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BEHAVIOR OF SOLUTIONS TO AN ACTIVATOR-INHIBITOR
SYSTEM WITH BASIC PRODUCTION TERMS

KANAKO SUZUKI1 AND IZUMI TAKAGI2

Abstract. We consider an activator-inhibitor system proposed by A. Gierer and H. Meinhardt in
1972, which is a model of the transplantation experiment on hydra. Nontrivial spatial patterns of the
activator are expected to emerge in the system, and it is postulated that a change in cells or tissues
takes place in the region where the activator concentration is high. But the activator concentration
may fail to form spatial patterns if the system does not have a positive basic production term for the
activator. We study this phenomenon to understand a role of the basic production terms in pattern
formation.
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1. Introduction and Statement of Results. In the celebrated paper [11],
A. M. Turing found that the reaction between two chemicals with different diffusion
rates may cause the destabilization of the spatially homogeneous state, thus leading to
the formation of nontrivial spatial structure. Developing Turing’s idea, A. Gierer and
H. Meinhardt ([2]) proposed a system consisting of a slowly diffusing activator and a
rapidly diffusing inhibitor. They assumed that a change in cells or tissue takes place
in the region where the activator concentration is high. Suppose that the activator
and the inhibitor fill a bounded domain Ω in R

N with smooth boundary ∂Ω and that
there is no flux through the boundary. Let A(x, t) and H(x, t) denote the respective
concentrations of the activator and the inhibitor at position x ∈ Ω and time t � 0.
Let ν denote the unit outer normal vector to ∂Ω and Δ = ΣN

j=1∂
2/∂x2

j be the Laplace
operator in R

N . In this paper we consider the following activator-inhibitor system
proposed by Gierer and Meinhardt:

∂A

∂t
= ε2ΔA − A +

Ap

Hq
+ σa(x), (1.1)

τ
∂H

∂t
= DΔH − H +

Ar

Hs
+ σh(x), (1.2)

for x ∈ Ω and t > 0, subject to the boundary condition and the initial condition

∂A

∂ν
=

∂H

∂ν
= 0 for x ∈ ∂Ω, t > 0, (1.3)

A(x, 0) = A0(x), H(x, 0) = H0(x) for x ∈ Ω. (1.4)

Here ε, D and τ are positive constants. The exponents p > 1, q > 0, r > 0, s ≥ 0
satisfy

0 <
p − 1

r
<

q

s + 1
. (1.5)
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Moreover, We assume

σa, σh ∈ Cβ(Ω), and σa(x) ≥ 0, σh(x) ≥ 0 on Ω (1.6)

and concerning the initial data we assume

A0, H0 ∈ C2+β(Ω), A0(x) > 0, H0(x) > 0 on Ω and (1.7)

∂A0

∂ν

∣∣∣∣∣
∂Ω

=
∂H0

∂ν

∣∣∣∣∣
∂Ω

= 0 (1.8)

where 0 < β < 1. The terms σa(x) and σh(x) are called basic production terms,
which represent the amount of activator and inhibitor produced by cell in a unit time,
respectively.

From a mathematical point of view, one of the fundamental questions is whether
the initial-boundary value problem has a solution for all t > 0 or not. There have
appeared several results on this question (see, e.g., [9], [7], [12], [5], [4]). In particular,
under the assumption that minx∈Ω σa(x) > 0 and (p − 1)/r < 2/(N + 2), Masuda
and Takahashi [7] proved not only that the solution exists for all t > 0 but also that,
as t → +∞, the set {(A(x, t), H(x, t)) ∈ R

2 | x ∈ Ω} is confined in a fixed rectangle
which is independent of the initial data. On the other hand, Li, Chen and Qin [5]
proved that the solution exists for all t > 0 if minx∈Ω σa(x) > 0 and p − 1 < r. We
studied the initial-boundary value problem (1.1)–(1.4) in the case minx∈Ω σa(x) = 0 in
[10]. The following Theorems 1.1–1.3 complement the results by [7] and [5], and give
us a complete understanding of the global existence and the boundedness of solutions
in the case p − 1 < r. Jiang [4] obtained independently some results similar to ours
on the global existence and boundedness of solutions.

