PARAMETER IDENTIFICATION FOR NONSTATIONARY NONLINEAR SYSTEMS

Sunahara, Yoshifumi
Kyoto Institute of Technology

Fukuda, Tokuo
Osaka University

http://hdl.handle.net/2324/13333

出版情報: Bulletin of informatics and cybernetics. 20 (1/2), pp.11-24, 1982-03. Research Association of Statistical Sciences
バージョン: published
権利関係:
PARAMETER IDENTIFICATION FOR NONSTATIONARY NONLINEAR SYSTEMS

By

Y. SUNAHARA* and T. FUKUDA**

(Received October 16, 1981)

Abstract

In this paper, a method is presented for modelling a class of nonlinear systems which involves time-varying parameters. The system model proposed here is a type of nonlinear difference equation, where unknown parameters are assumed to be linearly involved in the system model.

The principal line of attack is to assume that the nonlinear time-varying function in the system can be expanded into the M known functions with unknown constant coefficients.

First, the estimation process of unknown parameters is given by using the least squares method. Secondly, consistency properties and asymptotic normality conditions of the estimator are shown. Finally, two numerical examples are shown in order to demonstrate asymptotic properties of the estimator derived here.

1. Introduction

Up to the present time, the stochastic system modelling has been widely investigated by many time series analysts, system engineers and economists. Such phases are observed by literatures [1]~[4]. It may be fair to say that most of the previous works have been carried out within the framework of linear stationary models. However, in modelling real data, we have often encountered such data whose outstanding features are that it may have non-Gaussian distribution, nonstationarity or that it may have both non-Gaussianity and nonstationarity. It is obvious that such data mentioned above are not well modelled by a stationary linear model whose input disturbance is Gaussian.

Restricting to works of the system modelling by using either stationary nonlinear models or nonstationary linear ones, the investigation has gradually become popular. For instance, in relation to the stationary nonlinear models, Netravari and De Figueirado [5] presented the consistent estimators of stationary nonlinear systems by using the stochastic approximation technique. Robinson [6] and Sunahara, et al. [7] presented the consistent estimators of interesting classes of nonlinear MA models by using moment methods. Furthermore, Poznyak [8] proved the consistency of estimators of

* Kyoto Institute of Technology, Matsugasaki, Kyoto 606, Japan.
** Osaka University, Suita, Osaka 565, Japan.
nonlinear regression models by using the least squares method. On the other hand, Lee [9], and Kozin and Nakajima [10] proposed the consistent estimators of linear time-varying models.

In this paper, introducing a class of nonstationary nonlinear models, a method is presented for identifying unknown parameters and asymptotic properties are investigated.

Throughout this paper, we shall use standard notation and terminology; the mathematical expectation is denoted by $E\{\cdot\}$, and the conditional one conditioned on "*" by $E\{\cdot|*\}$. The prime denotes the transpose of a vector or a matrix, and $e_i (i=1, 2, \cdots)$ denote constants.

2. Nonstationary Nonlinear Model

Let $\{y_k; k=0, 1, 2, \cdots\}$ be the observed n-dimensional discrete output data and assume that the process $\{y_k\}$ actually comes from the following nonstationary nonlinear input/output relation,

\[y_{k+1} - y_k = \phi_k(\theta, y_k) + B_{k+1}e_{k+1}, \quad y_0: \text{initial constant,} \]

where B_{k+1} is the $n \times m$ known matrix and e_k is an m-vector unobservable input noise process which satisfies the following basic assumption:

