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Generalisation of Mack’s formula for claims reserving
with arbitrary exponents for the variance assumption

Shingo SAITO

Abstract. Mack estimated the mean squared errors of the outstanding claims reserve of each
accident year and of the overall claims reserve in order to obtain their confidence intervals within
his distribution-free model. We generalise his formulae by allowing for arbitrary exponents in the
variance assumption. Our formula is also capable of giving a confidence interval of the amount that
the insurer is liable to pay each year.
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1. Introduction

The chain-ladder method is classical and yet probably the
most widely used in stochastic claims reserving. Although
formerly thought of simply as a deterministic algorithm, it
has been justified so far by many stochastic models. Mack
[1, 2] constructed one such model that is remarkable for
being distribution-free, and obtained confidence intervals
of the outstanding claims reserve of each accident year and
of the overall claims reserve, via formulae estimating their
mean squared errors. The aim of the present paper is to
give a single formula that generalises Mack’s in two senses.
Firstly, our formula is general enough to yield a confidence
interval not only of the outstanding claims reserve of each
accident year and the overall claims reserve but also of
the amount that the insurer is liable to pay each year.
Secondly, we allow any real number to be the exponent
in the assumption on the conditional variance of claims
amounts, as opposed to Mack, who assumed that the con-
ditional variance is proportional to the immediately preced-
ing claims amount, i.e. the exponent is 1 (see Assumption 3
for further details).

We now introduce some notation. Let (Ω,F , P ) be a
probability space, on which all random variables that ap-
pear below are defined. For a set X of random variables, we
write σ(X ) for the sub-σ-algebra of F generated by the el-
ements of X . Equality between random variables is always
understood to mean almost sure equality.

Denote by Ci,j the cumulative claims amount of acci-
dent year i after development year j, where i, j = 1, . . . , n.
Mathematically speaking, we let Ci,j be a positive-valued
random variable, which is tacitly assumed to be square-
integrable, so that its expectation and variance are well
defined. We understand that the random variables Ci,j

have been observed if i + j ≤ n + 1, and set

D = σ
(
{Ci,j | i + j ≤ n + 1}

)
.

We further set

Gi,j = σ
(
{Ci,1, . . . , Ci,j}

)
for i, j = 1, . . . , n.

We shall make three assumptions on Ci,j . The first as-
sumption is the independence of the accident years:
Assumption 1. The σ-algebras G1,n, . . . , Gn,n are inde-
pendent.

The second is the standard chain-ladder assumption:
Assumption 2. For each j = 1, . . . , n − 1, there exists a
positive constant fj such that

E[Ci,j+1|Gi,j ] = Ci,jfj

for all i = 1, . . . , n.
These two assumptions are also made by Mack. In addi-

tion, he assumed that for each j = 1, . . . , n−1, there exists
a positive constant vj such that

V (Ci,j+1|Gi,j) = Ci,jvj

for all i = 1, . . . , n. We shall generalise this variance as-
sumption by replacing Ci,j by Cα

i,j , where α is an arbitrary
real number:
Assumption 3. For each j = 1, . . . , n − 1, there exists a
positive constant vj such that

V (Ci,j+1|Gi,j) = Cα
i,jvj

for all i = 1, . . . , n, where α is any fixed real number.
The paper is organised as follows. We first provide point

estimators of fj , vj , and Ci,j in Section 2, and justify them
in Section 3. In Section 4, we give estimators of the mean
squared errors of what actuaries, rather than mathemati-
cians, are interested in. Section 5 is devoted to stating our
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main formula, which will be justified in Section 6, and to
showing that it does indeed lead to the estimators given in
Section 4. Practising actuaries who are not keen on know-
ing our formula in full generality or on understanding its
proof are advised to read Sections 2 and 4 only.

2. Point estimators

Estimate 1. We estimate fj by

f̂j =

∑n−j
i=1 C1−α

i,j Ci,j+1∑n−j
i=1 C2−α

i,j

for j = 1, . . . , n − 1.
Remark 1. If α = 1, then

f̂j =
∑n−j

i=1 Ci,j+1∑n−j
i=1 Ci,j

is the chain-ladder estimator. This is why Mack adopted
the variance assumption with α = 1.

If α = 2, then

f̂j =
1

n − j

n−j∑
i=1

Ci,j+1

Ci,j

is the arithmetic mean of the age-to-age factors Ci,j+1/Ci,j .
Estimate 2. We estimate vj by

v̂j =
1

n − j − 1

n−j∑
i=1

C2−α
i,j

(
Ci,j+1

Ci,j
− f̂j

)2

for j = 1, . . . , n − 2, and vn−1 by

v̂n−1 = min
{

v̂2
n−2

v̂n−3
, v̂n−2, v̂n−3

}
.