Theorem 1.1. Assume, in addition to (1.5), that

p − 1 < r (1.9)

and, in addition to (1.6), that

max
x∈Ω

σa(x) > 0.

Then the initial-boundary value problem (1.1)–(1.4) has a unique solution for all t > 0.
Moreover, there exist positive constants ma, mh, Ma, Mh, independent of the initial
data (A0(x), H0(x)), such that

ma ≤ lim inf
t→+∞ min

x∈Ω
A(x, t) ≤ lim sup

t→+∞
max
x∈Ω

A(x, t) ≤ Ma,

mh ≤ lim inf
t→+∞ min

x∈Ω
H(x, t) ≤ lim sup

t→+∞
max
x∈Ω

H(x, t) ≤ Mh.

Theorem 1.2. Assume that (1.9) is satisfied in addition to (1.5). Moreover,
suppose that

σa(x) ≡ 0 and max
x∈Ω

σh(x) > 0.

Then the initial-boundary value problem (1.1)–(1.4) has a unique solution for all t > 0.
Moreover, there exist positive constants mh, Ma, Mh, which are independent of the
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initial data (A0(x), H0(x)), such that

e−t min
x∈Ω

A0(x) ≤ A(x, t) for all x ∈ Ω, t > 0 and lim sup
t→+∞

max
x∈Ω

A(x, t) ≤ Ma,

mh ≤ lim inf
t→+∞ min

x∈Ω
H(x, t) ≤ lim sup

t→+∞
max
x∈Ω

H(x, t) ≤ Mh.

Theorem 1.3. Assume that (1.9) is satisfied in addition to (1.5). Moreover,
suppose that

σa(x) ≡ 0 and σh(x) ≡ 0.

Then the initial-boundary value problem (1.1)–(1.4) has a unique solution for all t > 0.
Moreover, there are positive constants λ and μ which are dependent only on p, q, r, s
and τ , and a positive constant C depending on initial data (A0(x), H0(x)) such that

e−t min
x∈Ω

A0(x) ≤ A(x, t) ≤ Ceλt,

e−t/τ min
x∈Ω

H0(x) ≤ H(x, t) ≤ Ceμt

for all t > 0 and x ∈ Ω.

As we mentioned above, it is assumed that a change in cells or tissue takes place
in the region where the activator concentration is high. Therefore, nontrivial spatial
patterns of the activator are expected to emerge. But in some numerical simulations,
it is observed that a solution starting from an almost uniform initial value develops
localization in the activator concentration for a while, but it oscillates and eventually
converges uniformly to the trivial state u ≡ 0. In fact, Wu and Li [12] proved that
if σa(x) ≡ 0 and σh(x) ≡ 0 and if τ > q/(p − 1), then there are solutions of (1.1)–
(1.4) such that (A(x, t), H(x, t)) → (0, 0) uniformly on Ω as t → +∞. We call such
a phenomenon the collapse of patterns. Theorem 1.1 implies patterns never collapse
as long as σa is nontrivial, whereas for lack of uniform lower bound for the activator
Theorem 1.2 suggests that patterns in the activator can collapse even though σh > 0.
Hence, the activator concentration may fail to form spatial patterns if the system does
not have a positive basic production term for the activator. In the following section,
we will study this phenomenon to understand a role of the basic production terms in
pattern formation.

Some remarks are in order. First, for the systematic study of global behavior
of solutions of (1.1)–(1.4), it is important to know the behavior of solutions of the
following kinetic system:

du

dt
= −u +

up

vq
+ σa, (1.10)

τ
dv

dt
= −v +

ur

vs
+ σh. (1.11)

Here σa and σh are both nonnegative constants. When σa = 0 and σh = 0, we have
obtained the complete understanding of all the behavior of solution orbits ([8]). The
case σa > 0 is treated in an on-going project.

Second, all the three theorems assume that p− 1 < r, which is important to rule
out the occurrence of finite time blow-up of solutions. Indeed, it has been shown in
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[5] and [8] that if p − 1 > r, then there exist solutions of (1.1)–(1.4) with σa(x) ≡
σh(x) ≡ 0 which blow up in finite time.

