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Abstract

Some techniques of bilinearization of the non-autonomous 1 + 1 dimensional discrete soliton equations is
discussed by taking the discrete KdV equation, the discrete Toda lattice equation, and the discrete Lotka-
Volterra equation as examples. Casorati determinant solutions to those equations are also constructed explicitly.

1 Introduction
The Hirota-Miwa equation, or the discrete KP equation is the bilinear difference equation of Hirota type given
by
ab-or(l+1,mnmr,m+1,n+ 1) +blc-a)yr(lLm+ 1,n)r(l+ 1,mn+1)
+cla-b)r(l,mn+ Dr(l+1,m+1,n) =0.

6]

Eq.(1) is well-known as one of the most important integrable systems[3, 11, 16]. Here, a, b, ¢ are arbitrary
constants playing a role of lattice intervals of discrete independent variables I, m, n, respectively. The Casorati
determinant solution to eq.(1) is given by

w;";(l, m, n) ‘P(,H;;(l, m,n) - SDEHN_:(L m,n)

s (s+ S+N—-

(’D (l, m, n) SO (l, m, n) e ‘p (l, m, n)

mn)y=| ° a o ’ @
A mn) gV mn e N )

where go(,s)(l, m,n) (r =1,...,N) are arbitrary functions satisfying the linear relations

G+ 1,m,n) - (L, m, n) _

¢ m, n),

a
®) )
Ok, 1+ Lm; — ¢, (l,m,n) = (1, m, n), ©)
(s) (s)
U mn+1) - ¢, m, n) = (1, m, ).
Cc

For example, choosing ga(,s) to be exponential type function as

@ (L, m, n) =a,pi(1 +ap,)'(1 + bp,)"(1 + cp,)"

K 1 m n (4)
+Brq;(1 + aq,) (1 + bg,)" (1 + cq,)",
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where a,, B, are arbitrary constants and p,, g, are parameters, then it gives the N-soliton solution.
Eq.(1) is known to yield various discrete and continuous soliton equations by the reductions and limiting proce-
dure. For example, let us impose the condition

T(l+1,m+ 1,n) =1, m,n), (®)]
where = denotes the equivalence up to multiple of gauge functions which leaves the bilinear equation invariant.
Then using eq.(5) to suppress /-dependence and taking a = —b, eq.(1) yields

b=yl — b+ o) e 4 2e 77 T = 0, 6)

where 7 = 7(l, m, n). Eq.(6) is transformed to

- Vm+1 _ E [L _ i) (7
n+l1 n = m+1 m |’
b+c vl vy
by the dependent variable transformation

n Tm+1

m _ n+l'n

[y ®)

Tn Tn+1

Eq.(6) or eq.(7) are called the discrete KdV equation[2, 16]. The condition (5) is realized by choosing ¢ = —p on
the level of gof.s)(l, m, n) in eq.(4). Therefore choosing the entries of the determinant as

¢ (m,n) = a,pi(1 + bp,)"(1 + cp,)" + B (=p)*(1 = bp,)"(1 + cp,)', C))

it gives the N-soliton solution of the discrete KdV equation. Hence, if a given equation turns out to be derived by
the reduction or other procedure from the Hirota-Miwa equation, it is possible to construct wide class of solutions
in this manner.

On the other hand, it has been pointed out that generalization of the Hirota-Miwa equation is possible in such
a way that the lattice intervals are arbitrary functions of the corresponding independent variables[7, 23]. Such
generalization to “inhomogeneous lattice” or to non-autonomous equation is regarded as an important problem in
the context of ultradiscretization or the box and ball systems, since it corresponds to a generalization such that
the capacity of the boxes changes according to the lattice sites[14]. Moreover, many discrete soliton equations
are shown to describe discrete surfaces or curves in various settings of the discrete differential geometry. In this
context, such inhomogeneity of lattices corresponds to the scaling freedom of the parametrization of geometric
objects and therefore it is geometrically natural[1].

The generalization to non-autonomous equation is technically straightforward for the “generic” equation such
as Hirota-Miwa equation because of its gauge invariance. However, when we consider the reduction to 1 + 1
dimensional system such as the discrete KdV equation, the reduction procedure does not work consistently because
of the non-autonomous property on the level of both bilinear equation and solution. Therefore the 1+ 1 dimensional
non-autonomous discrete soliton equations have not been studied well.