Remark 2. Since C1,n/C1,n−1 is the only age-to-age fac-
tor observed from n − 1 to n, it is impossible to obtain an
estimator of vn−1 in the same way as other vj ; here we use
the estimator v̂n−1 in accordance with Mack.
Estimate 3. We estimate Ci,j by

Ĉi,j = Ci,n+1−if̂n+1−i · · · f̂j−1

whenever i + j ≥ n + 2.

3. Justification for the point
estimators

The following σ-algebras are of great use in our model:
Definition 1. We set

Bj = σ
(
{Ci,k | i + k ≤ n + 1, k ≤ j}

)
⊂ D

for j = 1, . . . , n.

Proposition 1. The estimator f̂j is Bj+1-measurable for
j = 1, . . . , n − 1. It follows that the estimator Ĉi,j is Bj-
measurable whenever i + j ≥ n + 2.

Proof. Obvious.

Remark 3. If i+j ≤ n+1, then Assumption 1 shows that

E[Ci,j+1|Bj ] = E[Ci,j+1|Gi,j ] = Ci,jfj ,

V (Ci,j+1|Bj) = V (Ci,j+1|Gi,j) = Cα
i,jvj

together with Assumptions 2 and 3.

3.1. Justification for f̂j

Proposition 2. Let j = 1, . . . , n − 1. Then the estimator
f̂j is unbiased. More generally, whenever λ = (λ1, . . . , λn−j)
is a Bj-measurable Rn−j-valued random variable with non-
negative components that add up to 1, the estimator

f̂λ
j =

n−j∑
i=1

λi
Ci,j+1

Ci,j

satisfies E[f̂λ
j |Bj ] = fj and therefore is an unbiased esti-

mator of fj.
Moreover, f̂j is the best unbiased estimator in the sense

that it minimises V (f̂λ
j |Bj) and V (f̂λ

j ) amongst all such
random variables λ.

Proof. We should first bear in mind that since

f̂j =

∑n−j
i=1 C1−α

i,j Ci,j+1∑n−j
i=1 C2−α

i,j

=
n−j∑
i=1

(
C2−α

i,j∑n−j
i′=1 C2−α

i′,j

· Ci,j+1

Ci,j

)
,

we have f̂λ
j = f̂j if λi = C2−α

i,j /
∑n−j

i′=1 C2−α
i′,j for all i =

1, . . . , n − j.
The unbiasedness can be checked as follows:

E[f̂λ
j |Bj ] =

n−j∑
i=1

λi
E[Ci,j+1|Bj ]

Ci,j
=

n−j∑
i=1

λifj = fj .

For the bestness of f̂j , since

V (f̂λ
j |Bj) =

n−j∑
i=1

λ2
i

V (Ci,j+1|Bj)
C2

i,j

= vj

n−j∑
i=1

λ2
i

C2−α
i,j

,

the Cauchy-Schwarz inequality implies that

V (f̂λ
j |Bj)

n−j∑
i=1

C2−α
i,j ≥ vj

(
n−j∑
i=1

λi

)2

= vj ,

i.e. V (f̂λ
j |Bj) ≥ vj/

∑n−j
i=1 C2−α

i,j , with equality if and only
if f̂λ

j = f̂j . The unconditional variance satisfies

V (f̂λ
j ) = V

(
E[f̂λ

j |Bj ]
)

+ E
[
V (f̂λ

j |Bj)
]

= E
[
V (f̂λ

j |Bj)
]
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because E[f̂λ
j |Bj ] = fj is a constant, and so the inequality

above shows that V (f̂λ
j ) ≥ E[vj/

∑n−j
i=1 C2−α

i,j ], with equal-
ity if and only if f̂λ

j = f̂j . This completes the proof.

3.2. Justification for v̂j

Proposition 3. For j = 1, . . . , n − 2, the estimator v̂j

satisfies E[v̂j |Bj ] = vj and therefore is unbiased.

Proof. Write U =
∑n−j

i=1 C1−α
i,j Ci,j+1 and V =

∑n−j
i=1 C2−α

i,j ,
so that f̂j = U/V . Then

(n − j − 1)v̂j

=
n−j∑
i=1

C−α
i,j C2

i,j+1 − 2f̂j

n−j∑
i=1

C1−α
i,j Ci,j+1 + f̂2

j

n−j∑
i=1

C2−α
i,j

=
n−j∑
i=1

C−α
i,j C2

i,j+1 − 2 · U

V
· U +

(
U

V

)2

V

=
n−j∑
i=1

C−α
i,j C2

i,j+1 −
U2

V
,

and so

(n − j − 1)E[v̂j |Bj ] =
n−j∑
i=1

C−α
i,j E[C2

i,j+1|Bj ] −
E[U2|Bj ]

V
.