Third, in [8] it is proved that if p − 1 ≤ r and q ≥ s + 1, then some solutions of
(1.1)–(1.4) with σa(x) ≡ σh(x) ≡ 0 exist for all t > 0, but they are unbounded. By
virtue of Theorem 1.1 all solutions are bounded if σa is nontrivial.

2. Collapse of Patterns. The activator concentration may fail to form spatial
or spatio-temporal patterns if the system (1.1)–(1.4) does not have a positive basic
production term for the activator. In order to understand the mechanism of this
phenomenon, we consider the behavior of a solution of the following system as t →
+∞:

∂A

∂t
= ε2ΔA − A +

Ap

Hq
, (2.1)

τ
∂H

∂t
= DΔH − H +

Ar

Hs
+ σh(x), (2.2)

for x ∈ Ω and t > 0, subject to the boundary condition and the initial condition

∂A

∂ν
=

∂H

∂ν
= 0 for x ∈ ∂Ω, t > 0, (2.3)

A(x, 0) = A0(x), H(x, 0) = H0(x) for x ∈ Ω. (2.4)

For the initial data, we assume (1.7) and (1.8). The exponents satisfy (1.5) and we
assume

σh(x) ≥ 0 on Ω.

There exists a solution of (2.1)–(2.4) for all t > 0 by Theorem 1.2 if p − 1 < r. The
main result of this paper is stated as follows:

Theorem 2.1. Let τ satisfy τ > q/(p − 1) and assume that the initial data
satisfies (

min
x∈Ω

H0(x)
)q

>
p − 1

p − 1 − q
τ

(
max
x∈Ω

A0(x)
)p−1

.

Then the solution (A(x, t), H(x, t)) of (2.1)–(2.4) satisfies

0 < max
x∈Ω

A(x, t) ≤ Ce−t, max
x∈Ω

|H(x, t) − z(x)| ≤ Ce−t/τ ,

in which C is a positive constant depending on (A0(x), H0(x)), and z(x) is a solution
of the problem

DΔz − z + σh(x) = 0 for x ∈ Ω, (2.5)
∂z

∂ν
= 0 on ∂Ω. (2.6)

It is to be noted that in contrast to Theorems 1.2 and 1.3 we do not assume any
further condition other than (1.5) in Theorem 2.1, yet we have a bounded solution
for all t ≥ 0 by restricting initial data.

To prove Theorem 2.1 we follow the approach due to [12].
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2.1. Boundedness of solutions.

2.1.1. Lower bounds. First, we estimate A(x, t) and H(x, t) from blow. Let
u(x, t) be a solution of the initial-boundary value problem:

∂u
∂t

= ε2Δu − u, (2.7)

u(x, 0) = A0(x), (2.8)
∂u
∂ν

∣∣∣
∂Ω

= 0, (2.9)

and v(t) be a solution of

τ
dv
dt

= −v + min
x∈Ω

σh(x), (2.10)

v(0) = min
x∈Ω

H0(x). (2.11)

The following lemma is obtained:

Lemma 2.2. The solution (A(x, t), H(x, t)) of (2.1)–(2.4) satisfies

A(x, t) ≥ u(x, t), H(x, t) ≥ v(t)

for all t > 0, x ∈ Ω.

This lemma can be proved easily by using the maximum principle. Moreover, we
see that the solution (2.7)–(2.9) satisfies

e−t min
x∈Ω

A0(x) ≤ u(x, t) ≤ e−t max
x∈Ω

A0(x)

for all x ∈ Ω, t > 0 and the solution (2.10)–(2.11) is given by

v(t) = e−t/τ min
x∈Ω

H0(x) + min
x∈Ω

σh(x)(1 − e−t/τ ).

2.1.2. Upper bounds. In order to derive an estimate of A(x, t) from above, we
need the following lemma. For simplicity, we put ψ = minx∈Ω H0(x).

Lemma 2.3. Let τ satisfy τ > q/(p− 1) and m0 be a positive number satisfying

mp−1
0 <

(
1 − q

(p − 1)τ

)
ψq.