Recently, Tsujimoto and Mukaihira have considered the non-autonomous discrete Toda lattice (1DTL) equation
on semi-infinite lattice from the standpoint of Ry and Ry type bi-orthogonal functions[12, 13]. By introducing
certain auxiliary 7 function which does not appear in the expression of the solution, they succeeded in bilineariza-
tion of the equation and constructing molecular type solution. Then it has been shown that the non-autonomous
discrete IDTL equation on infinite lattice also admits similar bilinearization, and the soliton type solutions have
been constructed[8]. Moreover, three different bilinearizations of different origins have been presented for the
non-autonomous discrete KdV equation in [9], each of which requires some auxiliary 7 function, respectively.
The techniques developed in recent researches may enable systematic study of non-autonomous discrete soliton
equations.

The purpose of this paper is to give a review and some new results on bilinearization of non-autonomous 1 + 1
dimensional discrete soliton equations and construction of their Casorati determinant solutions . This paper is
organized as follows. In Section 2, we give a brief review of non-autonomous discrete KP hierarchy and its
solutions. In Section 3, we discuss three bilinearizations of the non-autonomous discrete KdV equation. Section
4 deals with two bilinearizations of the non-autonomous discrete 1DTL equation. We discuss in Section 5 the
case of discrete Lotka-Volterra equation, where direct reduction from the discrete two-dimensional Toda lattice
equation works without auxiliary 7 function.



2 Non-autonomous Discrete KP Hierarchy

2.1 7 Function and Bilinear Equations

We define the 7 function 7y(s; [, m; x,y) depending on infinitely many independent variables N € Z, s, I =
(i, l,..),m=(m,my,..),x =(x1,x,...),and y = (y1,¥2,...) by

R AT Al
1 N-1
90(25) 90(23+ ). ‘10(25+ )
ww(s;lLmx,y)=| ) ] , (10)
1 N-1
sv(N” w%” w(N” :

where <p(5) =, )(l, m;x,y) (r =1,...,N) satisfy the linear equations

eV, + 1) - 9(1,)

=" (, 11
) o (1), (11)
¢ my + D= g"m)
=@, (m,), (12)
b,(m,)
a S S+v
e =, (13)
X,
0 ,
e =, 19
Yy
for v = 1,2,.... Here the lattice intervals a, and b, (v = 1,2,...) are arbitrary functions with respect to the indi-

cated variables. We note that in the following, we indicate only the relevant independent variables for notational
simplicity, as in eqs.(11)-(14). For example, the N-soliton solution is obtained by choosing go( 5

o I,-1 0o my=1
s 2 anr"'z yiry"
o =a,p | | ]_[(1 +a,ipn | | ]_[(1 + by e
v=1 i=i, 1 i=i,
lz 1 g m,—1 15
T ) =t anq,+2y,q,
+6q | [ [ +aman [ | ] ]+ bug e :
v=1 =i, p=1 =i,

where a,, B, are arbitrary constants and p,, g, are parameters.

It is known that Ty(s; I, m; x,y) satisfies infinitely many difference, differential and difference-differential bi-
linear equations of Hirota type (for autonomous case, see for example [21]). We call this hierarchy of equations
non-autonomous discrete KP hierarchy. We give a list of some typical examples included in the hierarchy:

KP equation (x = x; y = x5, = x3)

(Dt -4D,D, +3D%)7-7=0. (16)
Two-dimensional Toda lattice 2DTL) equation (x = x; y = y;,n = 5)

1
szDy TpTp = Tﬁ ~ Tl Tp—1- a7

Non-autonomous discrete KP equation (I = [;, m = [, n = I, a; = ai(l;), by, = aj(lj), ¢y = ar(lp), {i, j,k} C
{1,2,3,---})
ai(by, —c)tl+ 1,m,n)t(l,m+ 1,n+1)
+b,,(c, —a)t(,m+ 1, m)r(l+1,m,n+1) (18)
+cu(a, — by)t(l,mn+ Dr(lbm+1,n+1)=0



Non-autonomous discrete 2DTL equation (I = [;, m = mj, n = s, a; = a;y(l;), by, = bj(m;), {i, j} € {1,2,---})

a=-abp)r,(l+1,m+ Dr,(I,m) -1, + 1,m)t,(I,m+ 1)

+ab, i (Lm+ Dr,_1(I+1,m) = 0. (19)
Bicklund transformation (BT) of 2DTL equation (x = x;,m = m;,n = s, b,, = b;(m;),i € {1,2,---})
(Dx - bm) Tn(m) : Tn(m + 1) + men—l(m)TnH(m + 1) =0. (20)

