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                     Abstract 

   In this paper, a method is presented for modelling a class of 
nonlinear systems which involves time-varying parameters. The sys
tem model proposed here is a type of nonlinear difference equation, 
where unknown parameters are assumed to be linearly involved in 
the system model. 

   The principal line of attack is to assume that the nonlinear time
varying function in the system can be expanded into the M known 
functions with unknown constant coefficients. 

   First, the estimation process of unknown parameters is given by 
using the least squares method. Secondly, consistency properties 
and asymptotic normality conditions of the estimator are shown. 
Finally, two numerical examples are shown in order to demonstrate 
asymptotic properties of the estimator derived here.

1. Introduction 

   Up to the present time, the stochastic system modelling has been widely investigated 
by many time series analysists, system engineers and economists. Such phases are 

observed by literatures [1]-[4]. It may be fair to say that most of the previous works 

have been carried out within the framework of linear stationary models. However, in 

modelling real data, we have often encountered such data whose outstanding features 

are that it may have non-Gaussian distribution, nonstationarity or that it may have 

both nonGaussianity and nonstationarity. It is obvious that such data mentioned above 
are not well modelled by a stationary linear model whose input disturbance is Gaussian. 

   Restricting to works of the system modelling by using either staitonary nonlinear 

models or nonstationary linear ones, the investigation has gradually become popular. 

For instance, in relation to the stationary nonlinear models, Netravari and De Figueirado 

[5] presented the consistent estimators of stationary nonlinear systems by using the 
stochastic approximation technique. Robinson [6] and Sunahara, et al. [7] presented 

the consistent estimators of interesting classes of nonlinear MA models by using 

moment methods. Furthermore, Poznyak [8] proved the consistency of estimators of
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nonlinear regression models by using the least squares method. On the other hand, 

Lee [9], and Kozin and Nakajima [10] proposed the consistent estimators of linear 

timevarying models. 
   In this paper, introducing a class of nonstationary nonlinear models , a method is 

presented for identifying unknown parameters and asymptotic properties are investigated. 
   Throughout this paper, we shall use standard notation and terminology ; the mathe

matical expectation is denoted by E{.}, and the conditional one conditioned on "*" by 

E{. j*}. The prime denotes the transpose of a vector or a matrix , and ci(i=1, 2, • • •) 
denote constants.

   2. Nonstationary Nonlinear Model 

   Let { y k; k=0, 1, 2, • • • } be the observed ndimensional discrete output data and 
assume that the precess {y k} actually comes from the following nonstationary nonlinear 
input/output relation, 

(2.1) yk+1—yk=Cbk(& yk)+Bk+1ek+1, yo: initial constant, 

where B k+l is the n x m known matrix and ek is an mvector unobservable input noise 

process which satisfies the following basic assumption ; 

[A.1] Let J k(k=1, 2, • • •) be the increasing aalgebra generated by the sequence 

lei ; i=1, 2, • • •, k}. Then {ek} satisfies 

E {ek 19k_1} =0 w. p.1 
(2.2) 

E{ekek' FFk_1}=a2Im w.p.l, 

where a2Im is the unknown variance of {ek}. Furthermore, the timevarying nonlinear 

function 95k(B, yk) is, in this paper, assumed to be 

:x 

(2.3)¢k(8, k(y k)+ 0,0j , k(y k), 
=1 

where {c;, k(y k) ; j= 1,  2, • • • , M} are known timevarying functions of y k, and 
{B;; j=1, 2, • • •, M} are unknown scalar constant parameters. 

   From (2.3), it is obvious that the system model (2.1) is a nonstationary nonlinear 
model. Thus, the problems are (i) to estimate the unknown parameters 0,1 and (ii) to 
investigate asymptotic properties of the estimators.