Here

E[C2
i,j+1|Bj ] = V (Ci,j+1|Bj) + E[Ci,j+1|Bj ]2

= Cα
i,jvj + C2

i,jf
2
j

for i = 1, . . . , n − j, and

E[U2|Bj ] = V (U |Bj) + E[U |Bj ]2

=
n−j∑
i=1

C2−2α
i,j V (Ci,j+1|Bj)

+

(
n−j∑
i=1

C1−α
i,j E[Ci,j+1|Bj ]

)2

=
n−j∑
i=1

C2−α
i,j vj +

(
n−j∑
i=1

C2−α
i,j fj

)2

= V vj + V 2f2
j .

It follows that

(n − j − 1)E[v̂j |Bj ] =
n−j∑
i=1

C−α
i,j (Cα

i,jvj + C2
i,jf

2
j )

−
V vj + V 2f2

j

V
= (n − j − 1)vj ,

which completes the proof.

Remark 4. Since v̂n−1 was defined artificially, we cannot
hope for its unbiasedness.

3.3. Justification for Ĉi,j

Proposition 4. We have

E[Ci,j |D] = Ci,n+1−ifn+1−i · · · fj−1

whenever i + j ≥ n + 2.

Proof. We fix i = 2, . . . , n and proceed by induction on j.
If j = n + 2 − i, then

E[Ci,n+2−i|D] = E[Ci,n+2−i|Gi,n+1−i]
= Ci,n+1−ifn+1−i.

Suppose that the equality holds for j. Then

E[Ci,j+1|D] = E[Ci,j+1|Gi,n+1−i]

= E
[
E[Ci,j+1|Gi,j ]

∣∣Gi,n+1−i

]
= E[Ci,jfj |Gi,n+1−i]
= E[Ci,j |Gi,n+1−i]fj

= Ci,n+1−ifn+1−i · · · fj−1fj ,

the last equality following from the inductive hypothesis.
This establishes the equality for j + 1.

Proposition 5. We have

E[Ĉi,j |Bn+1−i] = Ci,n+1−ifn+1−i · · · fj−1

whenever i + j ≥ n + 2.

Proof. We fix i = 2, . . . , n and proceed by induction on j.
If j = n + 2 − i, then we have

E[Ĉi,n+2−i|Bn+1−i] = E[Ci,n+1−if̂n+1−i|Bn+1−i]

= Ci,n+1−iE[f̂n+1−i|Bn+1−i]
= Ci,n+1−ifn+1−i

by Proposition 2. Suppose that the equality holds for j.
Then, using Propositions 1 and 2 and the inductive hy-
pothesis, we have

E[Ĉi,j+1|Bn+1−i] = E
[
E[Ĉi,j+1|Bj ]

∣∣Bn+1−i

]
= E

[
E[Ĉi,j f̂j |Bj ]

∣∣Bn+1−i

]
= E

[
Ĉi,jE[f̂j |Bj ]

∣∣Bn+1−i

]
= E[Ĉi,jfj |Bn+1−i]

= E[Ĉi,j |Bn+1−i]fj

= Ci,n+1−ifn+1−i · · · fj−1fj ,

establishing the equality for j + 1.

The following corollary means that Ĉi,j is an unbiased
estimator of Ci,j in some sense:
Corollary 1. Whenever i + j ≥ n + 2, we have

E[Ĉi,j |Bn+1−i] = E[Ci,j |Bn+1−i]

and so
E[Ĉi,j ] = E[Ci,j ].

Proof. Propositions 4 and 5 show that

E[Ĉi,j |Bn+1−i] = E[Ci,j |D],

from which the corollary easily follows.
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4. Estimators of mean squared errors

Linear combinations of the random variables Ci,j include
many practically important values; for example, the overall
claims reserve can be written as

n∑
i=2

(Ci,n − Ci,n+1−i).

If S is a linear combination of the random variables Ci,j ,
then its natural estimator Ŝ can be constructed from S
by replacing Ci,j with Ĉi,j whenever i + j ≥ n + 2. For
instance, the estimator of the overall claims reserve is

n∑
i=2

(Ĉi,n − Ci,n+1−i).

We shall always use this estimator for linear combinations
of Ci,j . Note that the estimator Ŝ is a D-measurable ran-
dom variable and satisfies E[Ŝ] = E[S] because of Corol-
lary 1.

Although the point estimator Ŝ is easy to find, a confi-
dence interval of S is much more difficult, partly because
our model does not specify a distribution of Ci,j . For this
purpose, Mack looked at the mean squared error of the
point estimator Ŝ:
Definition 2. Let S be a linear combination of the random
variables Ci,j . Then the mean squared error mse Ŝ of its
estimator Ŝ is defined by

mse Ŝ = E
[
(S − Ŝ)2

∣∣D]
.