BT of non-autonomous discrete KP(2DTL) equation (I = [;, m = [;, n = s, a; = ai(ly), b,, = a;(l)), {i,j} C
{1,2,---}

alTn+l(l7 m+ I)Tn(l + 1’ m) - merH—l(l + 1’ m)Tn(l’ m+ 1)

(1= ba)tan byt + Lm + 1) = 0, @h

2.2 Casoratian Technique

In order to prove that the 7 function given in the form of Casorati determinant satisfies the bilinear equations,
the Casoratian technique is quite useful[16, 17]. We demonstrate the outline of the technique by taking eq.(20) as
an example.

Under the setting of eq.(20), the T function (10) reads

s g
) = ®, ‘(m) ®, | (m)y - ¢ | (m) , 2
so%’"(m) w%”i)(m) - ¢<N'”N'*“<m)
where goﬁ{")(m) (k=1,...,N) satisfy the linear relations
axpl” (m) = "V (m), (23)
@ (m) — " (m = 1) = by ' (m - 1. (24)
For instance, if we choose gof(")(m) as
m—1 m—1
e m) = anpf [ |1+ bip e + Begy | (1 + bige e, (25)
i=ip i=ip

we obtain the N-soliton solution.

The bilinear equation (20) is reduced to the Pliicker relation, which is the quadratic identity among the deter-
minants whose columns are properly shifted. Therefore, we first construct difference/differential formulas which
express determinants whose columns are shifted by 7,,(m).

Lemma 2.1 The following formulas hold.

T,(m)=10,--- ,N=-2,N—-1], (26)

T,(m—=1) =0y, 1,--- , N=-2,N-1], 27

~byy Tim-1)=11,,1,--- , N=-2,N-1], (28)
0,ty(m)=10,--- ,N=2,N|, (29)

Ox +by-1)Ti(m—1) =1 0ppy,- - ,N=2,N|, 30)



where “j,,” is the column vector
(n+j)
90(1 )(m)
n+j
, @, T (m)
]m = . b (3 1 )

(n+

¢y m)
and the subscript is shown only when m is shifted.

Proof. Eq.(26) follows by definition, and eq.(29) is derived from the differential rule of determinant. Using eq.(24)
to the i-th column of 7,(m — 1) fori = NN —1,...,2, we have

Ta(m—1) =01, L1+ s N = 2501, N = Ly |
= IOm—lvl".' ,N—2,N—1|,

which is eq.(27). Multiplying —b,,_ to the first column of the right hand side of eq.(27) and using eq.(24) we have
eq.(28),

_bm—lTn(m_ 1)=| —by - 0py,1,--- ,N=-2,N-1]
=|1,4-11,--- , N-2,N—-1]|
=|1m—l’1"",N_2,N_1|-

Differentiating eq.(27), we have

aXTﬂ(m_l):llm—1313”' ’N_23N_l|+|0m—lala”' ’N_29N|
=~bu_ 11, (m—-1)+|0p-1,1,--- ,N=2,N|,

from which we obtain eq.(30). This completes the proof. O
Finally, eq.(20) is derived by applying Lemma 2.1 to the Pliicker relation

0:|Om—17071""5N_2|X|15“'9N_2»N_17N|
—|O,1,~--,N—2,N—1|X|0m_1,l,--~,N—2,,N| (32)
+|0’1’..'sN_27N|XIOm—1717'.'aN_237N_1|'

Therefore we have shown that the 7 function (22) actually satisfies the bilinear equation (20). Other equations are
derived in a similar manner. We refer to [16, 17] for further details of the technique.

3 Non-autonomous Discrete KdV Equation

3.1 Casorati Determinant Solution

In this section we consider the following difference equation[10]
1 1 m 1 1 m+1
(am bn+1 ) Vel (am+l bn ) K

_(1 1)1 ( 1 ) I
B am by ) vy Am+1 by yrl?

n+l

(33)

where a,,, b, are arbitrary functions of m and n, respectively. If a,, and b, are constants, eq.(33) is equivalent to
the discrete KAV equation (7). We call eq.(33) the non-autonomous discrete KdV equation.
The N-soliton solutions to eq.(33) can be expressed by Casorati determinants as follows:



Theorem 3.1 For each N € N, we define an N X N determinant 7/’ by

&NV, n)

&5 V. m)

‘p(ls)(m n) 90(1s+1)(m7 n)
¢ m,n) oS m,n)

o ’ (34)
e gy e g mm)
m=1 n—1
e m,n) =a,p) | [ +ap) [ [ +Bip)
i=myg . J=no . (35)
+Bp’ | [ —apn | [ =p.
i=myg J=no
Then 1
Tm TWL+
Y= n+1 "l , (36)
L
satisfies eq.(33).