   3. Parameter Identification 

   Using the observation data YNA { y 1i y2, • • • , y N} , the estimator ON"--10,,N, • • • , OM, N]', 

of B_[B 1, • • • , B.yt]' is obtained by minimizing 

N (3.1) LN(6)o [yk+l—yk—cbk(0, yk)1'Cyk+l—yk—cbk(0, yk)1 
k=0 

with respect to 0_-/=\ [01i • • •, 00. The minimum value of LN(B) is easily obtained by



Parameter identification for nonstationary nonlinear systems13

setting  aLN(8)j56=O because of the quadratic form of (3.1) with respect to 0. Hence, 

defining s ̀  and QN as the Al-vector and Aix M matrix whose the i-th element and 

(i, j)-th component are respectively given by 

            N
/,,//,, (3.2)si(A')AE Cy k+1—y k—¢o, k(y k)1'y~i, k(y k) 

k=0 

(3.3)ECc5i, k(y k)lc/,j, k(y k), 

we have 

(3.4)s N=QNBN • 

   In order to avoid a numerical difficulty due to the singularity of QN, we introduce 

a matrix I'v defined by 

(3.5)L N°CQN+pIM-1 

where p is an arbitrary small positive constant given a priori. Therefore, by using 

this newly introduced matrix I'N instead of Q7v1, the unknown parameter vector 0 is 
uniquely estimated by 

(3.6)BN°1 NsN • 

   Invoking the matrix inversion lemma [111, we have the recursive version of (3.6) 

by using (3.3) to (3.6) as follows : 

(3.7) ON= eN 1-HI'vFNCI+FNrN 1FN1 1[yN+1—yN—C60,N(YN)FN&N-ll, O0 10s0, 

(3.8) I'N=rv1—I'.viFNCI+FNrN1FNi1FNEN-i, I'o=CQo+pIM1-1, 

where FN is defined by 

(3.9)FN°—CQ1. N(yN), ..., ¢M, N(yN)1'

   4. Consistent Property of Estimators 

   First, define the estimation error 6N by 

(4.1)BNo0—ON. 

Then, from (3.6), it follows that 

(4.2)8NLO—TNSN 

Furthermore, from (2.1), (2.3), (3.3) and (3.5), we have 

                                           N (4.3)sN=(I'1—pI)6± FkBk+lek+l • 
k=0 

Hence, substituting (4.3) into (4.2), the estimation error O'N can be decomposed as follows : 

(4.4)67,v=prv8-Tv E FkBk+lek+l • 
k=1



14Y.  SUNAIIARA and T. Fu1icDA

   In the following, we concentrate our attention to prove that 67, converges to zero 

w. p. 1 in two cases of the single parameter and the multi parameter.

    4.1. Singleparameter Case 
   Let us restrict first our attention on the simplest case, i. e., the case where F is 

scalar. In this case, ók(0, y k) and r defined in Chapters 2 and 3 yield respectively 

(4.5)Q.k(& .yk)—¢o, k(yk)±8¢1, k(yk) (nvector) 

(4.6)Tv={E 1¢1. k(yk(y k)P}1(scalar) .                                          lk—o 

Then, we have the following theorem. 

THEOREM 1. With [A. 1], assume that 

(C.1) )I Bk)) is uniformly bounded, 

(C.2) for any KERn, there exists r>0 which satisfies 

limsup P{II01, k+l(K ~Bk+lek+1) > s} >0 . k— 
Then, 

B-4as N—,00 w. p. 1. 

   The proof of this theorem is given in Appendix 1.

    4.2. Multiparameter Case 

   First, define 

(4.7)¢k(0, z)oz±g5k(6, z) . 

Then, the following conditions are sufficient to prove the consistency of the estimator 
8N in the multiparameter case ; 

(C.3) ¢k(0, z) satisfies the uniform Lipschitz condition and is bounded at the initial 
time k =0, i. e., for all zl, z2 E Rn and for all 0 RM 

l ok(6, z1)—c3k(6, z2)~I ~c1E z1—z2II 

I)¢k(6, 0)11--e2 

and furthermore, we assume c,<1, which implies that the system (2.1) is stable ; 
(C.4) the functions {c. k(0, •);i=1, • • •, M} defined in (2.3) satisfy the uniform 
Lipschitz condition and are uniformly bounded at k =0 , i, e., 

II~~ k(0, zl)—¢ti k(0, 22)II <c (z1-z2( 

                k(0, ; 

(C.5)1, [for all 2E Rn, 

1 v ''       limsup
kE E {Fk(2+                           Bk+lek1)CFk(/±Bk+lek+l)]/)k} �c,I >0 , w. p. 1.
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(C.6)  E{(ekek)2igk-1} Cc6I. 
   THEOREM 2. Let [A.11 hold. Furthermore, assume that the conditions (C.3) to 

(C.6) hold. Then 

e N a as N—,Do w. p. 1. 

   The proof of Theorem 2 is given in Appendix 2.

