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                Abstract

   A motorist drives his car along a one-way street toward his 
destination and looks for a parking place. If he finds an unoccupied 
parking place, he must decide either park there and walk the distance 
to his destination or continue driving expecting to find another op
portunity of parking nearer to the destination. Unoccupied parking 
places are assumed to appear in accordance with a Poisson process 
along the street. Also the location of the destination is a random 
variable with a known probability distribution. The objective of the 
optimal parking problem is to find a parking policy which minimizes 
the expected time to reach the destination. We derive the optimal 

parking policy and the minimum expected cost is obtained. Moreover 
a two-person game version is treated in which the objective of each 

player is to maximize the probability of being the first to reach the 
destination common to both players. The equilibrium strategy is 
derived explicitly.

1. Introduction 

   The parking problem was first presented by DeGroot [4 ; page 384]. A continuous

time version of the problem which we shall analyse in this paper can be described as 

follows : A motorist is driving his car along a one-way street toward his destination 
and is looking for a parking place. If he finds an unoccupied parking place, he must 

decide either park there and walk the distance to his destination or continue driving 

expecting to find another opportunity of parking nearer to the destination. Unoccupied 

parking places are assumed to appear in accordance with a Poisson process with arrival 
rate 2 along the street. Also the location of the destination is a random variable with 

a known cdf F(x), x>_0. 

   Let re [0, 1] represent the inverse of the relative speed of driving a car (compared 

with one on foot). Then the time duration spent to reach the destination is measured 

by 

(1.1)r(Distance by driving)+(Distance on foot) . 

The objective of the decision problem is to find a parking policy which minimizes the
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expected time to reach the destination. 
   In Section 2 we formulate the problem as an optimal stopping problem without 

recall. Since the underlying Markovian decision process satisfies the condition of the 

socalled  "  monotone case " (Chow, Robbins and Siegmund [2]) we shall derive an op
timal stopping policy as an OLA stopping principle. The expected time to reach the 

destination under the optimal parking policy is also obtained. 

   In Section 3 we consider a twoperson game version of the parking problem. The 

objective of each player in this game is to maximize the probability of being the first 
to reach the destination common to both players. The equilibrium strategy is derived 

explicitly.

2. Optimal Parking Problem and Its Solution 

   Our problem is an optimal stopping problem without recall. Define the state x to 

be the situation, in which the driver has driven x units of distance without passing 

through the destination, and an unoccupied parking place is just arrived at. If he has 

passed by the destination without having parked his car before this instant, his best 
decision hereafter is evidently to park at the first opportunity arrived since then and 

walk backwards to the destination. Hence we have only to find how to decide in state 

x defined above. Denote by V(x) the expected value of (1.1) obtainable by following 

an optimal policy starting from the state x. 
   Since we are assuming perfect detection of the destination, the posterior distribu

tion of its location has pdf : 

(2.1)f(t)/P(x), for t>x; and 0, for t<x. 

where F'(x)=f(x) and P(x)=1—F(x). Hence the "stop cost" at state x is 

(2.2)g(x)_=-.0 (t—x)dF(t)/P(x)=TF(x)/P(x) 

where TF(x)= r~ (t—x)dF(t) is the well-known meanshortage function (cf. DeGroot [4 ; Jx 
Section 13.4]). The " continuation outcome " at state x is derived by considering which 

of the two possible events, the next opportunity (abbr. by 0) and the detection of the 

destination (abbr. by D) comes earlier, i. e., 

(2.3) PV(x)=10(rs+V(x+s))P(x+s)Ae'sds/P(x) 

{r(t—x)+(r+1)2'} f(t)eA(tx)dt/P(x) 

V(x+s)P(x+s)2e-zsds/P(x)}-k(x), say. 

0 A bit of computation involving integration by parts gives 

(2.4) k(x)~o[rsP(x+s)-+-{2-'rs+22(r+1)}f(x+s)]2e-Asds/P(x)
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 =ic  r  e  '  "x'f(s)d  s/(2F(x))  , 

and we thus arrived at the optimality equation 

(2.5)V(x)=min{g(x), PV(x)} . 