Unlike the autonomous case, eq.(33) cannot be put into the bilinear equation directly in terms of single 7 function
T, because of non-autonomous property. This difficulty is overcome by introduction of auxiliary 7 function. In
the following, we discuss three different bilinearizations.

3.2 Bilinearization (I)

Proposition 3.2 Let 7/, and o7, be functions satisfying the bilinear equations

— €(apm — by) T + ap(by + €) T 0 = (e + @) T O = 0, (37)
e(an — by,) O'n’”‘r::’:,1 + (b, — €) TZ‘“O'ZLI + b,(e — ay) Tn’”HO{fH =0, (38)
respectively, where € is a constant. Then
o Tm Tnm+l
Y= V= e (39)
Tn T"mT:szrl
satisfy
1 1 1 1 1 1 1
——— | =P o — P o — P =0, 40
(bn am) Vnm n+l (6 bn) n € m n+l ( )
1 1 1 1 1 1 1
— ] =Y == — | P+ — - = P =0, 41
(bn am) V;? n (E bn) n+1 (am E) n ( )
and non-autonomous discrete KdV equation (33). In particular, eq.(34) and
@ (m,n) & Vm,m) @ m, m)
& m,ny G mn) & D m,n)
o, = , (42)

eVm,n) @ m,n)

av ™ Vomn)



where

m—1 n—1
FO0mm) = api(1 +ep) [ [ +ap [ [ +bjp 3)
i=myg Jj=no
m—1 n—1
B,=p)* (1 =ep) [ [ =ap) [ [ = bjpn),
i=my Jj=no

solve the bilinear equations (37) and (38).

The bilinearization described in Proposition 3.2 is derived from the discrete KP hierarchy. The key idea is to intro-
duce auxiliary “autonomous” independent variables (corresponding lattice intervals are constants) simultaneously,
and to apply the reduction procedure through those autonomous variables. Let us take k = /1, [ = I, m = I3 and
n = Iy, and choose the corresponding lattice intervals as a;(l) = 9, ax(h) = €, a3(I3) = a,,, as(ly) = b,, where 6
and € are constants. The variables k and [ are the autonomous variables mentioned above.

We now consider the discrete KP equation (18) with respect to the variables (k, m, n)

oa,—b)tk+1,Lmn)rk,l,m+1,n+1) (44)
+au,(b, —0) vk, l,m+ 1, m)rtk+1,l,mn+1)
+b,(6 —ay) Tk, l,m,n+ Drk+1,I,m+1,n) =0,

and the same equation with respect to the variables (/, m, n)

ela, — b)) vk, I+ 1,m,m)r(k,l,m+1,n+1) 45)
+a,(b, — )k, ,m+ 1,m)t(k, I+ 1,m,n+ 1)
+b,(e —ay,) Tk, ,m,n+ Drk,l+1,m+ 1,n) = 0.

Under this setting, the 7 function (10) is written as

() (s+D) (s+N-1)
Y1 A IR
(s) (s+1) (s+N-1)
‘pz (pz ... 2
Tk, l,m,n) =| , , , (46)
() (s+D) (s+N-1)
Yn PN R 2\
m—1 n—1
@k, Lm,m) =a,p}(1+6p)'(1 +ep)! [ [ +aip) [ |1+ b))
=myg J=no (47)
m—1 n—1
+B,g3(1 + 69, (1 + eg) | |1+ agn [ |1 +bjg0).
i=my Jj=no
We next impose the reduction condition on the autonomous independent variables k, [ as
Tk + 1,1+ 1,m,n) < t(k,[,m,n). (48)
This is achieved by imposing the condition on ¢ (r=1,...,N)as
¢k + 1,1+ 1,m,n) = ¢ (k,I,m,n). (49)
In order to realize eq.(49), one may take
gr =—pr, 0=-€, (50)