There are several approaches to a confidence interval of
S via the mean squared error mse Ŝ. It is reasonable to
estimate the 95% confidence interval of S by(

Ŝ − 2(mse Ŝ)1/2, Ŝ + 2(mse Ŝ)1/2
)

or by (
Ŝ − 3(mse Ŝ)1/2, Ŝ + 3(mse Ŝ)1/2

)
.

Chebyshev’s inequality ensures that(
Ŝ − 2

√
5(mse Ŝ)1/2, Ŝ + 2

√
5(mse Ŝ)1/2

)
is at least 95% confidence interval because

P
(
|S − Ŝ| ≥ 2

√
5(mse Ŝ)1/2

∣∣D)
≤

E
[
(S − Ŝ)2

∣∣D]
20 mse Ŝ

= 0.05;

but the interval is usually too large to be of practical use.
The aim of this paper is to estimate the mean squared er-

rors for several important linear combinations of Ci,j within
our model.

For notational convenience, we set Ĉi,j = Ci,j whenever
i + j ≤ n + 1, and make the following definition:
Definition 3. We define

Âi,l =
v̂l

f̂2
l

(
1

Ĉ2−α
i,l

+
1∑n−l

m=1 C2−α
m,l

)
,

B̂l =
v̂l

f̂2
l

∑n−l
m=1 C2−α

m,l

for i, l = 1, . . . , n.

Estimate 4. Suppose that i+j ≥ n+2. Then we estimate
mse Ĉi,j by

Ĉ2
i,j

j−1∑
l=n+1−i

Âi,l.

Remark 5. If α = 1 and j = n, then this estimator was
given in [1, Theorem 3] and [2, Equation (7)].

Estimate 5. Let

S =
n∑

i=2

(Ci,n − Ci,n+1−i)

be the overall claims reserve. Then we estimate mse Ŝ by

n∑
i=2

(
Ĉ2

i,n

n−1∑
l=n+1−i

Âi,l

)

+ 2
n∑

i=2

(
Ĉi,n

(
n∑

i′=i+1

Ĉi′,n

)(
n−1∑

l=n+1−i

B̂l

))
.

Remark 6. If α = 1, then this estimator was given in [1,
Corollary] and [2, Equation (11)].

Estimate 6. Let t = 1, . . . , n − 1 and let

S =
n∑

i=t+1

(Ci,n+1−i+t − Ci,n−i+t)

be the amount that the insurer is liable to pay in t years’
time for the claims between accident years t + 1 and n.
Then we estimate mse Ŝ by

n∑
i=t+1

n−i+t−1∑
l=n+1−i

X̂2
i,n+1−i+tÂi,l

+
n∑

i=t+1

Ĉ2
i,n+1−i+tÂi,n−i+t

+ 2
n−1∑

i=t+1

min{i+t−1,n}∑
i′=i+1

n−i′+t−1∑
l=n+1−i

X̂i,n+1−i+tX̂i′,n+1−i′+tB̂l

+ 2
n−1∑

i=t+1

min{i+t−1,n}∑
i′=i+1

X̂i,n+1−i+tĈi′,n+1−i′+tB̂n−i′+t,

where X̂i,j is the estimator of the incremental claims amount
of accident year i after development year j, defined by

X̂i,j =

{
Ĉi,j − Ĉi,j−1 if 2 ≤ j ≤ n;
Ĉi,1 if j = 1.

In particular, setting t = 1, we estimate mse Ŝ by

n∑
i=2

Ĉ2
i,n+2−iÂi,n+1−i.
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5. Statement of the main formula

Estimate 7 (Main formula). For each i = 1, . . . , n, let
ji, ki ∈ Z be given so that

n + 1 − i ≤ ji ≤ ki ≤ n.

Define

S =
n∑

i=1

(Ci,ki
− Ci,ji

).

Then we estimate mse Ŝ by

n∑
i,l=1

φ̂2
i,lÂi,l + 2

∑
1≤i<i′≤n

n∑
l=1

φ̂i,lφ̂i′,lB̂l,

where we set

φ̂i,l =


Ĉi,ki − Ĉi,ji if n + 1 − i ≤ l < ji;
Ĉi,ki if ji ≤ l < ki;
0 otherwise

for i, l = 1, . . . , n.

Postponing justifying Estimate 7 until Section 6, we first
show that Estimate 7 does indeed lead to the estimators
given in Section 4.

Example 1 (Estimate 5). Set ji = n + 1 − i and ki = n
for all i = 1, . . . , n. Then

S =
n∑

i=1

(Ci,n − Ci,n+1−i) =
n∑

i=2

(Ci,n − Ci,n+1−i).