   The optimal stopping problem we are treating is a Markov version of the mono

tone case of ChowRobbinsSiegmund [2 ; Section 3.5] and it can be solved by an ap

plication of the one-stage look-ahead (abbr. by OLA) policy, provided some regularity 
conditions are satisfied by the decision process. Let 

(2.6)B {x>_01g(x)_<_Pg(x)}, 

i. e., the set of states at which stopping immediately is at least as good as continuing 

for exactly one more transition and then stopping. It is known that if B is " realiza

ble ", i. e., Pr. {state eventually enters B} =1, and " closed ", i. e., Pr. {leave B at some 

finite time! currently in x E B} =0, then the first hitting time of B is the optimal stopping 
time. For rigorous proofs, see for instance Bojdecki [1] and Cowan and Zabczyk [3]. 

   We shall prove the following results. 

   LEMMA 2.1 The OLA stopping region B is given by 

(2.7)B= {x>_0' ¢(x)me' "x'dF(t)/F(x)>(1—r)/2} . 

   PROOF. From (2.2) and (2.3) 

g(x)-Pg(x) (-----)TF(x)<_~0TF(x+s)2e-'sds+F(x)k(x) . 
Furthermore, straightforward calculation gives 

°°TF(t=s)2e'sds=TF(x)-2 j (1—e2"x')dF(t). 
  „ox 

(For a proof use TG(z)=21e'(z>0); =21—z(z<0), if dG(x)/dx=2e-'x). Substituting 
these facts into (2.6) we obtain (2.7). ^ 

   Note that d(x) is the conditional probability that D comes earlier than 0, given that 

the process is currently in state x. We thus have 
   PROPOSITION 2.2. If the region B given by (2.7) is a non-empty interval [x*, A), 

where A may be infinity, then it is an optimal stopping region. 

   Hence if the above condition is satisfied it is optimal for the driver to park at the 

first opportunity arrived after he drives to the state x* or after detection of the des

tination, whichever comes earlier, where x* is a unique root of the equation 

(2.8)¢(x)e-'"x'dF(t)/P(x)=(1—r)/2 , 

or zero (in case of nonexistence of the root). 

   Table 1 below presents the corresponding Q(x) and the critical level x* for the 

various location distribution F(x) for which the set B becomes a non-empty interval 

[x*, A). 
   PROPOSITION 2.3. Let B given by (2.7) be an optimal stopping region. Then
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                                Table 1 

     Distribution of DestinationCritical Function 

(a) Deterministic : 
F(x)=1(x>1); =0(0_x<1). ¢(x)=e'(1-x) 

(b) Uniform : 
      F(x) =x, (0_<x<1) • ¢ (x) _ [1—eA(l-x))/; (1—x) 

(c) Triangular : 
F(x)=x2, (0�x�1).¢(x)=221[21+x—(1±;.1)e,iclx)/(1—x2) 

(d) Gamma : 

F(x)=1—(1+x)e x, (x>_0), ¢(x)_(1+A)1{(1±2)1+x}/(1+x) 

      with the condition (1—r) (1—r)/2< (1+ 2) -1.

g(x*)F(x*)/F(x)±21(1[r)(1—F(x*)/F(x)) 

(2.9)V(x)= +r(TF(x)—TF(x*))/F(x) ,x<x* 

                          g(x*),x>x* . 

   PROOF. From Proposition 2.2 and (2.5) we have 

                               PV(x), x<x* 
V(x)= 
                                   g(x), x?x*. 

For x < x* we have from (2.3) and (2.4). 

           V(x)=PV(x)=~~V(s)P(s)Ae2(sx)ds/F(x)+21(r±yh(x)) 
                                          x Multiplying both sides by P(x), and differentiating in x, we obtain the differential 

equation 

V'(x)=(V(x)21(11r))f(x)/P(x)—r . 

Integration gives 

(V(x)21(1±r))F(x)=rTF(x)--+c , 

where the integration constant c is explicitly determined by the relation V(x*)=g(x*). 

This gives the desired result. ^ 

   Let us check the validity of the equation (2.9) as follows. Define the z-level strategy 

for the driver as the one by which he parks his car at the first opportunity arrived 

after he drives to a fixed location z EEO, 00), or after detection of the destination, 

whichever comes earlier. The expected cost obtainable by following the z-level strategy, 
is defined to be the expected time until he reaches to the destination by following the 

strategy, and will be denoted by v(z). 