so that

@Ok + 1,1+ 1,m,n) = (1 - €p?) @ (k,I,m, n),

N (51)
rk+ 1,01+ 1,m,n) = ]_[(1 — &p?) 1k, 1,m, n).
r=1
Then, suppressing the k-dependence by using eq.(48), the bilinear equations (44) and (45) are reduced to
—€e(a, —by) t(l,mm)yr(l+1,m+1,n+ 1) +a,(b,+e)t(l+1,m+ 1,n)t(,m,n+1)
—byle+ay)tl+1,mn+ Dr(l,m+1,n) =0,
elam —by) T+ 1, mn)yr(l,m+ 1,n+1)+a,(b,—e)tl,m+ 1,n)tr(l+1,m,n+1)
+by(e —ay)t,mn+ D+ 1,m+ 1,n) =0,
respectively. By putting
o =1(,mmn), oy =711+1,mn), (52)

we obtain the bilinear equations (37) and (38). Then an easy calculation shows that ¥}, and v}, satisfy eqs.(40)
and (41).

We finally show that v/ satisfies eq.(33). Eq.(33) is derived from the cubic equation in terms of 7 which is
obtained by eliminating o7 from the bilinear equations (37) and (38). However, this procedure can be done more
systematically in the following manner. Introducing a vector

m+1
@k(%my (53)

€qs.(40) and (41) can be rewritten as the following linear system:

o = Lydy, Oyt = M), (54)
L) 1l
1. 1), (L.
1 by an) " an €
" = , (55)

My = o (56)
m+1 € - — 0
Am+1 €
Then the compatibility condition of the linear system
Ly M = My, L) (57)

gives eq.(33). This completes the proof of Proposition 3.2.

Remark 1 1. The linear system (54)-(56) is the auxiliary linear system of eq.(33) and the matrices L', M
are the Lax pair, where the lattice interval € plays a role of the spectral parameter. In this sense, the
bilinearization in this section can be regarded as that for the auxiliary linear system.

2. If we eliminate v from eqs.(40) and (41), and put w)' = ¥", we obtain the non-autonomous potential

modified KdV equation
m . om L om+l
m+1 m Vn Wn+l Wh m b"
Wil =w , Yo = —, (58)
n+1 n mo_ o mtl n a
Wast = Vn Wa m



by taking € — co. The solution of eq.(58) admits several expressions. For example, let us use the internal

variable s in eq.(34) explicitly and write 7)) = 7/'(s). Then it is shown that /' ) satisfies eq.(58).
(N+1)
TZ’(N)

m(s)
Similarly, writing 7]} with determinant size N as 7)) = 7,/(N), then it is also shown that w}' =
satisfies eq.(58).

3.3 Bilinearization (Il)

The non-autonomous discrete KdV equation (33) admits an alternate bilinearization involving auxiliary t func-
tion which does not appear in the expression of the solution.

Proposition 3.3 Let 7)) and «] be functions satisfying the bilinear equations

bn(am 1t am) n+1 ::1 - am—](am + bn)‘r:,nHleH + am(am 1= b )TZILI Zl I= 0’ (59)
bn(am 1= am)Tm+1 Zlﬂl _am(am 1= b )T,Hle + ap- l(am - b )T::IK:,WJr] =0. (60)

Then v} defined in eq.(36) satisfies eq.(33). In particular, 7/ in eq.(34) and

O W mny o N Vonn)
K = lp“)@,n) lp;ﬁl).(m’n) w(”N {)(m,n) > 61)
w“)(m,n) w0 mn) - Yt “(m,n)
m=2
YO m,n) =a,pi(1+ anpy) [ [(1+a;p) ]—[<1 +bipy)
J=mo k=ng

m-2 n—1 (62)
+B=p* (L =anpp | |1 =ajgn | [ = bupy),

J=l k=ng

solve egs. (59) and (60).

Remark 2 In the autonomous case, namely if a,, and b, are constants, the auxiliary 7 function &} reduces to 7/,
the bilinear equation (59) yields the equation which is equivalent to eq.(6), and eq.(60) becomes trivial, respec-
tively.

Proposition 3.3 is proved by applying the Casoratian technique based on the linear relations among the entries of
the determinants

@O (m + 1,n) — ¢ (m, n) = a, ¢V (m, n), (63)
@ O(m = 1,n) + ap ¢ V(m - 1,n) = 9 (m, n), (64)
WO (m, n) = ap y P m,n) = (1 - ay,p}) @V (m = 1,n), (65)
@O(m,n+ 1) — ¢ (m,n) = b, ¢+ (m, n). (66)

We refer to [9] for further details of the proof.