[A.1] Let $\mathcal{F}_k (k=1, 2, \cdots)$ be the increasing σ-algebra generated by the sequence $\{e_i ; i=1, 2, \cdots, k\}$. Then $\{e_k\}$ satisfies

\[
\begin{align*}
E\{e_k | \mathcal{F}_{k-1}\} &= 0 \quad \text{w.p.1} \\
E\{e_ke_k' | \mathcal{F}_{k-1}\} &= \sigma^2 I_m \quad \text{w.p.1,}
\end{align*}
\]

where $\sigma^2 I_m$ is the unknown variance of $\{e_k\}$. Furthermore, the time-varying nonlinear function $\phi_k(\theta, y_k)$ is, in this paper, assumed to be

\[\phi_k(\theta, y_k) = \phi_0(y_k) + \sum_{j=1}^{M} \theta_j \phi_j(y_k), \]

where $\{\phi_i(y_k) ; j=1, 2, \cdots, M\}$ are known time-varying functions of y_k, and $\{\theta_j ; j=1, 2, \cdots, M\}$ are unknown scalar constant parameters.

From (2.3), it is obvious that the system model (2.1) is a nonstationary nonlinear model. Thus, the problems are (i) to estimate the unknown parameters $\{\theta_j\}$ and (ii) to investigate asymptotic properties of the estimators.

3. Parameter Identification

Using the observation data $Y_N \triangleq \{y_1, y_2, \cdots, y_N\}$, the estimator $\hat{\theta}_N \triangleq [\hat{\theta}_1, \cdots, \hat{\theta}_M]'$, of $\hat{\theta} \triangleq [\hat{\theta}_1, \cdots, \hat{\theta}_M]'$ is obtained by minimizing

\[L_N(\theta) \triangleq \sum_{k=0}^{N} [y_{k+1} - y_k - \phi_k(\theta, y_k)] [y_{k+1} - y_k - \phi_k(\theta, y_k)]' \]

with respect to $\theta \triangleq [\theta_1, \cdots, \theta_M]'$. The minimum value of $L_N(\theta)$ is easily obtained by
setting \(\partial L_N(\theta) / \partial \theta = 0 \) because of the quadratic form of (3.1) with respect to \(\theta \). Hence, defining \(s_N \) and \(Q_N \) as the \(M \)-vector and \(M \times M \) matrix whose the \(i \)-th element and \((i, j) \)-th component are respectively given by

\[
s_i(N) = \sum_{k=0}^{N} (y_{k+1} - y_k - \phi_{i,k}(y_k))' \phi_i, k(y_k)
\]

\[
q_{ij}(N) = \sum_{k=0}^{N} \phi_{i,k}(y_k)' \phi_{j,k}(y_k),
\]

we have

\[
s_N = Q_N \hat{\theta}_N.
\]

In order to avoid a numerical difficulty due to the singularity of \(Q_N \), we introduce a matrix \(\Gamma_N \) defined by

\[
\Gamma_N = [Q_N + \rho I_M]^{-1}
\]

where \(\rho \) is an arbitrary small positive constant given a priori. Therefore, by using this newly introduced matrix \(\Gamma_N \) instead of \(Q_N^{-1} \), the unknown parameter vector \(\theta \) is uniquely estimated by

\[
\hat{\theta}_N = \Gamma_N s_N.
\]

Invoking the matrix inversion lemma [11], we have the recursive version of (3.6) by using (3.3) to (3.6) as follows:

\[
\theta_N = \theta_{N-1} + \Gamma_N F_N [I + F_N \Gamma_{N-1} F_N]^{-1} [y_{N+1} - y_N - \phi_{N, N}(y_N) - F_N \hat{\theta}_{N-1}],
\]

\[
\theta_0 = \Gamma_0 s_0,
\]

\[
\Gamma_N = \Gamma_{N-1} F_N [I + F_N \Gamma_{N-1} F_N]^{-1} F_N \Gamma_{N-1},
\]

where \(F_N \) is defined by

\[
F_N \triangleq [\phi_{1, N}(y_N), \cdots, \phi_{M, N}(y_N)]'.
\]

4. Consistent Property of Estimators

First, define the estimation error \(\tilde{\theta}_N \) by

\[
\tilde{\theta}_N \triangleq \hat{\theta} - \theta_N.
\]