PROPOSITION 2.4. Suppose that the pdf satisfies 

(2.10)0(z)�(  12r---)f(z)/P(z)
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for all  z>_0 with F(z)>0. Then the expected cost v(z) is minimized at z=x*, where x* 
is a unique root of the equation (2.8). Moreover we have 

(2.11)min v(z)=(1—r)F(x*)g(x*)+),1(l+r)F(x*)+r. 
z_0 

where 1t1tdF(t). 
   PROOF. By the definition of the z-level strategy we have 

            v(z)=) {r(t+2-1) + A-1} f(t)dt 

                             0 f(t)dt[ { (rs+t—s)+. (rs+s—t)}2e-A (s-z)ds] . 
In the r.h.s. of the expression, the first (second) term represents the expected cost when 
D comes earlier (later) than driving to the location z. The whole expression of v(z) is, 

after a bit of calculation involving integration by parts, reduced to 

(2.12)v(z)=.l-1(1+r)+rp+(1—r)TF(z)2C'e'(`z)P(t)dt 

                                                                                       z 

   We thus have 

                     v'(z)=(1+r)F(z)2°°e-2 (tz)F(t)dt , 

                                                                    z and 

                     v"(z)=—(1+r)f(z)+22('~°
~JZe_2"z'f(t)dt 

   The condition v'(z)=0 gives 

                  (l+r)F(z)=2De-a "z)F(t)dt 

                                                          z 

                           =2[F(z)jz-e-.~"z'dF(t)] , 
                                                                         z which reduces to 

(2.13)¢(z)=e' (t2)dF(t)/F(z)=(1—r)/2 

The condition stated in the proposition guarantees v"(z)>0. If we substitute (2.13) into 

(2.12) then we obtain (2.11). This completes the proof. ^ 
   From (2.9) we have 

V(0+)=g(x*)F(x*)+21(1+r)F(x*)+r(p—TF(x*)) 

=(1—r)g(x*)F(x*)+21(1+r)F(x*)+r ,a 

since TF(x*)=g(x*)F(x*). Hence Proposition 2.4 gives V(0+)=min v(z), if the stated 
                                                                                                     z>0 

condition is satisfied by the pdf. 

   REMARK 1. An important case in which the condition (2.10) is satisfied is Example 

(a) in Table 1. In this case we have from (2.11),
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V(0±)=min r(z)=(1—r)(1—x*)+r=rx* ; 1—x* 
z-0 

and x* is given by 

                        x*=[1—A-1 log (2/(1—r))]+ . 

We can interpret this result as : The critical level of the optimal parking policy is de

termined such that it makes the expected time spent by following the optimal policy 

identical to r*x ; 1— x *, i.e., the time spent if we drive to x* and park there as if 
empty parking places were accessible everywhere along the street.

3. A TwoPerson Game Related to the Parking Problem 

   In this section we consider a twoperson game version of the parking problem in 

which the situation can be described as follows : There are two motorists each of whom 
is driving along a disparate one-way street toward a common destination and is look

ing for a parking place. Each motorist considers his decision problem in the conditions 

of the parking problem analysed in Section 1 in the case of degenerate location dis

tribution of the destination, i.e., F(x)=1, (x>_1); =0, (0_x<1). We assume that the 
Poisson processes for the players proceed independently with the identical arrival rate 

A. We call a " win " for each player the event in which he reaches the destination 

earlier than his opponent. If the two players reach the destination simultaneously, 

both of them are the winners. The goal of each player in the game is to maximize 

the probability that he becomes a single winner. 

   A strategy which prescribes parking at the first opportunity arrived after driving 

x units of distance will be called x-level strategy and will be denoted by as. The im

portance of the x-level strategies for a broad class of the optimal stopping problems is 
widely known (see, e. g. DeGroot [4 ; Chapter 13]). 

   Suppose that players I and II employ the strategy 6 x and a y with 0 < x<— y < 1, 
respectively. We don't need consider level strategies with the level greater than 1 

since they are uniformly dominated by the 1-level strategy. Denote by M1(ax, cry) 

player i's expected payoff, i. e. probability of win under the strategy pair ax-ay. Then, 
for 0�x�.3)�1,  we have 

(3.1) 1'111(6=                        x,ay)Ae 2<tx).d<s+(`)-y'dt2e-~<y x> . 
   In the r.h.s. of this equation, the first (second) term is the probability of I's win 

conditioned that the first opportunity for I after he drives x units of distance arrives 
before (after) driving to the location y. In the first term I's conditional win occurs 

only when II drives at least a distance of 

2—(1—r)t  (3
.2) s+(t)1+

r(�1, for all r E [0, 1) and t[0, 1]) 

and then walking back to the destination, if I's parking location is at t E. (x, y) This 

is readily obtained by solving the equation 

1—t=r(s —OH --s-1.
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In the second term in (3.1) we used the fact that if I's opportunity for parking has 

not arrived until he drives to y, the game reduces to the initial situation, with unit 
distance replaced by  1—y units of distance, but with structural symmetry in the game 

unchanged. 

