;)-entry of T is equal to (r, A,(t))-entry of T°° for each t and each row r. 

   DEFINITION 3.4. Let F be a family of functional dependencies over U"'UU(1' and 
let T be a timevariant complete table over U. Then we say that the family F holds 

for T dynamically if T is consistent with F. 
    DEFINITION 3.5. Given an incomplete table T over U and a family F of functional 

dependencies over U"'UU(1', T is said to be dynamically recoverable under F if the 
dynamic expansion T°° of T is recoverable under the dynamic expansion F°° of F. 

    We are interested in the following recovery problem : 
   DYNAMIC RECOVERABILITY FOR INCOMPLETE TABLES OF FINITE TYPE 

INSTANCE : An incomplete table T over an attribute set U and a finite collection 
F of functional dependencies over U"'UUc1>. 

QUESTION : Is T dynamically recoverable under F? 
    We can regard the values of entries having a single element as the values which 

never change and we can also deal with the entries with multiple elements as time
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variant entries. 

   We will show the following theorem : 

  THEOREM 7. DYNAMIC RECOVERABILITY FOR INCOMPLETE TABLES OF 

FINITE TYPE is complete for PSPACE, the class of problems solvable in polynomial 

space, under log space reductions ^ 

   We first see that this dynamic recovery problem is in PSPACE. 

   prcedure DYNAMIC_RECOVERY (F, T) 

//T is an incomplete table over an attribute set U// 

//F is a family of functional dependencies over U(°'UU"'// 

     guess a complete table To from T ;T1,—To; 
                                          repeat 

      guess a complete table T, such that T 1T 2 is consistent with F; 
T1F-T2 

     until T2To is consistent with F; 

     return (true) 

   end DYNAMIC_RECOVERY 

   Note that if the given incomplete table is dynamically recoverable under F , then 
there are two points of time i < j such that the complete table T(i) of the restriction 

to the time i of the dynamically recovered complete table is the same as that of the time 

j since there are only finitely many extensions of T. Conversely, if there exists a sequ
ence of complete tables To, T1, • • • , T, that are extensions of T such that T °=T m and 

each T iT i+1 is consistent with F, then T is easily seen to be dynamically recoverable 

under F. 

   By the above observation, we can see that the procedure DYNAMIC _RECOVERY 
runs correctly. Obviously, the space amount used in this procedure is polynomial. By 

Savitch's theorem (see Aho et al. (1974)), the class of problems solvable using nondeter

ministic polynomial space is the same as the deterministic class. Thus DYNAMIC 

RECOVERABILITY FOR INCOMPLETE TABLES OF FINITE TYPE is in PSPACE . 
   For the proof of Theorem 7, We use DYNAMIC 3SATISFIABILITY , which was 

shown to be complete for PSPACE under log space reductions (Orlin (1981)). 
  DYNAMIC 3SATISFIABILITY (DYNAMIC 3SAT) 

INSTANCE : A collection C= {c1, • • • , cm} of clauses over {x1(0), • , xn(0), 
x1(1), ••• , x.(1)} such that each clause ci in C has I ci I =3. 

QUESTION: Is C dynamically satisfiable ? That is, we define the set C`1 as a 
collection of clauses obtained from the clauses in C by replacing literals v;(6) by 

v;(a+i) and set C°° to be the union of C(i', where i ranges over all integers. Then is 

there truth assignment for variables in {x;(i) : 1 < j n, and i is an integer} which 

satisfies all clauses in C°° ? 
   We now show a reduction from DYNAMIC 3SAT to DYNAMIC RECOVER

ABILITY FOR INCOMPLETE TABLES OF FINITE TYPE. 

   Let C be an instance of DYNAMIC 3SAT. We assume that the underlying variable 

set is {x1, ••• , xn}. We construct the family Fc of functional dependencies and the 
incomplete table Tc in the following way : The set Uc of attributes for Tc consists 

of x1(0), ••• , xn(0), =71(0), .• Tn(0), x1(1), ••• , xn(1), 11(1), ... , xn(1), and clauses vi(o')
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 Fv;(Z)+vk(p) in C. 
   The functional dependencies in Fc over U"'UU(') are the following : 

   (1) xi(o•)[0]—)xi(a)[0] for i=1, ••• , n and a•=0, 1. 

   (2) {v,(o)[0], v,(v)[0], vk(p)[0]} -'(vi(o•)+v;(v)+vk(p))[0] for all clauses vi(a)+v;(7) 
-+vk(p) in C. 