Then, from (3.6), it follows that

\[
\tilde{\theta}_N \triangleq \theta - \Gamma_N s_N.
\]

Furthermore, from (2.1), (2.3), (3.3) and (3.5), we have

\[
s_N = (\Gamma_N - \rho I) \hat{\theta} + \sum_{k=0}^{N} F_k B_{k+1} \varepsilon_{k+1}.
\]

Hence, substituting (4.3) into (4.2), the estimation error \(\tilde{\theta}_N \) can be decomposed as follows:

\[
\tilde{\theta}_N = \rho \Gamma_N \hat{\theta} - \Gamma_N \sum_{k=1}^{N} F_k B_{k+1} \varepsilon_{k+1}.
\]
In the following, we concentrate our attention to prove that \(\hat{\theta}_N \) converges to zero w. p. 1 in two cases of the single parameter and the multi parameter.

4.1. Single-parameter Case

Let us restrict first our attention on the simplest case, i.e., the case where \(\hat{\theta} \) is scalar. In this case, \(\phi_k(\theta, y_k) \) and \(\Gamma_k \) defined in Chapters 2 and 3 yield respectively

\[
\phi_k(\theta, y_k) = \phi_k(y_k) + \hat{\theta} \phi_k(y_k) \quad \text{(n-vector)}
\]

\[
\Gamma_N = \left[\sum_{k=0}^{N} \left[\phi_k(y_k) \right]' \phi_k(y_k) + \rho \right]^{-1} \quad \text{(scalar)}.
\]

Then, we have the following theorem.

THEOREM 1. With [A.1], assume that

(C.1) \(\|B_k\| \) is uniformly bounded,

(C.2) for any \(\kappa \in \mathbb{R}^n \), there exists \(\varepsilon > 0 \) which satisfies

\[
\limsup_{k \to \infty} P \left\{ \frac{1}{N} \sum_{k=N}^{N+1} \left[\phi_k + B_k z_{k+1} \right] \geq \varepsilon \right\} > 0.
\]

Then,

\[
\hat{\theta}_N \to \hat{\theta} \quad \text{as } N \to \infty \quad \text{w. p. 1}.
\]

The proof of this theorem is given in Appendix 1.

4.2. Multi-parameter Case

First, define

\[
\tilde{\phi}_k(\theta, z) = \phi_k(\theta, z).
\]

Then, the following conditions are sufficient to prove the consistency of the estimator \(\hat{\theta}_N \) in the multi-parameter case;

(C.3) \(\tilde{\phi}_k(\theta, z) \) satisfies the uniform Lipschitz condition and is bounded at the initial time \(k=0 \), i.e., for all \(z_1, z_2 \in \mathbb{R}^n \) and for all \(\theta \in \mathbb{R}^n \)

\[
\tilde{\phi}_k(\theta, z_1) - \tilde{\phi}_k(\theta, z_2) \leq c_3 \| z_1 - z_2 \|
\]

and furthermore, we assume \(c_3 < 1 \), which implies that the system (2.1) is stable;

(C.4) the functions \(\{ \phi_{i, k}(\theta, \cdot) ; i=1, \ldots, M \} \) defined in (2.3) satisfy the uniform Lipschitz condition and are uniformly bounded at \(k=0 \), i.e.,

\[
\| \phi_{i, k}(\theta, z_1) - \phi_{i, k}(\theta, z_2) \| \leq c_3 \| z_1 - z_2 \|
\]

\[
\| \phi_{i, k}(\theta, 0) \| \leq c_4
\]

and for all \(\lambda \in \mathbb{R}^n \),

\[
\limsup_{N \to \infty} \frac{1}{N} \sum_{k=0}^{N} E \left\{ F_k(\lambda + B_{k+1} z_{k+1})[F_k(\lambda + B_{k+1} z_{k+1})]' [F_k] \right\} \geq c_5 \right\} > 0, \quad \text{w. p. 1.}
\]
Parameter identification for nonstationary nonlinear systems

(C.6) $E\{e_k e_k|\mathcal{F}_{k-1}\} \leq c_6 I$.