   The payoff to I for 0 .3.1�x  can be found at once from the symmetry and con
stant-sum property (sum is unity) ofthe game. That is, 

(3.3)Wax,ay)=M2(uy, ax)=1—M1(ay, ax), 

where the last expression reduces to (3.1). 

   The unique equilibrium values are 1/2, 1/2 for the players. We shall prove the 

following 

   PROPOSITION 3.1. The common equilibrium strategy for each player is given by the 
x°-level strategy, where 

(3.4)x°=[1—(1---+r) log 2/(22)1 . 

   PROOF. To prove the proposition it is sufficient to show that 

(3.5)alhh(ax,0.,0)>O, for O x x° ,                        a x 

and 

                     aMl(ax°,a) 
                          >_ (3.6)a

yy0, for x°<y<1. 

Substituting (3.2) into (3.1) we obtain after some calculation 

(3.7)11/1(a, ay)=(2c)1e2A(1—c) {eA((12c)x+y)—eA(x+(120y)} _H(1/2)e2(y-x) 

for 0__xy<1, where cmr/(1+r). 

   Then noting that 

e2x°=2(1+r)12eAand eA(12c)x°2(1r)/2eA (1-2c) 

we can find after some simplification that 

                  ami(ax,ax0) _1A(1—x)(1+r)/22Ac(1—x) —(1—r)/2 (3.8)a
x=(r—1)e[2e21 

for 0 < x _,k7°. The factor inside the bold brackets is nonnegative if and only if 0�x  <_ x° 

and equals zero at x satisfying e2A(1—x)=2r, or 

x=1—r log 2/(22c)=1—(14-r) log 2/(22) . 

This shows the validity of (3.5). 

   Next we have to prove (3.6). We can easily find that aMi(ax°, ay)/ay, for x° <_ y _ 1, 

is identical to minus of r.h.s. of (3.8) with x replaced by y. Hence the validity of (3.6) 
is evident. This completes the proof of the proposition. C 

   In the rest of this section we shall treat a generalization to the nonsymmetric case, 

where the opportunities for the players arrive with different rates Al for I, and 22 for 

II. Consider the levelstrategy-pair ax-ay, with 0<x <_ y <1. Let 01 denote the first 

opportunity of parking for I after he drives his level distance, and 02 similarly for II.
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Then I can win in the following three cases: Case 1°.  01 comes at t E (x, y), and 02 

comes in the interval (s+(t), CO), where s+(t) is defined by (3.2). Case 2°. 01 comes at 
tE(y, 1), and 02 comes in (y, t)U(s+(t), 00), and Case 3°. 01 comes at tE(1, OG), and 

02 comes in (y, yVs_(t))U(t, ca), where s_(t) is defined by 

                     2—(1-1-r)t (3
.9) s _ (t)  1—r (_ 1, for all r[0, 1) and t[1, 00)) . 

Therefore the probability of I's win under the strategy-pair Q x-o y with 0 <_ xy<_1is 

(3.10) M1(6x, (7y)=.0 AieA1(tx).eA2(s+(t)-y)dt 
                            +~1AieA1(tx)dt[1_ ('s+(t)22e22(s-y)ds] 

                                                             t 

                                  Js+cy>21eA1(t_x)dt[1 — ('t 22eA2(8-y)ds]          1s ct) 

                                  +Ale-Al(tx).eA2ct-y)dt . 
                                       s+cy) 

In the r.h.s. of this equation, the first (second) term corresponds to Case 1° (2°), and 

the remaining two terms correspond to Case 3°. 
   The payoff to I for 0 <— y <— x 1 can be found from the constant-sum property of 

the game. That is, M1(o x, ay), for 0 < y <— x is unity minus the r.h.s. of (3.10), with the 

interchanges' 214-422 and x y. 