Since

φ̂i,l =

{
Ĉi,n if n + 1 − i ≤ l < n;
0 otherwise,

we have

n∑
i,l=1

φ̂2
i,lÂi,l =

n∑
i=1

n−1∑
l=n+1−i

Ĉ2
i,nÂi,l

=
n∑

i=2

(
Ĉ2

i,n

n−1∑
l=n+1−i

Âi,l

)

and

∑
1≤i<i′≤n

n∑
l=1

φ̂i,lφ̂i′,lB̂l

=
∑

1≤i<i′≤n

n−1∑
l=n+1−i

Ĉi,nĈi′,nB̂l

=
n∑

i=2

(
Ĉi,n

(
n∑

i′=i+1

Ĉi′,n

)(
n−1∑

l=n+1−i

B̂l

))
.

It follows that we estimate mse Ŝ by

n∑
i,l=1

φ̂2
i,lÂi,l + 2

∑
1≤i<i′≤n

n∑
l=1

φ̂i,lφ̂i′,lB̂l

=
n∑

i=2

(
Ĉ2

i,n

n−1∑
l=n+1−i

Âi,l

)

+ 2
n∑

i=2

(
Ĉi,n

(
n∑

i′=i+1

Ĉi′,n

)(
n−1∑

l=n+1−i

B̂l

))
.

Example 2 (Estimate 4). Let p, q = 1, . . . , n satisfy p +
q ≥ n + 2. Set ji = n + 1 − i for all i = 1, . . . , n, and

ki =

{
n + 1 − i if i ̸= p;
q if i = p.

Then
S = Cp,q − Cp,n+1−p

and so

mse Ŝ = E
[
(S − Ŝ)2

∣∣D]
= E

[(
(Cp,q − Cp,n+1−p) − (Ĉp,q − Cp,n+1−p)

)2∣∣D]
= E

[
(Cp,q − Ĉp,q)2

∣∣D]
= mse Ĉp,q.

Since

φ̂i,l =

{
Ĉp,q if i = p and n + 1 − p ≤ l < q;
0 otherwise,

we have

n∑
i,l=1

φ̂2
i,lÂi,l =

q−1∑
l=n+1−p

Ĉ2
p,qÂp,l = Ĉ2

p,q

q−1∑
l=n+1−p

Âp,l

and ∑
1≤i<i′≤n

n∑
l=1

φ̂i,lφ̂i′,lB̂l = 0.

It follows that we estimate mse Ŝ = mse Ĉp,q by

n∑
i,l=1

φ̂2
i,lÂi,l + 2

∑
1≤i<i′≤n

n∑
l=1

φ̂i,lφ̂i′,lB̂l

= Ĉ2
p,q

q−1∑
l=n+1−p

Âp,l.

Example 3 (Estimate 6). Let t = 1, . . . , n − 1. Set

ji =

{
n + 1 − i for i = 1, . . . , t;
n − i + t for i = t + 1, . . . , n,

and

ki =

{
n + 1 − i for i = 1, . . . , t;
n + 1 − i + t for i = t + 1, . . . , n.
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Then

S =
n∑

i=t+1

(Ci,n+1−i+t − Ci,n−i+t).

Since

φ̂i,l =


Ĉi,n+1−i+t − Ĉi,n−i+t = X̂i,n+1−i+t

if t + 1 ≤ i ≤ n and n + 1 − i ≤ l < n − i + t;
Ĉi,n+1−i+t if t + 1 ≤ i ≤ n and l = n − i + t;
0 otherwise,

we have

n∑
i,l=1

φ̂2
i,lÂi,l =

n∑
i=t+1

n−i+t−1∑
l=n+1−i

X̂2
i,n+1−i+tÂi,l

+
n∑

i=t+1

Ĉ2
i,n+1−i+tÂi,n−i+t

and∑
1≤i<i′≤n

n∑
l=1

φ̂i,lφ̂i′,lB̂l

=
n−1∑

i=t+1

min{i+t−1,n}∑
i′=i+1

n−i′+t−1∑
l=n+1−i

X̂i,n+1−i+tX̂i′,n+1−i′+tB̂l

+
n−1∑

i=t+1

min{i+t−1,n}∑
i′=i+1

X̂i,n+1−i+tĈi′,n+1−i′+tB̂n−i′+t.

It follows that we estimate mse Ŝ by

n∑
i,l=1

φ̂2
i,lÂi,l + 2

∑
1≤i<i′≤n

n∑
l=1

φ̂i,lφ̂i′,lB̂l

=
n∑

i=t+1

n−i+t−1∑
l=n+1−i

X̂2
i,n+1−i+tÂi,l

+
n∑

i=t+1

Ĉ2
i,n+1−i+tÂi,n−i+t

+ 2
n−1∑

i=t+1

min{i+t−1,n}∑
i′=i+1

n−i′+t−1∑
l=n+1−i

X̂i,n+1−i+tX̂i′,n+1−i′+tB̂l

+ 2
n−1∑

i=t+1

min{i+t−1,n}∑
i′=i+1

X̂i,n+1−i+tĈi′,n+1−i′+tB̂n−i′+t.