Theorem 2. Let \([A.1]\) hold. Furthermore, assume that the conditions (C.3) to (C.6) hold. Then

$$\hat{\theta}_N \to \theta \quad \text{as } N \to \infty \quad \text{w. p. 1.}$$

The proof of Theorem 2 is given in Appendix 2.

5. Asymptotic Normality of Estimators

In this chapter, in order to evaluate the asymptotic accuracy of the estimators, we show the asymptotic normality of the estimator $\hat{\theta}_N$ given in Chapter 3. For this purpose, we first define

\begin{align*}
(5.1) & \quad P_N \triangleq \Gamma_N^{-1} / N \\
(5.2) & \quad U_N \triangleq \frac{1}{N} \sum_{k=0}^{\infty} E\{F_k B_{k+1} B_{k+1} F_k^T\} \\
(5.3) & \quad \hat{\theta}_N \triangleq \hat{\theta} - \hat{\theta} - \rho \Gamma_N \theta .
\end{align*}

Then, the following theorem is obtained.

Theorem 3. Assume that \([A.1]\) and (C.3) to (C.6) hold. Furthermore assume that the following condition holds;

(C.8) $B_k B_k > 0$ for all $k = 1, 2, \cdots$.

Then

\begin{align*}
(5.9) & \quad \sqrt{N} U_N^{1/2} P_N \hat{\theta}_N \xrightarrow{\text{law}} N(0, I) \quad \text{as } N \to \infty ,
\end{align*}

where "law" denotes the convergence in law and $N(0, I)$ denotes the Gaussian probability distribution with zero mean and unit covariance.

The proof of this theorem is also given in Appendix 3.

6. Digital Simulation Studies

The purpose of this chapter is to examine numerically asymptotic properties of the estimators.

For both cases of the single- and the multi-parameter, the consistency and asymptotic normality of the estimator $\hat{\theta}_N$ are examined. First, a simple single-parameter case is shown.

Example 1. Consider the following mathematical model of a damped oscillation system,

\begin{align*}
(6.1) & \quad \ddot{x}(t) + a \text{sgn}(\dot{x}(t)) \dot{x}(t)^2 + b \dot{x}(t) = n(t), \quad x(0) = x_0 \text{ and } \dot{x}(0) = \dot{x}_0
\end{align*}

where $n(t)$ is a white Gaussian noise, and the coefficient a is unknown while b is known. The system model (6.1) can be represented by the following state space form by setting $x_1 \triangleq x$ and $x_2 \triangleq \dot{x}$:
Let \(\{t_k ; k=0, 1, \cdots \} \) be the partitioned time as \(\delta = t_{k+1} - t_k \). Then, by setting \(y_k = [y_{1,k}, y_{2,k}]' = [x_1(t_k), x_2(t_k)]' \), we have the following approximated discrete model for (6.2):

\[
\begin{bmatrix}
 y_{k+1} - y_k = \phi_0(y_k) + B e_{k+1} \\
 \phi(y_k) = \phi_0(y_k) + \phi_1(y_k)
\end{bmatrix}
\]

where \(\phi(y_k) \triangleq \phi_0(y_k) + \phi_1(y_k) \). It is easily verified that the system model (6.3) satisfies all conditions in Theorem 1. In digital simulation experiments, the time interval \(\delta \) was set as \(\delta = 0.01 \) and the true
value of $\theta = -a$ was set -0.3. The values of known constant b and the covariance of c were set respectively 0.1 and 0.2. With these values of parameters, the output sequence of $y_{1,k}$ was obtained by simulating (6.2) on the digital computer, and $y_{2,k}$ is also obtained by numerically differentiating $y_{1,k}$. Sample paths of $y_{1,k}$- and $y_{2,k}$-processes are depicted in Fig. 1. Figure 2 shows the convergence property of the estimator $\hat{a}_N(= -\hat{\theta}_N)$. The histogram of 100 sample runs of $\hat{\theta}_N$ at $N=3000$ is depicted in Fig. 3 in order to show the asymptotic normality of $\hat{\theta}_N$.