   5. Asymptotic Normality of Estimators 

   In this chapter, in order to evaluate the asymptotic accuracy of the estimators, we 
show the asymptotic normality of the estimator B V given in Chapter 3. For this purpose, 
we first define 

(5.1)P`, TN 'IN 

1 N (
5.2)UN~NE E{FkBk+1Bk+1Fk} 

(5.3)ON 8—BN— pT'N0 . 

Then, the following theorem is obtained. 
   THEOREM 3. Assume that [A.11 and (C.3) to (C.6) hold. Furthermore assume that 

the following condition holds; 

(C.8)BkBk>0 for all k=1, 2, • • • . 

Then 
law (5

.9) -^1tiU:v1'2PA,BV~N(0, I) as N—÷00 , 

where "law" denotes the convergence in law and N(0, I) denotes the Gaussian probability 
distribution with zero mean and unit covariance. 

   The proof of this theorem is also given in Appendix 3.

   6. Digital Simulation Studies 

   The purpose of this chapter is to examine numerically asymptotic properties of 

the estimators. 

   For both cases of the single and the multiparameter, the consistency and asymptotic 

normality of the estimator d N are examined. First, a simple singleparameter case is 

shown. 

   EXAMPLE 1. Consider the following mathematical model of a damped oscilation 

system, 

(6.1) z(t)±a sgn (ti(t))i-(t)2±bx(t)=n(t), x(0)=xo and a(0)=zo 

where n(t) is a white Gaussian noise, and the coefficient a is unknown while b is known. 

The system model (6.1) can be represented by the following state space form by setting 

x1 x and x2:
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[X1-1-0 1 x1 0 (6.2)_+ n (t) . 
                     2 _—b —a sgn (x2)x2x2 1 

Let {tk ; =0, 1, } be the partitioned time as 0=tk+1—tk. Then, by setting 

yk°Cy1. k, y2 k]'=Cx1(tk), x2(tk)1', we have the following approximated discrete model 
for (6.2) ; 

(6.3)Y k+1--Y k=Cik(O,yk)+Bek+1 
¢k(e, k(y k)+(451, k(y k) 

where O —a, ek^On(tk), B[0, 11' and 00, k(3 k) and c1 k(yk) are respectively given 
by 

—Oy1, k0 (6
•4)00, k(y k)=, k(y k)= 

                       by2, k—5 sgn (y2, k)y2, k • 

It is easily verified that the system model (6.3) satisfies all conditions in Theorem 1. 
In digital simulation experiments, the time interval 5 was set as 5=0.01 and the true

Fig. 1. Sample runs of y1 , k and Y2,k processes of Example 1.
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Fig. 2. A sample run of the estimated a(=d).

mean=0.307 

 coy.  =0.006

Fig. 3. The histogram for ON at N=3000 where the dotted line 

              denotes the fitted normal curve.

value of 0 = — a was set —0.3. The values of known constant b and the covariance of 
e were set respectively 0.1 and 0.2. With these values of parameters, the output 
sequence of yl, k was obtained by simulating (6.2) on the digital computer, and y2, k is 
also obtained by numerically differentiating yi, k. Sample paths of yl, k and y2, k-proc
esses are depicted in Fig. 1, Figure 2 shows the convergence property of the estimator 
aN(=—B v).The histogram of 100 sample runs of eN at N=3000 is depicted in Fig. 3 
in order to show the asymptotic normality of 0 N. 

   EXAMPLE 2. A slightly complexed system is examined which is known as a model 
of the rolling motion of a ship [12]. 

(6.5)z(t)Eax(t)+ jSg(x (t))=n(t) , x(0)=xo and .0)= x0 

where a and 13 are unknown constant parameters. As a model of the ship rolling 
motion, the function g(x) is given by g(x)=1H-; x2. However, in order to satisfy the 
conditions (C.3) and (C.4), we assume
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(b) 
Fig. 4. Sample runs of yl , k and y2, k processes of Example 2.

Fig. 5. Sample runs of the estimated 01 and 02.
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 mean=-8,1 

cov. = 0.5

mean=-4 .0 

coy. = 0.2

Fig. 6. The histograms for ©1 v and ©2,N at N=3000 where the 
        dotted lines denote the fitted normal curves.