6. Justification for the main formula

Suppose that ji and ki are given and S is defined as in
Estimate 7.
Lemma 1. The mean squared error mse Ŝ decomposes as

mse Ŝ = V (S|D) +
(
E[S|D] − Ŝ

)2
,

the first term being called the process variance and the sec-
ond the estimation error.

Proof. We have

mse Ŝ = E
[
(S − Ŝ)2

∣∣D]
= V (S − Ŝ|D) + E[S − Ŝ|D]2

= V (S|D) +
(
E[S|D] − Ŝ

)2

because Ŝ is D-measurable.

Lemma 2. We have

n∑
i,l=1

φ̂2
i,lv̂l

Ĉ2−α
i,l f̂2

l

+
n∑

i,i′,l=1

φ̂i,lφ̂i′,lv̂l

f̂2
l

∑n−l
m=1 C2−α

m,l

=
n∑

i,l=1

φ̂2
i,lÂi,l + 2

∑
1≤i<i′≤n

n∑
l=1

φ̂i,lφ̂i′,lB̂l.

Proof. Straightforward.

By Lemmas 1 and 2, it suffices to justify estimating the
process variance V (S|D) by

n∑
i,l=1

φ̂2
i,lv̂l

Ĉ2−α
i,l f̂2

l

and the estimation error
(
E[S|D] − Ŝ

)2 by

n∑
i,i′,l=1

φ̂i,lφ̂i′,lv̂l

f̂2
l

∑n−l
m=1 C2−α

m,l

.

6.1. Process variance

Lemma 3. If i + j ≥ n + 1, then

V (Ci,j |D) =
j−1∑

l=n+1−i

E[Cα
i,l|D]vlf

2
l+1 · · · f2

j−1.

Proof. For l = n + 1 − i, . . . , j − 1, we have

V (Ci,l+1|D) = V (Ci,l+1|Gi,n+1−i)

= V
(
E[Ci,l+1|Gi,l]

∣∣Gi,n+1−i

)
+ E

[
V (Ci,l+1|Gi,l)

∣∣Gi,n+1−i

]
= V (Ci,lfl|Gi,n+1−i) + E[Cα

i,lvl|Gi,n+1−i]

= V (Ci,l|Gi,n+1−i)f2
l + E[Cα

i,l|Gi,n+1−i]vl

= V (Ci,l|D)f2
l + E[Cα

i,l|D]vl.

Multiplying f2
l+1 · · · f2

j−1 gives

V (Ci,l+1|D)f2
l+1 · · · f2

j−1 = V (Ci,l|D)f2
l · · · f2

j−1

+ E[Cα
i,l|D]vlf

2
l+1 · · · f2

j−1.

Taking the sum over l = n+1− i, . . . , j−1 and noting that
V (Ci,n+1−i|D) = 0 because Ci,n+1−i is D-measurable, we
get the desired result.
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Definition 4. Define φi,l by

φi,l =


E[Ci,ki − Ci,ji |D] if n + 1 − i ≤ l < ji;
E[Ci,ki |D] if ji ≤ l < ki;
0 otherwise

for i, l = 1, . . . , n.
Remark 7. Note that φ̂i,l is an estimator of φi,l for each
i, l = 1, . . . , n.
Lemma 4. We have

V (S|D) =
n∑

i,l=1

E[Cα
i,l|D]φ2

i,lvl

E[Ci,l|D]2f2
l

.

Proof. Since

V (S|D) =
n∑

i=1

V (Ci,ki − Ci,ji |D),

we only need to prove that

V (Ci,ki − Ci,ji |D) =
ki−1∑

l=n+1−i

E[Cα
i,l|D]φ2

i,lvl

E[Ci,l|D]2f2
l

for i = 1, . . . , n, noting that φi,l ̸= 0 only if n + 1− i ≤ l ≤
ki − 1.

Fix i and write j = ji and k = ki for simplicity. For
l = j, . . . , k − 1, we have

V (Ci,l+1fl+1 · · · fk−1 − Ci,j |D)
= V (Ci,l+1fl+1 · · · fk−1 − Ci,j |Gi,n+1−i)

= V
(
E[Ci,l+1fl+1 · · · fk−1 − Ci,j |Gi,l]

∣∣Gi,n+1−i

)
+ E

[
V (Ci,l+1fl+1 · · · fk−1 − Ci,j |Gi,l)

∣∣Gi,n+1−i

]
= V (Ci,lfl · · · fk−1 − Ci,j |Gi,n+1−i)

+ E[Cα
i,lvlf

2
l+1 · · · f2

k−1|Gi,n+1−i]

= V (Ci,lfl · · · fk−1 − Ci,j |D) + E[Cα
i,l|D]vlf

2
l+1 · · · f2

k−1.