Then the problem

dm

dt
= −m +

mp

vq
, (2.12)

m(0) = m0 (2.13)

has a unique solution for all t > 0 and there exists a positive constant C such that
m(t) ≤ Ce−t.
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Proof. Put M(t) = 1/m(t)p−1. Differentiating M(t) in t, we have

dM

dt
= −(p − 1)

1
m(t)p

dm

dt

= −(p − 1)
1

m(t)p

(
−m +

mp

vq

)
= (p − 1)M − (p − 1)

1
vq

.

Since M(0) = 1/mp−1
0 , we obtain that

M(t) =
1

mp−1
0

e(p−1)t − (p − 1)
∫ t

0

e(p−1)(t−ξ)

v(ξ)q
dξ.

It follows from (2.10) that v(t) ≥ e−t/τv(0). Thus

M(t) ≥ 1
mp−1

0

e(p−1)t − p − 1
v(0)q

∫ t

0

e(p−1)(t−ξ)+ q
τ ξ dξ

=

{
1

mp−1
0

+
p − 1
v(0)q

· 1 − e[ q
τ −(p−1)]t

q
τ − (p − 1)

}
e(p−1)t.

If

1
mp−1

0

>
p − 1
v(0)q

· 1
p − 1 − q

τ

,

then we see that M(t) > 0 for all t > 0. Therefore m(t) exists for all t > 0 and there
is a positive constant C such that m(t) ≤ Ce−t.

From Lemma 2.3, if τ > q/(p − 1) and(
max
x∈Ω

A0(x)
)p−1

<

(
1 − q

(p − 1)τ

)(
min
x∈Ω

H0(x)
)q

, (2.14)

then the following problem

dū
dt

= −ū +
ūp

vq
, (2.15)

ū(0) = max
x∈Ω

A0(x) (2.16)

has a solution ū(t) for all t > 0 and ū(t) ≤ Ce−t for some C > 0. Applying the
maximum principle, we see that A(x, t) ≤ ū(t) for all x ∈ Ω, t > 0, that is

A(x, t) ≤ Ce−t. (2.17)

Next, we consider the initial value problem

τ
dv̄
dt

= −v̄ +
ūr

v̄s
+ σ1, (2.18)

v̄(0) = max
x∈Ω

H0(x), (2.19)
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where we put σ1 = maxx∈Ω σh(x). Because of (2.17), the right-hand side of (2.18) is
estimated as follows:

τ
dv̄
dt

≤ −v̄ +
Ce−rt

v̄s
+ σ1. (2.20)

Multiplying the both sides of (2.20) by v̄s and putting v̄s+1 = W , we have that

dW

dt
≤ −s + 1

τ
W +

σ1(s + 1)
τ

W s/(s+1) +
C(s + 1)

τ
e−rt. (2.21)

Using Lemma 2.5 below due to Masuda and Takahashi [7], we obtain easily the fol-
lowing lemma:

Lemma 2.4. Suppose that τ > q/(p− 1) and (2.14) is satisfied. Then the initial
value problem (2.18)–(2.19) has a unique solution v̄(t) for all t > 0. Moreover, it
satisfies that

lim sup
t→+∞

v̄(t) ≤ σ1.

To state Lemma 2.5, some preparations are needed. Let L+(0, T ) be the set of
all integrable functions f(t) ≥ 0 on (0, T) such that the quantity

K[f ] = sup
0<t<T

∫ t

0

e−μ(t−ξ)f(ξ) dξ (2.22)

is finite for μ > 0. If T = +∞, we further set

K∞[f ] = lim sup
t→+∞

∫ t

0

e−μ(t−ξ)f(ξ) dξ (2.23)

for f ∈ L+(0, +∞).

Lemma 2.5 ([7]). Let 0 ≤ θj < 1 and γj ∈ L+(0, T ) for j = 1, . . . , J. Let
w = w(t) be a positive function on [0, T ) satisfying the differential inequality

dw

dt
≤ −μw(t) + ΣJ

j=1γj(t)w(t)θj for 0 ≤ t < T. (2.24)

Then

w(t) ≤ κ

for 0 ≤ t < T . Moreover, if T = +∞, then

lim sup
t→+∞

w(t) ≤ κ∞.