1±rI for 11.02?,a 
(6.6)g(x)= 

1-FYx2 for 1!x112-�p 

where Y and ,u are given constants. By the same procedure as in Example 1, we have 
the following discrete state space model for (6.5), 

tiYk+1—yk=gik(O, yk)+Bek+1 
(6.7) 

c3 k(0, yk)-cbo, k(yk)±O1 i, k(yk)+e2952, k(yk) 

where O4_[—P, —a]', Bo[6, 1]. Furthermore, 00, k(yk) to,2,k(yk)are respectivery 
given by
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oy2_ k  0 —eo
             (,:50. k(yk)— , ¢1. k(yk)— yk , 0 

_og(y1, k) 0  

                    0 
              Q2 k(yk)=, 

                                    ay2.k 

where we added—e6(s>0) to the (1, 2)-th component of 1, k();k) in order to satisfy 
the condition (C.5). The selected true values of ea, O2 and a2 were set respectively 
as —8.0, —4.0 and 1.0. The sample paths of y1, k and y2, k are depicted in Fig. 4. The 
convergence features of 01. N and 02, N are shown in Fig. 5 and the histograms of 100 
sample runs of 61. N and B2. N at N=3000 are shown in Fig. 6.

   7. Conclusions 

   A method has been presented for modelling a class of nonstationary nonlinear 

systems which could be expected to perform a good fit to real data by using a small 

number of parameters. 

   The key assumption in this paper is that the nonlinear timevarying function can 

be well approximated by the series of Al known functions with unknown constant 

coefficients. 

   The estimator of unknown parameters is obtained by using the least squares method . 
Both consistency and asymptotic normality of the estimator have been proved by using 

martingale properties. It should be emphasized that in the case of one unknown para

meter, the consistency of the estimator holds without stable conditions , while in the 
case of many unknown parameters, the stability conditions due to the concept of the 

bounded inputs bounded outputs are required. 

   The present approach may be expanded to the case where the unknown input 

covariance is required to be estimated. That is, let aN2 be the estimate of input 

covariance a2. The estimator is given by 

N 
aN0 

72.~ [Yk+l—yk—Ok(ek, yk)l Bk+1[yk—yk—Qk(Ok, yk)] 

if Bk+1 exists, where 

                               B k+1°CB k+1B k+1/i 1 •
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   APPENDIX 1. Proof of Theorem 1 

   In order to prove Theorem 1, we need the following lemma. 
   LEMMA 1. Let [A.11 and (C.2) hold. Then the following scalar quantity hN defined 

by
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(A.1) hN= O rkFkBk+lek+1 (N=O, 1, •••), (hN=O for N<O) 
                              k=0 

converges w. p. 1 to some random variable h with the property E {h2} < co. 
   PROOF. Since both Fk and rk are Fkmeasurable, it is easily varified that {h N, ¶"N+1} 

is a martingale. From [A.1], (C.1) and (4.6), we have 

E {(roF0Ble1)2}<_c,< 

E{(r;FJBJ+leJ+l)21 gJ} CC82a2(1J-1-r;) 

where r;2(r; 1-r;_1 1)<_rj_1-r; has been used. Hence 

              E {hN2} =E {E {(r;F;B;+lej+1)2 I g ;11 ±E {(roFoBle1)2} 

�c,202(roE{ry})+c7 c82a2/(Qo+p)+c8 

which means that {h v, ¶N+11 is the martingale bounded in L2. Therefore from the 

L2 martingale convergence theorem (see Loeve [131 p. 396), we have h N *h w.p.l as 

N-*oo. 

   PROOF OF THEOREM 1 : By using Lemma 1, from (4.4) it follows that 

(A.2)Bv= priv — rvFkFk'(h-h kl)(hN-h)-ry 
k=1 

From (3.5), we have 

NV                                        F kF k' 
(A.3)s I FNFkFk' I=  N<1          k=1k=1 E 

p 
1=0 

and PNFkFk' O w.p. 1 as N-*co, provided that EN—>0 as N-*co. Then, by using Toeplitz 
lemma (see Loeve [13] p. 238), it is easily proved that the 2nd term converges to zero 
w.p. 1 as N- oo. Furthermore, it is obvious that other terms of (A.2) converges to zero 
w.p. 1, provided that rv-30 as N oo. Hence the remaining problem is to prove that 

rN-->O as N-> 00 Recalling that ry-1= [¢1, k(yk)]'01, k(Yk)-T-p, for any 1=1, 2, ••• , it k-1 
follows that 

(A.4) P{supIry+11—rN-1I >5}>P{II01,N+1(YN+1)112>0} . 