   PROPOSITION 3.2. Suppose that A1<22 without loss of generality. Then if the simul

taneous equations (3.18)(3.19) mentioned later in the proof have a unique root (1?, v), 

with 1<u<v<e, then the unique equilibrium strategy-pair is given by a7-6y, where 

x=1—log it and y=1—log v . 

Moreover we have M1(6.7, 60=(urv)-22. 

   PROOF. Substituting (3.2) and (3.9) into (3.10), and performing integrations and re

arrangements, we finally obtain, for

((0<_x—<y_<1,                              2122(22-20(1+n' ---- -{ il(1y))                                                                          x)+~2(1 (3.11)Ml(O x, ~y)=(2
1+A2)(21122)(121-22)e 

                       + ~1 e-A2fr (1.)+1-yi+  2 e2[1x+7(1-y)1           2
1-122121-22 

+  22 e21(Y-x) 2
1+22 

where r(1—r

n)/(1+r). [If 21=22=2, (3.11) reduces to (3.7) since r=1-2c]. Hence              a1V11(ax,ay) 2122e(21(1X))+A22(1-y))/
2-20(1+y)2 (3.12)axy=(2

1+22)(21-122)(12,-22))[21( 

I / (21 1 22)(/ 2122)e(A1-TA2)(1x)±(21±22)(2i_ 22)e(A21A1)(1-y) 

T(21—I 22)(/ 2122)e(A1+A2)(1-y)]
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   Letting 

 a=21—;  22ju=e' 
(3.13), 

b=22-721 v=e1 

we can rewrite (3.12) as 

          aml(0-x,~) {3.14)a
xyab(a+b)------------[(a—b)(aFrb)+rb(a+b)ua—a(a±b)vb 

+(1—r)abv(a+b"c1-"1. 

   Similary we can obtain 

            aMl(ax,au) _2122uA1v-~2 (3.15)a
yab(a+b)C(a—b)(b+ra)+b(a+b)ua 

—ra(a+b)0—(17)abv<a+b>icl-"] . 

   Hence the first order conditions aM1(a x, ay)/ax=0 and awrl(ax, d'y),'ay=0 are 

equivalent to 

(3.16) (a—b)(a±rb)+rb(a+b)ua—a(a+b)vb1(1—r)abv(a+b)icl-n=0 

and 

(3.17) (a—b)(ra1b)1b(a-{b)ua—ra(a-I-b)vb—(1—r)abv<a+b,i(l-r)=0, 

respectively. Adding both equations side by side we get the equation 

(3.18)a—b+bua—avb=0, 

which, if substituted into (3.16), gives 

(3.19)a—b—(a+b)vb+bv(a+b)1(1-T)=0. 

[If 21=22=2, then (3.18) and (3.19) reduce to a single equation 2u(1')A=u2', which gives 
x=1 —log  u =1—(1-I-r) log 2/(22), coinciding with (3.4)]. The rest of the proof can be 

done by the usual routine and will be omitted. ^ 

   Some values of the levels in the equilibrium strategy-pairs are shown in Table 2.

                                Table 2 

    Parameters(3. 18) and (3. 19)(z, y) 

                                   (8u—v8=7 
(a) 21=5, 22=10,7=0.4j(0.911i, 0.9305) 

8v15-9v8=7 

                                         18u°2—vl.s=7 (b) 
21=1, 22=2, 1=0.4(0.5554, 0.6524) 

,8v89v1•s=7 

       f (c) 71= 0. 5, 22=1, 7=0.48uo.1—v°•8=7 (0. 1109, 0. 3049) 
                                              8v1.59v°.8=7

   REMARK 1. The level x° of the equilibrium strategy given by (3.4) in the symmetric 

case does not coincide with the critical number x* of the corresponding parking problem
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(oneperson game version) analysed in Section 2. By the result (a) in Table 1 we get 

 xx=[1—,I  ' log (2/(1—r))1+ . 

We easily see that 0 < x * < x°<1, if both are positive. This means that in the competi
tive situation each player becomes unprudent , that is, he does not park until he drives 
closer to the destination. 

   REMARK 2. The similar game situation as in ours associated with the optimal 

stopping are discussed by Domanskiy [5], Sakaguchi [6] and Styszynski [7] . It seems 
to the authors that the game model in which the common destination is randomly 

located as in Section 2 has some difficulty to set up its formulation .
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