Taking the sum over l = j, . . . , k − 1 gives

V (Ci,k − Ci,j |D) = V (Ci,jfj · · · fk−1 − Ci,j |D)

+
k−1∑
l=j

E[Cα
i,l|D]vlf

2
l+1 · · · f2

k−1.

Since Lemma 3 shows that

V (Ci,jfj · · · fk−1 − Ci,j |D)

= V (Ci,j |D)(fj · · · fk−1 − 1)2

=
j−1∑

l=n+1−i

E[Cα
i,l|D]vlf

2
l+1 · · · f2

j−1(fj · · · fk−1 − 1)2

and since Proposition 4 gives

f2
l+1 · · · f2

j−1(fj · · · fk−1 − 1)2

= (fl+1 · · · fk−1 − fl+1 · · · fj−1)2

=
(Ci,n+1−ifn+1−i · · · fk−1 − Ci,n+1−ifn+1−i · · · fj−1)2

(Ci,n+1−ifn+1−i · · · fl−1)2f2
l

=
E[Ci,k − Ci,j |D]2

E[Ci,l|D]2f2
l

=
φ2

i,l

E[Ci,l|D]2f2
l

for l = n + 1 − i, . . . , j − 1, we have

V (Ci,jfj · · · fk−1 − Ci,j |D) =
j−1∑

l=n+1−i

E[Cα
i,l|D]φ2

i,lvl

E[Ci,l|D]2f2
l

.

Similarly, since

f2
l+1 · · · f2

k−1 =
(Ci,n+1−ifn+1−i · · · fk−1)2

(Ci,n+1−ifn+1−i · · · fl−1)2f2
l

=
E[Ci,k|D]2

E[Ci,l|D]2f2
l

=
φ2

i,l

E[Ci,l|D]2f2
l

for l = j, . . . , k − 1, we have

k−1∑
l=j

E[Cα
i,l|D]vlf

2
l+1 · · · f2

k−1 =
k−1∑
l=j

E[Cα
i,l|D]φ2

i,lvl

E[Ci,l|D]2f2
l

.

It follows that

V (Ci,k − Ci,j |D) = V (Ci,jfj · · · fk−1 − Ci,j |D)

+
k−1∑
l=j

E[Cα
i,l|D]vlf

2
l+1 · · · f2

k−1

=
j−1∑

l=n+1−i

E[Cα
i,l|D]φ2

i,lvl

E[Ci,l|D]2f2
l

+
k−1∑
l=j

E[Cα
i,l|D]φ2

i,lvl

E[Ci,l|D]2f2
l

=
k−1∑

l=n+1−i

E[Cα
i,l|D]φ2

i,lvl

E[Ci,l|D]2f2
l

.

This lemma leads to the following estimate:
Estimate 8. We estimate the process variance V (S|D) by

n∑
i,l=1

φ̂2
i,lv̂l

Ĉ2−α
i,l f̂2

l

.

6.2. Estimation error

Definition 5. For each i = 1, . . . , n, we define

Φi = E[Ci,ki − Ci,ji |D] − (Ĉi,ki − Ĉi,ji).

Definition 6. Define ψi,l by

ψi,l =



Ci,n+1−if̂n+1−i · · · f̂l−1(fl − f̂l)fl+1 · · · fji−1

×(fji · · · fki−1 − 1) if n + 1 − i ≤ l < ji;
Ci,n+1−if̂n+1−i · · · f̂l−1(fl − f̂l)fl+1 · · · fki−1

if ji ≤ l < ki;
0 otherwise

for i, l = 1, . . . , n.
Lemma 5. We have

Φi =
n∑

l=1

ψi,l

for i = 1, . . . , n.
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Proof. Fix i and write j = ji and k = ki for simplicity.
Then we have

Φi

Ci,n+1−i
=

E[Ci,k − Ci,j |D] − (Ĉi,k − Ĉi,j)
Ci,n+1−i

= (fn+1−i · · · fk−1 − fn+1−i · · · fj−1)

− (f̂n+1−i · · · f̂k−1 − f̂n+1−i · · · f̂j−1)

= (fn+1−i · · · fj−1 − f̂n+1−i · · · f̂j−1)
× (fj · · · fk−1 − 1)

+ f̂n+1−i · · · f̂j−1(fj · · · fk−1 − f̂j · · · f̂k−1)

=
j−1∑

l=n+1−i

f̂n+1−i · · · f̂l−1(fl − f̂l)fl+1 · · · fj−1

× (fj · · · fk−1 − 1)

+
k−1∑
l=j

f̂n+1−i · · · f̂l−1(fl − f̂l)fl+1 · · · fk−1

=
1

Ci,n+1−i

n∑
l=1

ψi,l,

verifying the lemma.