EXAMPLE 2. A slightly complexed system is examined which is known as a model of the rolling motion of a ship [12].

$$\ddot{x}(t) + \alpha \dot{x}(t) + \beta g(x(t)) = n(t), \quad x(0) = x_0 \text{ and } \dot{x}(0) = x_0$$

where α and β are unknown constant parameters. As a model of the ship rolling motion, the function $g(x)$ is given by $g(x) = 1 + \gamma x^3$. However, in order to satisfy the conditions (C.3) and (C.4), we assume
Fig. 4. Sample runs of y_1, k and y_2, k processes of Example 2.

Fig. 5. Sample runs of the estimated $\hat{\theta}_1$ and $\hat{\theta}_2$.
Parameter identification for nonstationary nonlinear systems

mean=-8.1 cov. = 0.5

mean=-4.0 cov. = 0.2

Fig. 6. The histograms for \(\theta_{1,N} \) and \(\theta_{2,N} \) at \(N=3000 \) where the dotted lines denote the fitted normal curves.

\[
g(x) = \begin{cases}
1 + \gamma \mu & \text{for } \|x\| \geq \mu \\
1 + \gamma x^2 & \text{for } \|x\| \leq \mu
\end{cases}
\]

where \(\gamma \) and \(\mu \) are given constants. By the same procedure as in Example 1, we have the following discrete state space model for (6.5),

\[
\begin{cases}
y_{k+1} - y_k = \phi_b(\hat{\theta}, y_k) + B e_{k+1} \\
\phi_b(\hat{\theta}, y_k) \triangleq \phi_{0,b}(y_k) + \hat{\theta}_1 \phi_{1,b}(y_k) + \hat{\theta}_2 \phi_{2,b}(y_k)
\end{cases}
\]

where \(\hat{\theta} \triangleq [-\beta, -\alpha]' \), \(B \triangleq [0, 1] \). Furthermore, \(\phi_{0,b}(y_k) \) to \(\phi_{2,b}(y_k) \) are respectively given by
where we added $-\varepsilon \delta (z > 0)$ to the (1, 2)-th component of $\phi_3, k(y_k)$ in order to satisfy the condition (C.5). The selected true values of θ_1, θ_2 and σ^2 were set respectively as -8.0, -4.0 and 1.0. The sample paths of $y_{1,k}$ and $y_{2,k}$ are depicted in Fig. 4. The convergence features of $\theta_{1,N}$ and $\theta_{2,N}$ are shown in Fig. 5 and the histograms of 100 sample runs of $\theta_{1,N}$ and $\theta_{2,N}$ at $N=3000$ are shown in Fig. 6.

7. Conclusions

A method has been presented for modelling a class of nonstationary nonlinear systems which could be expected to perform a good fit to real data by using a small number of parameters.

The key assumption in this paper is that the nonlinear time-varying function can be well approximated by the series of M known functions with unknown constant coefficients.

The estimator of unknown parameters is obtained by using the least squares method. Both consistency and asymptotic normality of the estimator have been proved by using martingale properties. It should be emphasized that in the case of one unknown parameter, the consistency of the estimator holds without stable conditions, while in the case of many unknown parameters, the stability conditions due to the concept of the bounded inputs bounded outputs are required.