3.4 Bilinearization (lll)

The non-autonomous discrete KdV equation (33) admits the third bilinearization through non-autonomous ver-
sion of the potential discrete KdV equation[15]

1 1 1

m+1 m _

Upyy — Uy = (aZ - ﬁ) untl —oym ’ (67)
m n n+l



|

(68)

or
1 1 1 1 1 1
~m+1 ~m ~m+1 ~m —
R Rt et R
where u)} and i are related as
m—1 -1
1 1
W =ur — — 69
i =l Zm] " Z = (69)
We note that ] is related to v/ in eq.(33) as
1 nr ., el
Proposition 3.4 Let 7 and p!’ be functions satisfying the bilinear equations
1 1
e = i = (= ) (e, ), a
+1_m m m+l _ 1 1 m+1_m m+1__m
pn+l Ty =P T ntl T\ o + b, (Tn+1 T~ Th n+1) (72)
Then v} defined by eq.(36) and
m— -1

o 1 1
m _ Pn - —, 73
= Z " ]Z 5 (73)

l:mg =

satisfy eq.(33) and eq.(67), respectively. In particular.
(S)(m n)
A m)
Pn = .
9055)(m, n)

7" defined by eq.(34) and

(s+N-2) (m l’l) (p(s+N) (m’ I’l)

¥
(HN 2) (m }’l) (p(erN) (m’ l’l)

PN

N) are given by eq.(35) solve eqs.(71) and (72)

1. Eq.(70) follows immediately from eq.(71) by d1v1d1ng the both 81des by 7",

Remark 3
2. If we introduce the continuous independent variables x;, x3, -

m—1

¢Om,n) =a,p [ [0+ bipp) [ (1 + cxpy) errrmot

through

n—1

k=ng

J=mo

+Br( p”)s 1_](1 - jpr)l_[(l — CiPr )e Prii—pyx3te

m—1

J=mo k=ng

(”N 2) (m, n) 9055”\’) (m,n)

(74)

where ¢”(m,n) (r = 1,...
Proof of Proposition 3.4 is given by the Casoratian technique by using the linear relations (63) and (66)[9]
m+1

(75)

then 7' becomes the 7 function of the KdV hierarchy. In this case, o) and i can be expressed as
(76)

respectively. Accordingly, i)

mo_

Pn
satisfies (68) and the potential KdV equation

oy 3 (o,
aX3

oy o 0 9,
it og T
n Gx g

ﬁxl ’

~m )2 1% m

(9x1 4 8xl

7

simultaneously. This is consistent with the fact that the potential discrete KdV equation is derived as the

Bécklund transformation of the potential KdV equation[15]

10



4 Non-autonomous Discrete Toda Lattice Equation

4.1 Casorati Determinant Solution
The non-autonomous discrete 1DTL equation is given by[4, 8, 12, 13, 22]
AU LB 4 A = AL+ B+ A,
ALBH = ALB!

n—n’

(78)

where A, is an arbitrary function in z. The N-soliton solution is expressed by Casorati determinants as follows[8,

22]:

Theorem 4.1 For each N € N, we define an N X N determinant 7/, by

(n)(t) 90(1n+l)(t) (n+N ])(t)
t )(I) (,D(n+l)(l) (n+N ])(l‘)
T, = ,
)(t) (,D(n+l)(t) (n+N 1)(1‘)

t—1 t—1
e, 1) = arp! [ (1= poy) + B | [ = p7 ),

J=to J=to

where A, is an arbitrary function in ¢, «,, 8, are arbitrary constants, and p, are parameters (r = 1,...,

t t+1 t+1 .t
T,T T T
t _ -1 _"n n+l ¢t _ n—1"n+l _ -1
A, =1, TS B, = e A=+,
n+ltn TnTn

satisfy (78).

4.2 Bilinearization (I)

Proposition 4.2 Let 7/, and ¢, be functions satisfying bilinear equations

(1 - du) T — L0 + op, 7, 05 =0,

n-n

He T Hl@iﬁl -6 ::;119[ (1 = 6) Tn+19tJr1

Then | |
¢ ! A1+ I+ !
N 9 A = gt T B = _y =Tt
nTogt =M T n= THT T
n T Tn ™Th
satisfy

(1= 6u) ¥y, =¥y = 6B, = 0,
pe Wiy + 0 A, = (= 6) W

and the non-autonomous discrete 1DTL equation (78). In particular, eq.(79) and

_(n)(t) —(n+l)(t) . ¢(1n+N_])(t)

, —(n)(t) —(n+l)(t) . ¢(2n+N—l)(t)

en = . . . ’
_(n)(t) ¢x+l)(t) . 9_0(13+N_1)([)

11

(79)

(80)

N). Then

81

(82)
(83)

(84)

(85)
(86)

87)



where
t—1 1—1

200 = anp (L= 5p) | [(1 = poap) + Bop;" (1= 87" ) [ [0 = ' (88)

J=lo J=to
solve the bilinear equations (82) and (83).