Lemma 6. The estimation error can be written as(
E[S|D] − Ŝ

)2 =
n∑

i,i′,l,l′=1

ψi,lψi′,l′ .

Proof. By the definition of Φi and Lemma 5, we have

(
E[S|D] − Ŝ

)2 =

(
n∑

i=1

Φi

)2

=

(
n∑

i,l=1

ψi,l

)2

=
n∑

i,i′,l,l′=1

ψi,lψi′,l′ .

Lemma 7. We have E[ψi,l|Bl] = 0 for i, l = 1, . . . , n, and
ψi,l is Bl+1-measurable for i = 1, . . . , n and l = 1, . . . , n−1.

Proof. Immediate from Propositions 1 and 2.

Lemma 8. We have

E
[
(fl − f̂l)2

∣∣Bl

]
=

vl∑n−l
m=1 C2−α

m,l

for l = 1, . . . , n.

Proof. By Proposition 1 and the proof of Proposition 2, we
have

E
[
(fl − f̂l)2

∣∣Bl

]
= V (fl − f̂l|Bl) + E[fl − f̂l|Bl]2

= V (f̂l|Bl) =
vl∑n−l

m=1 C2−α
m,l

.

Lemma 9. We have

ψi,l =
Ĉi,lφi,l

E[Ci,l|D]fl
(fl − f̂l)

for i, l = 1, . . . , n.

Proof. Fix i and write j = ji and k = ki for simplicity. If
n + 1 − i ≤ l < j, then

Ĉi,lφi,l

E[Ci,l|D]fl
(fl − f̂l)

= Ci,n+1−if̂n+1−i · · · f̂l−1 × E[Ci,k − Ci,j |D]

× (Ci,n+1−ifn+1−i · · · fl−1fl)−1 × (fl − f̂l)

=
f̂n+1−i · · · f̂l−1(fl − f̂l)

fn+1−i · · · fl−1fl

× Ci,n+1−i(fn+1−i · · · fk−1 − fn+1−i · · · fj−1)

= Ci,n+1−if̂n+1−i · · · f̂l−1(fl − f̂l)fl+1 · · · fj−1

× (fj · · · fk−1 − 1)
= ψi,l.

The other cases can be dealt with in a similar fashion.

We follow Mack in looking at E[ψi,lψi′,l′ |Bmax{l,l′}] for
the estimate of ψi,lψi′,l′ :
Lemma 10. For i, i′, l, l′ = 1, . . . , n, we have

E[ψi,lψi′,l′ |Bmax{l,l′}]

=


Ĉi,lĈi′,lφi,lφi′,lvl

E[Ci,l|D]E[Ci′,l|D]f2
l

∑n−l
m=1 C2−α

m,l

if l = l′;

0 if l ̸= l′.

Proof. We first consider the case l ̸= l′. We may as-
sume that l < l′. Then since ψi,l is Bl′-measurable and
E[ψi′,l′ |Bl′ ] = 0 by Lemma 7, the assertion follows.

Now suppose that l = l′. Observe that Ĉi,l, φi,l, and
E[Ci,l|D] are all Bl-measurable, no matter whether l ≤
n + 1 − i or l ≥ n + 2 − i. The same is true if i is replaced
with i′. Therefore, by Lemmas 9 and 8, we have

E[ψi,lψi′,l|Bl]

= E

[
Ĉi,lφi,l

E[Ci,l|D]fl
(fl − f̂l) ×

Ĉi′,lφi′,l

E[Ci′,l|D]fl
(fl − f̂l)

∣∣∣∣Bl

]
=

Ĉi,lĈi′,lφi,lφi′,l

E[Ci,l|D]E[Ci′,l|D]f2
l

E
[
(fl − f̂l)2

∣∣Bl

]
=

Ĉi,lĈi′,lφi,lφi′,lvl

E[Ci,l|D]E[Ci′,l|D]f2
l

∑n−l
m=1 C2−α

m,l

.

This lemma leads to the following estimate:
Estimate 9. For i, i′, l, l′ = 1, . . . , n, we estimate ψi,lψi′,l′

by
φ̂i,lφ̂i′,lv̂l

f̂2
l

∑n−l
m=1 C2−α

m,l

if l = l′, and by 0 if l ̸= l′.
This estimate and Lemma 6 give the following:

Estimate 10. We estimate
(
E[S|D] − Ŝ

)2 by

n∑
i,i′,l=1

φ̂i,lφ̂i′,lv̂l

f̂2
l

∑n−l
m=1 C2−α

m,l

.
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