Here κ, κ∞ are the maximal roots of the algebraic equations

x − ΣJ
j=1K[γj ]xθj = w(0), (2.25)

x − ΣJ
j=1K∞[γj ]xθj = 0, (2.26)

respectively.
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Now we are ready to obtain upper bounds on H(x, t). From the maximum prin-
ciple, it is easy to see that

H(x, t) ≤ v̄(t) for x ∈ Ω, t > 0.

Moreover, it follows from Lemma 2.4 that

lim sup
t→∞

max
x∈Ω

H(x, t) ≤ σ1.

Putting the discussions above together, we obtain

Lemma 2.6. Let (A(x, t), H(x, t)) be a solution of (2.1). If τ > q/(p − 1) and(
max
x∈Ω

A0(x)
)p−1

≤
(

1 − q

(p − 1)τ

)(
min
x∈Ω

H0(x)
)q

,

then there exists a C > 0 such that

e−t min
x∈Ω

A0(x) ≤ A(x, t) ≤ Ce−t for all x ∈ Ω, t > 0, (2.27)

min
x∈Ω

σh(x) ≤ lim inf
t→+∞ min

x∈Ω
H(x, t) ≤ lim sup

t→+∞
max
x∈Ω

H(x, t) ≤ max
x∈Ω

σh(x). (2.28)

2.2. Proof of Theorem 2.1. It is easy to see from (2.27) that A(x, t) → 0
uniformly on Ω as t → +∞. We consider the behavior of H(x, t) as t → +∞.

Let z(x) be the unique solution of (2.5) and (2.6). Put W (x, t) = H(x, t) − z(x).
Then it is a solution of the following problem:

τ
∂W

∂t
= DΔW − W +

Ar

Hs
for x ∈ Ω, t > 0,

∂W

∂ν
= 0 for x ∈ ∂Ω, t > 0,

W (x, 0) = H0(x) − z(x) for x ∈ Ω.

Let G(t, x, y) be the Green function of

∂V

∂t
=

D

τ
ΔV − 1

τ
V

under the Neumann boundary condition. Since∫
Ω

G(t, x, y) dy ≤ e−t/τ for all x ∈ Ω, t > 0,

we have that

|W (x, t)| =
∣∣∣∣
∫

Ω

G(t, x, y)(H0(y) − z(y)) dy + C1

∫ t

0

dξ

∫
Ω

G(t − ξ, x, y)
Ar(y, ξ)
Hs(y, ξ)

dy

∣∣∣∣
≤ max

x∈Ω
|H0(x) − z(x)|

∫
Ω

G(t, x, y) dy +
∫ t

0

dξ

∫
Ω

G(t − ξ, x, y)
Ce−rξ

(minx∈Ω H0(x))se−sξ/τ
dy

≤
(

max
x∈Ω

|H0(x) − z(x)| + C

∫ t

0

e−(r− s+1

τ )ξ dξ

)
e−t/τ

≤
(

max
x∈Ω

|H0(x) − z(x)| + C

r − s+1
τ

(
1 − e−(r− s+1

τ )t
))

e−t/τ .
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Here we have used the estimates H(x, t) ≥ e−t/τ minx∈Ω H0(x) and (2.27). It follows
from the assumption (1.5) and τ > q/(p − 1) that

r − s + 1
τ

> r − (p − 1)(s + 1)
q

> 0.

Therefore,

max
x∈Ω

|H(x, t) − z(x)| ≤ Ce−t/τ ,

where C depends on A0 and H0.

3. Collapse of patterns in a more general case. The assertion in Theorem
2.1 holds in a more general case, that is, we consider the following system which
generalizes (1.1)–(1.4) slightly:

∂u

∂t
= ε2Δu − u + f(x, u, v) + σa(x), (3.1)

τ
∂v

∂t
= DΔv − v + g(x, u, v) + σh(x), (3.2)

∂u

∂ν

∣∣∣
∂Ω

=
∂v

∂ν

∣∣∣
∂Ω

= 0, (3.3)

u(x, 0) = u0(x), v(x, 0) = v0(x). (3.4)

Here, f(x, u, v) and g(x, u, v) are continuous functions in x ∈ Ω, 0 ≤ u < +∞,
0 < v < +∞, and locally Lipschitz continuous with respect to u and v (uniformly in
x); moreover, they satisfy the inequalities