Proposition 4.2 can be proved by the similar technique to that in Section 3.2. Letus take k = I}, t = I, ] = m
and n = s, and choose the corresponding lattice intervals as a;(l;) = =9, a(l2) = —, b1(m;) = €, where ¢ and €
are constants. The variables k and / are the autonomous variables. We consider the discrete 2DTL equation (19)
with respect to the variables (n, [, )

A+ eu)tnlk, I+ 1,t + D1p(k, 1) — T0(k, Lt + Dok, I+ 1,0) (89)
—eu Tk, 1+ L, O 1 (k, Lt + 1) =0,

and its Béacklund transformation (21) with respect to the variable (n, k, £)

wrk + 1,107k, 1t + 1) = 611 (k, 1, £ + Drak + 1,1,0) (90)
—(ty — O)n1 (ke L, YTk + 1,1, + 1) = 0.

Under this setting, 7 function (10) is now written as

(n) (n+1) (n+N-1)
‘pl ‘pl CEEEY 1
(n) (n+1) (n+N-1)
SDZ SOZ .. 2
Tk, D)= . . , On
() (n+1) (n+N-1)
"01\7 "01\7 cee (’013

t—1

G, 1) =ap(1 = 6p )1+ ep; ) [ (1 = mpy)

i=io

-1 ©2)
+Brgi(1 = 6941 + g, | (1 = ).
i=io
We impose the reduction condition on k, [ as
Ttk + 1,1+ 1,0 = 1,(k, L, 7). 93)
This is realized by choosing the parameters of the solutions as
1
€=-0, ¢r=— 94)
so that
ek + 1,1+ 1,0 = (1= 6p,)(1 = 6p; ") (k. L, 1),
N
95)
e+ 1,0+ 1,0 = [ [(1=6pa1 = 6p;") Tk, 11).
r=1
Suppressing [-dependence by using eq.(93), and denoting
Tk, 1) =1, Tu(k+1,11) =6, (96)

the bilinear equations (89) and (90) are reduced to eqs.(82) and (83), respectively.

12



It is clear that the linear equations (85) and (86) follows from the bilinear equations (82) and (83), respectively,
through the dependent variable transformation (84). In order to obtain eq.(78), we introduce

\Ilt
= ( 1+l ) . o7
¥,
After some manipulation, the linear equations (85) and (86) can be rewritten as
O, = L0, O = M0, (98)
ro_ —0 [A;H + Bf[Hl +(1 = 6u) (;% - %)] 52A;B;+1
L, , (99)
1 0
1 _ 1 _1 t pt
M;l = —] . ( n+l + (l 6/.1;)(”1 5) 6A"j;’+l ) (100)
w6 _S i

Then the compatibility condition L' M! = M!

n+1

! .1 gives eq.(78). This completes the proof of Proposition 4.2.

4.3 Bilinearization (Il)

There is an alternate bilinearization for eq.(78), which is similar to the second bilinearization of the non-
autonomous discrete KdV equation discussed in Section 3.3.

Proposition 4.3 Let 7/, and 77/, be functions satisfying the bilinear equations

t+1_1—1

n Th Ti’lnf’l = Hifti—1 ( Tn 1lTinrll - Tn”n) (101)
BT — M1 Ty = (e — )T T (102)

T

Then A!, and B!, defined in eq.(84) satisfy eq.(78). In particular, eq.(79) and
I ORI

(n) (n+1) (n+N 1)
v, (t) v, @ - (0
My = , (103)
l//(n)(t) !//('Hl)(t) . l!/(n+N 1)([)
=2 =2
Yy = a1t =pi) [ [ = po) + B, (1= p e | (1= p7 '), (104)
J=to J=to
solve eqs.(101) and (102).
Eq. (78) is derived from the bilinear equations (101) and (102) as follows: multiplying (1 - —)‘rn 1.1 10€q.(102)
and using eq.(101) we have
(Tn+l) (MZTH—I ;H_l] :ut th 1 z+l) (T ) (llt 1,[_t+1 1t1+]] :ut sz 1 t+l) (105)
= (A = A I)Tt A L+11T;+1
Dividing equation (105) by 7/,7i"'7""1 7! |, we obtain the first equation of eq. (78). The second equation is an

identity under the variable transformation (84).
Proposition 4.3 is proved by applying the Casoratian technique based on the linear relations among the entries
of the determinant

et +1) = @) — (o), (106)
Y1) = ¢t = 1) — V(- 1), (107)
(1 = pip)(A = p7 et = 1) = (1) — "D (). (108)