The present approach may be expanded to the case where the unknown input covariance is required to be estimated. That is, let θ_N^2 be the estimate of input covariance σ^2. The estimator is given by

$$\hat{\theta}_N = \frac{1}{mN} \sum_{k=0}^{N} \sum_{k=0}^{N} \left[\frac{y_{k+1} - y_k - \phi_k(\theta_k, y_k)}{mN} \right] B_{k+1} \left[\frac{y_{k+1} - y_k - \phi_k(\theta_k, y_k)}{mN} \right]$$

if B_{k+1} exists, where

$$\tilde{B}_{k+1} = [B_{k+1} B_{k+1} B_{k+1}]^{-1}.$$

Acknowledgement

The authors wish to thank Associate professor Akira Ohsumi at Kyoto Institute of Technology for his useful discussions and comments.

APPENDIX 1. Proof of Theorem 1

In order to prove Theorem 1, we need the following lemma.

Lemma 1. Let [A.1] and (C.2) hold. Then the following scalar quantity h_N defined by

$$h_N = \frac{1}{mN} \sum_{k=0}^{N} \sum_{k=0}^{N} \left[\frac{y_{k+1} - y_k - \phi_k(\theta_k, y_k)}{mN} \right] B_{k+1} \left[\frac{y_{k+1} - y_k - \phi_k(\theta_k, y_k)}{mN} \right]$$

if B_{k+1} exists, where

$$\tilde{B}_{k+1} = [B_{k+1} B_{k+1} B_{k+1}]^{-1}.$$
Parameter identification for nonstationary nonlinear systems

(A.1) \[h_N = \sum_{k=0}^{N} F_k B_{k+1} e_{k+1} \quad (N=0, 1, \ldots), \quad (h_N=0 \text{ for } N<0) \]

converges w.p. 1 to some random variable \(h \) with the property \(E\{h^2\} < \infty \).

PROOF. Since both \(F_k \) and \(\Gamma_k \) are \(\mathcal{F}_k \)-measurable, it is easily verified that \(\{h_N, \mathcal{F}_N+1\} \) is a martingale. From (A.1), (C.1) and (4.6), we have

\[
E\{(\Gamma_k^2 B_k e_{k+1})^2\} \leq c_1 < \infty
\]

\[
E\{(\Gamma_k^2 B_{k+1} e_{k+1})^2 | \mathcal{F}_k\} \leq c_2 \sigma^2 (\Gamma^{-1}_k - \Gamma_k)
\]

where \(\Gamma_k^2 (\Gamma^{-1}_k - \Gamma^{-1}_j) \leq \Gamma^{-1}_j - \Gamma_j \) has been used. Hence

\[
E\{h_N^2\} = E\{E\{(\Gamma_k^2 B_k e_{k+1})^2 | \mathcal{F}_k\}\} < \infty
\]

\[
\leq c_2 \sigma^2 (\Gamma_0 - E\{|\Gamma_N\}) + c_1 \leq c_2 \sigma^2 (Q_0 + \rho) + c_2
\]

which means that \(\{h_N, \mathcal{F}_N+1\} \) is the martingale bounded in \(L^2 \). Therefore from the \(L^2 \) martingale convergence theorem (see Loeve [13] p. 396), we have \(h_N \to h \) w.p.1 as \(N \to \infty \).

PROOF OF THEOREM 1: By using Lemma 1, from (4.4) it follows that

(A.2) \[
\theta_N = \rho \Gamma_N \hat{\theta} - \sum_{k=1}^{N} \Gamma_k F_k F_k' (h-h_{k-1}) - (h_N-h) - \Gamma_N
\]