   (3) xi(0)[1]-,xi(1)[0] for i=1, ••• , n. 
   The functional dependencies of (1) and (2) are meant to represent the negation

function and the orfunction, respectively. The functional dependencies of (3) are used 

to connect "yesterday" and "today" by the same values. The rows of the incomplete 

table Tc over U are constructed as follows : For the first row, the entries of x2(a) 
and .T,(6) have the set {0, 1} . The entries of the clauses vi(a•)+vj(r)+vk(p) in Uc 

have 1. The next two rows are used to guarantee that the entries corresponding to 

x,(a) and x,(6) of the same row do not have the same value as we did in the proof 

of Theorem 1. For each functional dependency of (2), we use eight rows to define 
orfunction and we fill these entries in the same way as in Theorem 1. Finally, last 

two rows are used to represent the identity function to which the functional depend

encies of (3) correspond. That is, for each pair of x,(0) and x,(1), we set

x;(0) x,(1) 

0 0 
1 1

The remaining entries are determined in the same way as in Theorem 1 so that it 

will be consistent with functional dependencies of (1) and (2). 

   Then we can see that C is dynamically satisfiable if Tc is dynamically recoverable 

under Fc. It is not hard to see that this transformation can be done using log space ^ 

   EXAMPLE 3.6. Consider the formula C=(x(0)+.e(1)+y(0)). Then Fv consists of 

x(0)[0]--> (0)[0], y(0)[0]-y(0)[0], x(1)[0]—z(1)[0], y(1)[0]-y(1)[0], x(0)[11—x(1)C01, 

y(0)[1]—*y(1)[0], and {x(0)[0], x(1)[0], y(0)[011--,(x(0)±,T(1)±y(0))[0]. 
   The incomplete table T c is :
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 x(0)x(0) y(0) y(0) x(0)+x(1)+y(0) x(1) Z(1) y(1) y(1) 

{0, 1} {0, 1} {0, 1} {o, 1} 1{0, 1} {0, 1} {0, 1} {0, 1} 

01 0 110 1 01 

10 1 011 0 10 

01 0 111 0 01 
01 1 011 0 01 

01 0 110 1 01 

01 1 010 1 01 

10 0 111 0 01 
10 1 011 0 01 

10 0 110 1 01 

10 1 010 1 01 

01 0 110 1 01 
10 1 011 0 10

RENIARK. As in Section 2, we may consider the unique dynamic recoverability for 

infinite type incomplete tables. However, it is not difficult to show that the complexity 

of the unique dynamic recoverability is the same as that shown in Section 2.

       5. CONCLUDING REMARKS AND FURTHER RESEARCH 

   In this paper we showed that in general the recovery problems are computationally 

hard. However, the problem of recovery refuses to vanish at the sound of this 

fascinating word. How can we cope with this problem ? One approach to this pro

plem is to use the idea of approximation algorithm. We believe that we can discuss 
the recovery problem in the following setting and apply the techniques from approxi

mation algorithms. 

   Each information has some cost. The problem is : Given an incomplete infor

mation X, then recover the incomplete information X to a complete information Y so 

as to minimize or maximize the cost of Y. 

   With respect to the above problem, there should be an assumption that every 

incomplete information is at least easily recovered to a complete information and it is 

not a good idea to stick to "recoverability" as is discussed in this paper. 

   Another approach we would like to propose is the recovery with knowledge bases, 

that is, to recover the lacking information using some knowlege bases. Through the 

help of knowlege bases, we should gain the computational easiness of recovery pro

cedures in addition to the advantage for finding lost information. For this idea, we 

may consider polynomial time bounded oracle Turing machines as a model of recovery 

machines. Oracles here are considered as knowledge bases and polynomial means 

computational easiness. In Section 1, the instances of the recovery problem are in

complete tables and functional dependencies. We can modify this problem as follows : 

The incomplete tables are used in the same way. But each functional dependency is
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associated with a function specification symbol. As a knowledge base, we have a 

collection of functions that correspond to the function specification symbols. A 

recovery procedure makes queries to the knowledge base. We think this approach is 
natural. However, at present, we do not have any real examples appropriate for this 

framework and we have not analysed what problems will arise. 

   In Section 2, we showed that the unique recoverability problem for incomplete 

tables of infinite type is solvable in polynomial time but the problem for finite type 
incomplete tables remains hard. We also considered the redundancy minimization 

problem. We believe that problems arising from incomplete information recovery are 
deeply related with information redundancy. From this point of view, there can be a 

research which deals with the connection between the information recovery and the 
information redundancy. 

   Throughout this paper, we were concerned with the relational model of data and 

functional dependency. However, there is no reason why we must remain in this 
model and in this dependency. We just chose and studied the relational model and 

functional dependency as a first step toward the theory of incomplete information 

recovery. In literatures, various kinds of dependencies for relational model are 

introduced, for instance, multivalued dependency, mutual dependency, and transitive 

dependency (Paredaen (1980)). We are now in the process of studying these dependen

cies in connection with incomplete information recovery. 