We refer to [8] for further details of the proof.
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Remark 4 Recently Tsujimoto has presented a theoretical background of appearance of the auxiliary 7 function
7 in this section by considering the two-dimensional chain of the Darboux transformations[22].

5 Non-autonomous discrete Lotka-Volterra Equation

5.1 Lotka-Volterra Equation

The Lotka-Volterra equation

d
7 logu, = uy41 — 1, (109)
can be transformed to the bilinear equation
(Dt + DTpyt Ty = Tuo1Tna2s (110)

through the dependent variable transformation

Tn-1Tn42 d Tn+1
U, = —— = — 10g

Tn+1Tn dt Tn

+1. (111)

The N-soliton solution to eq.(109) is given by

(p(n) (;0(1”+1) . S0(171+N—1)
by e tnen-1)
§02 <p2 902
T, = ) . , (112)
I -
PR
1V e
o = a1 + e 4 gy (1 . —) N, (113)
i

where a4, By are arbitrary constants and ry are parameters (k = 1,...,N).
The Lotka-Volterra equation is reduced from the Bicklund transformation of the 2DTL equation (20). Let us

impose a reduction condition for 7,(m) and go,((")(m) given in eqs.(22) and (25), respectively:

T m+ 1) = Tpa(m), @ m+ 1) = ¢ Vm), (114)

The condition (114) is achieved by putting

by =-b, qx= —ka, (115)
b
or
e =b(1 + ry), 61k=b(1+rlk). (116)
Then eq.(20) is rewritten as
(Dx + D) Ty - Tnat = b Ty Tt (117)

Noticing that b can be normalized to be 1 without loss of generality, we obtain the bilinear equation (110) and its
Casorati determinant solution (112) and (113).
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5.2 Non-autonomous Discrete Lotka-Volterra Equation

The discrete Lotka-Volterra equation[5, 6] can be derived by discretizing the independent variable x in the
Bécklund transformation of 2DTL equation, which implies that it can be formulated as the reduction from the dis-
crete 2DTL equation itself. The reduction procedure works well also for non-autonomous case without auxiliary
7 function, as shown below.

We consider the non-autonomous discrete 2DTL equation (89) with [ = [}, m = my, n = s, a; = a;(l}),
by = —bi(my):

A +abp)r,(l+1,m+ Dr,(I,m)—71,(0+ 1, m)t,(Lm+ 1)

118
= almelH-l(la m+ 1)Tn—l(l +1, m), ( )
where the 7 function is given by
(n) (n+1) .. (n+N—l)
‘p(;) ‘p(2n+l) . ‘P;MN 1
T"[m = . b
¢%t> ¢%l+1> (pxlﬁ}vm
-1 m—1
e m) =aupl [ [ +aipo) [ ] (1= bipc")
I j=
= e (119)
+:8qu 1_[ A + aiqr) l_[ ]‘Ik
i=ly Jj=mg
We impose the reduction condition,
Tulom+ 1) = T m), @ (m+1) = "1, m), (120)
which is achieved by putting
1
bmzl, pk=1+rk, qk=]+—. (121)
Tk
Then ga(") is written as
-1 1 n -1 a;
" = ap(1 + )" ]—[ (1 +a; + aire) + Br (1 + —) 1_[ (1 +a;+ —’). (122)
i= [() k i:ln rk
Now suppressing m-dependence and writing 7,,(I, m) = 7', the bilinear equation (118) is reduced to
(1 +a) ‘rf;llrl - T[+1T£H_l =q TiH_lell H, (123)
from which we obtain the non-autonomous discrete Lotka-Volterra equation
1+ phrl 1 +ap!
s AR (124)
L+a V, 1 +apnv,"
through the dependent variable transformation
[ I+1
T T
v, = el (125)
Tn Tn+l

Eq.(124) is equivalent to the generalization of the discrete Lotka-Volterra equation in [4, 18, 19, 20]. Further
generalization of eq.(124) is proposed in [18] which corresponds to de-autonomization of n.
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