From (3.5), we have

(A.3) \[
\sum_{k=1}^{N} |\Gamma_k F_k F_k'| = \sum_{k=1}^{N} \frac{F_k F_k'}{\sum_{i=0}^{N} F_i F_i'} < 1
\]

and \(\Gamma_k F_k F_k' \to 0 \) w.p. 1 as \(N \to \infty \), provided that \(\Gamma_N \to 0 \) as \(N \to \infty \). Then, by using Toeplitz lemma (see Loeve [13] p. 238), it is easily proved that the 2nd term converges to zero w.p.1 as \(N \to \infty \). Furthermore, it is obvious that other terms of (A.2) converges to zero w.p.1, provided that \(\Gamma_N \to 0 \) as \(N \to \infty \). Hence the remaining problem is to prove that \(\Gamma_N \to 0 \) as \(N \to \infty \). Recalling that \(\Gamma_N^{-1} = \sum_{k=1}^{N} [\phi_{1,k}(y_k)]' \phi_{1,k}(y_k) + \rho \), for any \(l=1, 2, \ldots \), it follows that

(A.4) \[
P\{\sup_{l} |\Gamma_{N+l}^{-1} - \Gamma_N^{-1}| > \delta\} > P\{\|\phi_{1,N+l}(y_{N+l})\|^2 > \delta\}\]

Then, by invoking the elementary inequality, \(\inf_{a>N}(a_n-b_n) \leq \sup_{a>N} a_n - \sup_{a>N} b_n \) for any \(a_n \) and \(b_n \), from (A.4) we have

(A.5) \[
\liminf_{N \to \infty} P\{\sup_{l} |\Gamma_{N+l}^{-1} - \Gamma_N^{-1}| \leq \delta\}
\]

\[
\leq 1 - \limsup_{N \to \infty} P\{\|\phi_{1,k+1}(\kappa + B_{k+1} e_{k+1})\|^2 > \delta\} < 1
\]

where \(\kappa \equiv y_n + \phi_{1,k}(\theta, y_k) \) and the condition (C.2) has been used. Hence from the Cauchy criterion for the convergence w.p. 1 (see Lukacs [14] p. 45), \(\Gamma_N^{-1} \) diverges to infinity as \(N \to \infty \) w.p. 1, which means \(\Gamma_N \to 0 \) w.p. 1 as \(N \to \infty \).

APPENDIX 2. Proof of Theorem 2

Define the scalar random variables \(\gamma_N \) and \(\hat{\beta}_N \) by
respectively, where \(\alpha \) is an arbitrary vector such that \(\alpha \neq 0 \). Then, it is easily verified that \(\{ y^1, \mathcal{F}_k \} \) and \(\{ \beta^1, \mathcal{F}_{k-1} \} \) are martingales. Since it is easily verified that, with the assumption \([A.1], (C.1), (C.3), (C.4)\) and \((C.7)\)

\[
E \{ \| y_k \|^4 \} \leq c_8, \quad E \{ \| y_{k+1} \|^4 \} \leq c_{10},
\]

then from \((C.4)\) we have following evaluation:

\[
(A.8) \quad E \{ y_{N}^2 \} \leq \sigma^2 c_1 \| \alpha \|^2 (N+1)
\]

\[
(A.9) \quad E \{ \beta_{N}^2 \} \leq c_1 \| \alpha \|^2 (N+1).
\]

Recall here the following lemma by Khasminskii [15].

Lemma 2. Suppose that \(\{ u_k, \mathcal{F}_k \} \) is a martingale which satisfies \(E \{ u_k \} \leq c_1 k \), then \(u_k/k \rightarrow 0 \) w.p. 1 as \(k \rightarrow \infty \).

By regarding \(y^N \) or \(\beta^N \) and \(N \) as \(u_k \) and \(k \) respectively, we may have

\[
(A.10) \quad \frac{1}{N} y_N = \frac{1}{N} \sum_{k=1}^{N} \alpha' F_k B_{k+1} e_{k+1} \rightarrow 0 \quad \text{as } N \rightarrow \infty \quad \text{w.p. 1}
\]

\[
(A.11) \quad \frac{1}{N} \beta_N = \frac{1}{N} \sum_{k=1}^{N} \{ \alpha' F_k F_k' \alpha - \alpha' E \{ F_k F_k' | E_{k-1} \} \alpha \} \rightarrow 0 \quad \text{as } N \rightarrow \infty \quad \text{w.p. 1}
\]