0 ≤ f(x, u, v) ≤ C1
up

vq
, 0 ≤ g(x, u, v) ≤ C2

ur

vs
(x ∈ Ω, u ≥ 0, v > 0), (3.5)

where C1 and C2 are positive constants independent of (x, u, v). As examples of f
and g, we give (a) the Gierer-Meinhardt system with saturation:

f(x, u, v) =
up

vq(1 + κup)
, g(x, u, v) =

ur

vs
,

where κ > 0, and (b) the activator-inhibitor system proposed by MacWilliams [6]:

f(x, u, v) =
up

up + vq
, g(x, u, v) =

αur

ur + β
.

Here α and β are positive constants. MacWilliams used this model to simulate the
head-regeneration experiment on hydra.

Let σa ≡ 0 in (3.1). If we assume maxx∈Ω σh(x) > 0, we see that for any η > 0
satisfying 0 < η < 1 there exists a positive number δ such that

v(x, t) ≥ η(min
x∈Ω

v0(x) + δ)

for x ∈ Ω, t > 0. Let U(t) be a solution of the initial value problem

dU

dt
= −U + C1γUp, U(0) = max

x∈Ω
u0(x),
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where we put γ = [η(minx∈Ω v0(x) + δ)]−q. We obtain that if C1γU(0)p−1 < 1, then
U(t) is monotone decreasing and satisfies

U(t) ≤ Ce−t

for all t > 0. Here, C is a positive constant depending on C1, γ, U(0). Hence it
follows that

max
x∈Ω

|v(x, t) − z(x)| ≤ Ce−t/τ

for all t > 0. We note that the condition C1γU(0)p−1 < 1 is equivalent to

(
max
x∈Ω

u0(x)
)p−1

<
ηq

C1

(
min
x∈Ω

v0(x) + δ

)q

, (3.6)

which does not contain τ unlike the case σh(x) ≡ 0.
The following proposition explains why the collapse can occur for any τ in this

case.

Proposition 3.1. Let f(x, u, v), g(x, u, v) satisfy (3.5) and be differentiable with
respect to (u, v) in 0 ≤ u < +∞, 0 < v < +∞, and ∂f/∂u, ∂f/∂v, ∂g/∂u, ∂g/∂v
are continuous in (x, u, v). (Hence, the case 0 < r < 1 is excluded for the Gierer-
Meinhardt system.) Assume that σa ≡ 0 and maxx∈Ω σh(x) > 0. Then the stationary
solution (u(x), v(x)) = (0, z(x)) is asymptotically stable. Here the initial values u0(x)
and v0(x) are assumed to be positive.

Proof. Since fu(x, 0, z) = 0, fv(x, 0, z) = 0 and gv(x, 0, z) = 0, the linearized
operator around the stationary solution (0, z(x)) becomes

L =
(

ε2Δ − 1 0
gu(x, 0, z(x))/τ (DΔ − 1)/τ

)
.

The assertion is verified by showing that all the eigenvalues of L have negative real
part.

4. Concluding Remarks. Let us consider the system (2.1)–(2.4) with σh(x) ≥
on Ω. The definition of the collapse of patterns is that the activator concentration
converges uniformly to the trivial state A ≡ 0. Theorem 2.1 shows that the collapse
of patterns occur if τ > q/(p − 1) and the initial data is restricted. Moreover, if
we assume that maxx∈Ω σh(x) > 0, then collapse of patterns can occurs for any τ ,
which has been mentioned in Section 3. Therefore, the results may be summarized as
follows:

Basic production terms Collapse
σa(x) �≡ 0 never occurs.
σa(x) ≡ 0, σh(x) �≡ 0 occurs.
σa(x) ≡ 0, σh(x) ≡ 0 occurs for τ > q/(p − 1).

Therefore, the case σa(x) ≡ σh(x) ≡ 0 may be regarded as a “regular pertur-
bation” from the case σa(x) ≡ 0 and σh(x) �≡ 0, but it is a “singular limit” as
maxx∈Ω σa(x) ↓ 0 of the case σa(x) �≡ 0 and σh(x) ≡ 0.
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