Then, by invoking the elementary inequality, infm>N(a7,-bn)_ sup,,>Nafsup,l>Nbn for 

any an and bn, from (A.4) we have 

(A.5)liminf P{sup I rN+cl—TN-1 I <o} 
     4r~~ 1

/SS                    C1—limsup P{1101, k+l(/C±Bk+lek+1)112>b} <1 
                                      N-~ 

where K_yn±Qk(O, yk) and the condition (C.2) has been used. Hence from the Cauchy 
criterion for the convergence w.p. 1 (see Lukacs [141 p. 45), TN-' diverges to infinity 
as N-*co w.p. 1, which means FN--*O w.p. 1 as N co. 

    APPENDIX 2. Proof of Theorem 2 
    Define the scalar random variables TN and 13N by
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(A.6)1N° E a'FkBk+lek+l 
k=0 

(A.7) E a'(FkFk'—E {FkFk' I gk-i} )a 
k=0 

respectively, where a is an arbitrary vector such that a#0. 0. Then, it is easily verified 
that {TN, N} and {13N, N-1} are martingales. Since it is easily verified that, with 
the assumption [A.1], (C.1), (C.3), (C.4) and (C.7) 

E{Ilyk112} <_c9 i E{Il ykll4} -cio , 

then from (C.4) we have following evaluation : 

(A.8)E{rN2} C62ciilla112(N+1) 

(A.9)E{13N2} cl2llal12(N+1) . 

   Recall here the following lemma by Khasminskii [15]. 
   LEMMA 2. Suppose that {u k, 9 k} is a martingale which satisfies E {u 1,2} cc13k, then 

                                                                                 w.p. 1 as k—oo. 
   By regarding rN or t3N and N as u k and k respectively, we may have 

11v 
       /_ (A.10)NN k2a'FkBk+lek+1—> 0 asN---a9 w.p. 1 

                  N (A.11)N     1 13N=-oo[E{a'FkFk'a—a'E{FkFk'IEk_1}a}]—0 as N—>w.p. 1 

From (A.11), it is easily verified that, with (C.5) and with the basic inequality, 
infn>N(an—bn)<_infn>Nan—infn>Nbn, 

(A.12)NFN=L(EFkFk'+pIM)]1<c1,1IM w.p. 1                              N k=0 

for a sufficiently large N. Hence, from (A.10) and (A.12), we can conclude that the 
1st and 2nd terms in the R.H.S. of (4.4) converge to zero w.p. 1 as N--*co. 

   APPENDIX 3. Proof of Theorem 3 
   Define 

                        1 
                     xN,i— ~Na N i i+lei+i 

SN, kA E XN, i 

(A.13),i=o 
                          O N, k2 E{XN, k21 -N, k-1} 

VN, k2A E QN,i2 
i=0 

where 9. N, k_ i is the aalgebra generated by {x N, 1, • • • , xN, k-1} . We introduce the fol
lowing lemma by Brown and Eagleson [16]. 

   LEMMA 3. If {SN. k, 9N, k; k=1, 2, ••• , N} forms a matingale for each N and
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 (i) N y G2 (const.) as N--*oo in prob. 
   (ii) for each s>0 

EEIx iv, k2I(IxN,k>s)IgN,k-1}—~0 as N–,0 in prob. k=o 

Then 

SN,Nlaw N(0, a2) as N->oo . 

   Hence in order to prove Theorem 3, it is sufficient to show that all conditions in 

Lemma 3 are satisfied. Since, from (A.13), 

                          k2=/0 2aiUFiN-"kB k+1B k+1'1'k'U N1/2a)/N , 
we have\ lJ 

(A.14)VN, N2= IIa)I2 , 

which implies that UN, N satisfies the condition (i) of Lemma 3. Since it is easily 
verified with the conditions of Theorem 3 that the expectation of x N, k2 is bounded, 

then it follows that 

(A.15) E{xN,k2I(I xN,k1 >s)} <E{xN,k2I(I ^NxN,kl > k a)}  0 as k-4co 

   Hence by using (A.15) and the Markov inequality, we have 

               PI kE{xN,k2I(I xN,kl >r)IgN,k-i} I >5}                                     k=o 

1 N E{
xN,k2I(I xN,kl >s)}--->0 as N-400 

which implies the condition (ii) of Lemma 3.
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