From \((A.11)\), it is easily verified that, with \((C.5)\) and with the basic inequality, \(\inf_{n>0}(a_n-b_n) \leq \inf_{n>0}a_n - \inf_{n>0}b_n \),

\[
(A.12) \quad N y_N = \left[\frac{1}{N} \left(\sum_{k=0}^{N} F_k F_k' - \rho I_M \right) \right]^{-1} \leq c_1 I_M \quad \text{w.p. 1}
\]

for a sufficiently large \(N \). Hence, from \((A.10)\) and \((A.12)\), we can conclude that the 1st and 2nd terms in the R.H.S. of \((4.4)\) converge to zero w.p. 1 as \(N \rightarrow \infty \).

Appendix 3. Proof of Theorem 3

Define

\[
\begin{align*}
X_{N,i} & \equiv - \frac{1}{\sqrt{N}} \alpha' U_{N^{-1/2}} F_i B_{i+1} e_{i+1} \\
S_{N,i} & \equiv \sum_{j=0}^{i} X_{N,j} \\
\tilde{\sigma}_{N,i} & \equiv E \{ X_{N,i} | \mathcal{F}_{N,i-1} \} \\
v_{N,i} & \equiv \sum_{j=0}^{i} \tilde{\sigma}_{N,j}
\end{align*}
\]

where \(\mathcal{F}_{N,i-1} \) is the \(\sigma \)-algebra generated by \(\{ X_{N,1}, \ldots, X_{N,i-1} \} \). We introduce the following lemma by Brown and Eagleson [16].

Lemma 3. If \(\{ S_{N,k}, \mathcal{F}_{N,k}; k=1, 2, \ldots, N \} \) forms a martingale for each \(N \) and
Parameter identification for nonstationary nonlinear systems

(i) \(v_{N,N} \to 0 \) \(\text{as } N \to \infty \) in prob.

(ii) for each \(\varepsilon > 0 \)

\[
\sum_{k=0}^{N} E \{ x_{N,k}^2 I(|x_{N,k}| > \varepsilon) | \mathcal{F}_{N,k-1} \} \to 0 \quad \text{as } N \to \infty \text{ in prob.}
\]

Then

\[
S_{N,N} \to \text{law } N(0, \sigma^2) \quad \text{as } N \to \infty .
\]

Hence in order to prove Theorem 3, it is sufficient to show that all conditions in Lemma 3 are satisfied. Since, from (A.13),

\[
\sigma_{N,k}^2 = (\sigma^2 \alpha / U_N^{-1/2} \beta_{k+1}^2 B_{k+1}^2 / \beta_{k+1}^2 U_N^{-1/2} \alpha) / N,
\]

we have

(A.14)

\[
v_{N,N} = \| \alpha \|^2,
\]

which implies that \(v_{N,N} \) satisfies the condition (i) of Lemma 3. Since it is easily verified with the conditions of Theorem 3 that the expectation of \(x_{N,k}^2 \) is bounded, then it follows that

(A.15)

\[
E \{ x_{N,k}^2 I(|x_{N,k}| > \varepsilon) \} \leq E \{ x_{N,k}^2 I(|\sqrt{N} x_{N,k}| > \sqrt{N} \varepsilon) \} \to 0 \quad \text{as } k \to \infty .
\]

Hence by using (A.15) and the Markov inequality, we have

\[
P \{ \sum_{k=0}^{N} E \{ x_{N,k}^2 I(|x_{N,k}| > \varepsilon) | \mathcal{F}_{N,k-1} \} > \delta \}
\]

\[
\leq \frac{1}{\delta} \sum_{k=1}^{N} E \{ x_{N,k}^2 I(|x_{N,k}| > \varepsilon) \} \to 0 \quad \text{as } N \to \infty
\]

which implies the condition (ii) of Lemma 3.

References