   Furthermore, we can regard the spelling correction problem (Peterson (1980)) as 
one of the incomplete information recovery problems. In this case, information incom

pleteness means "error". There are several kinds of errors occurring in spelling 
correction, for example transmission error, author ignorance, typographical error etc. 

What we should do for this problem is to find a "best possible" text from a given 
text which possibly contains errors by using the knowledge about error generation 

processes and the context of the text. Usually editdistance or something similar to 
this is used as a measure of "best possibility" (Kashyap and Oommen (1981)). By 

using measures of this kind, we may consider optimal spelling correctors. As is 

indicated in this spelling correction problem, we need a powerful theory which can 

deal with recovery with optimality in nonnumeric data processing. This possibility is 

suggested in Traub and Wazniakowski (1981). We think there are many problems to 
be studied in this field.

                   ACKNOWLEDGEMENTS 

   The authors would like to express our gratitude to colleagues at Research Institute 

of Fundamental Information Science at Kyushu University for helpful discussion. We 

would also thank Prof. Sueo limori for sending us some useful papers.



Recovery of incomplete tables under functional dependencies41

                                 References  

[  1  ] Axo, A. V., J. E. HOPOROFT, and J.D. Ullman (1974), The Design and Analysis of Computer 
     Algorithms, AddisonWesley. 

[ 2 ] CODD, E. F. (1970), A relational model of data for large shared data banks, Comm. ACM 
     13, 377-397. 

[ 3 ] CODD, E. F. (1971), Further normalization of the database relational model, Courant Com
     puter Science Symposia 6, "Data Base Systems," New York, Prentice-Hall, 33-64. 

[ 4 ] COOK, S. A. (1974) , An obserbation on timestorage trade-off, J. Comput. System Sci. 9, 
     308-316. 

[ 5 ] GAREY, M. R. and D. S. JOHNSON (1979), Computers and Intractability, W.H. Freeman and 
     Company, San Francisco. 

[ 6 ] JAEGERMANN, M. (1978, 1979), Information storage and retrieval systems with incomplete 
     information I II, Fundamenta Inform. 2, 17-41, 141-166. 

[ 7 ] KASHYAP, R. L. and B. J. OOMMEN (1981), An effective algorithms for string correction 
     using generalized edit distances, Inform. Sci. 23, 123-142. 

[ 8 ] LINGAS, A. (1978), A PSPACEcomplete problem related to a pebble game. Proc. of the 
     Fifth Colloquium on Automata, Languages and Programming (Lecture Notes in Computer 

     Science 62) G. Ausiello and C. Bohm, Ed., 300-321. 
[ 9 ] LIPSEI, W. JR. (1979), On semantic issues connected with incomplete information databases, 

     ACM Trans. on Database Systems 4, 262-296. 

[10] LIPSKI, W. JR. (1981), On data bases with incomplete information, J. Assoc. Comput. 
     Mach. 28, 41-70. 

[11] NAKAMURA, A. (1981), On the monadic predicate logic of incomplete information, Project 
     Reprot "Knowledge Representations and Their Application to Information RetrievaI," S. 

     Arikawa, Ed., 291-300. 

[12] ONO, H, and A. NAKAMURA (1980), Decidability results on a query language for data 
     bases with incomplete information, Proc. of the Ninth Int. Symp. on Mathematical Founda

     tions of Computer Science, P. Dembinski, Ed., SpringerVerlag, 452-459. 

[13] ORLIN, J. B. (1981), The complexity of dynamic languages and dynamic optimization prob
    lems, Proc. of the 13th ACM Symp. on Theory of Computing, 218-227. 

[14] PAREDAEN, J. (1980), Transitive dependecies in a database scheme, RAIRO Informatique/ 
     Computer Science 14 n° 2, 149-163. 

[15] PETERSON, J. L. (1980), Computer Programs for Spelling Correction, Lecture Notes in 
     Computer Science 96, SpringerVerlag. 

[16] STOCKMEYER, L. (1977), The polynomial-time hierarchy, Theoret. Comput. Sci. 3, 1-22. 
[17] TRAUB, J. F. and H. WAZNIAKOWSKI (1980), A General Theory of Optimal Algorithms, 

     Academic Press. 

[18] VASSILIOU, Y. (1980), Functional dependencies and incomplete information, Proc. of Int. 
     Conf. on Very Large Data Bases, 6th, 260-269. 

Communicated by S. Arikawa


