
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

A Combined Analytical and Simulation-Based
Model for Performance Evaluation of a
Reconfigurable Instruction Set Processor

Mehdipour, Farhad
Faculty of Information Science and Electrical Engineering, Kyushu University

Noori, Hamid
Institute of Systems, Information Technologies and Nanotechnologies

Javadi, Bahman
Computer Engineering and IT Department, Amirkabir University of Technology

Honda, Hiroaki
Computer Engineering and IT Department, Amirkabir University of Technology

他

https://hdl.handle.net/2324/13246

出版情報：Asia and South-Pacific Design Automation Conference. 14, pp.564-569, 2009-01-21
バージョン：
権利関係：

A Combined Analytical and Simulation-Based Model for Performance Evaluation of a
Reconfigurable Instruction Set Processor

Farhad Mehdipour

Faculty of Information
Science and

Electrical Engineering,
Kyushu University, Japan
farhad@c.csce.kyushu-u.ac.jp

Hamid Noori

Institute of Systems,
Information Technologies

and Nanotechnologies,
Japan

noori@c.csce.kyushu-u.ac.jp

Bahman Javadi

Computer Engineering
and IT Department,

Amirkabir University
of Technology, Iran

javadi@ihpcrc.com

Hiroaki Honda

Institute of Systems,
Information Technologies

and Nanotechnologies,
Japan

dahon@c.csce.kyushu-u.ac.jp

Koji Inoue and
Kazuaki Murakami

Department Of Informatics,
Kyushu University, Japan

inoue@i.kyushu-u.ac.jp
murakami@i.kyushu-u.ac.jp

Abstract- Performance evaluation is a serious challenge in
designing or optimizing reconfigurable instruction set processors.
The conventional approaches based on synthesis and simulations
are very time consuming and need a considerable design effort. A
combined analytical and simulation-based model (CAnSO∗) is
proposed and validated for performance evaluation of a typical
reconfigurable instruction set processor. The proposed model
consists of an analytical core that incorporates statistics gathered
from cycle-accurate simulation to make a reasonable evaluation
and provide a valuable insight. Compared to cycle-accurate
simulation results, CAnSO proves almost 2% variation in the
speedup measurement.

I. Introduction

Reconfigurable instruction set processors (RISPs) introduce an
effective approach for implementing embedded systems similar to
application-specific instruction set processors (ASIPs) and
extensible processors. A RISP mainly consists of a
microprocessor core that is extended with a reconfigurable
accelerator (RAC) [1] The base processor (BP) implements non-
critical parts of the applications and reconfigurable accelerator is
responsible for executing critical parts.

Fig. 1 shows a general template of a reconfigurable instruction
set processor including a baseline processor (BP), a
reconfigurable accelerator (RAC), which is based on a matrix of
functional unit (FUs), and a configuration memory. Hot portions
of applications are identified and used for generating custom
instructions (CIs). CIs are the instruction set extensions which are
extracted from critical portions of target applications. CIs are
mapped onto the RAC and configuration’s bit-stream is generated
for each CI and stored in the configuration memory prior to
application execution. The associated bit-stream is loaded on the
RAC while a CI is encountered and then the CI is executed on the
RAC at runtime. RAC acts as an accelerator and brings about
higher performance [2][7][12][10].

Performance evaluation of a RISP challenges both the
designing of such system and optimizing an existing one for an
objective function. In either event, a designer is interested in
obtaining optimum system configuration and therefore needs to
perform a performance analysis in terms of the performance
metrics e.g. speedup, area, energy consumption and etc.
Performance evaluation models are divided into to broad classes
including structural models and analytical models [5]. The former
one includes empirical studies based on measurements and
simulations of the target system. The latter one incorporates a
system (usually simplified) structure to obtain mathematically
solvable models.

∗ CAnSO in Japanese means simple.

The main contribution of this paper is to introducing and
validating an analytical model for performance evaluation of a
reconfigurable instruction set processor. Even though the core is
an analytical model, it utilizes trace-driven information e.g. miss-
events’ rates and the latency of executing CIs on the base
processor to emphasize on the application aspect and provide a
reasonably accurate evaluation. Recent research shows that the
achieved performance highly depends on the applications’
characteristics [3].

Experimental Setup: Throughout this research we conducted
some experiments for displaying the observations and
demonstrating the achievements. The experimental setup is as
follows. A reconfigurable instruction set processor matching to
the general template in Fig. 1 is assumed. Fourteen applications
of Mibench [8] from various domains (e.g. automotive, security,
consumer, network, telecommunication) are used for generating
CIs (DFGs) similar to the approach in [10].To commence with
the CI generation, applications are executed on Simplescalar [11]
as an ISS (Instruction Set Simulator) and profiled to identify the
hot segments. Then, the CIs are extracted from the hot segments
(excluding floating point, control and memory access instructions
except one store). The number of CIs generated for different
applications varies from one (in crc) up to 80 (in rijndael). Also,
CIs include at least five and at most 59 instructions.
Simplescalar’s cycle accurate simulator [11] has been extended to
simulate a reconfigurable instruction processor. According to Fig.
2 the RAC is responsible for executing almost 30% of dynamic
instructions of applications in average. The more execution on the
RAC, higher speedup is achievable.

Fig. 1. A RISP’s general template

0
10
20
30
40
50
60
70
80
90

100

ad
pcm

(dec)

blowfis
h(en

c)

blowfis
h(de

c) crc
cjp

eg
djped

dijk
stra

lam
e

patr
ici

a
qso

rt

rijn
dae

l(e
nc)

rijn
dae

l(d
ec

)
sh

a
su

sa
n

Avera
ge

%
BP Portion RAC Portion

Fig. 2. Breakdown of applications’ exec. time on the BP and RAC

978-1-4244-2749-9/09/$25.00 ©2009 IEEE

6A-4

564

II. Combined Analytical and Simulation-based Model
(CAnSO)

The design or optimization of a reconfigurable accelerator
requires a considerable time in exploring the design space and
finding a proper architecture meeting the design constraints and
gaining a desirable performance. Although high performance
computers can be used for cycle-accurate simulation of the
workloads in a shorter time at these days, exploring a large design
space is still both human and computationally intensive [9].
Furthermore, it should be noted that some simulations are never
to end. This motivates a performance evaluation approach based
on computationally simple analytical model. Relying only on the
analytical model may not be able to precisely take the effect of
realistic factors of application behavior including miss-events (e.g.
data and instruction cache misses or branch miss-predictions) into
account. The proposed model (CAnSO) has a qualitative insight
in providing trace-driven information from the application. On
the other hand, in the CAnSO, some of the parameters are
obtained by means of cycle-accurate simulation of applications.
Therefore, it emphasizes on both real observations and analytical
model.

Fig. 3 depicts how a combined model is generated and then
utilized for performance evaluation. In the first step, all the
demanded applications are simulated using a cycle-accurate
simulator and required information (e.g. the number of CIs,
execution frequency of CIs and so on that will be later introduced
in detail) are collected. Afterward, the information is used for
simplifying and calibrating the proposed pure analytical model to
make it more precise and empirical. After establishing the model,
CAnSO can be used for performance evaluation of each
application. Again the statistics gathered from the corresponding
application can be utilized for more accurate estimation of the
performance. One usage of such model is in design space
exploration of the accelerator where designer intends to study the
effect of changes in the architectural specifications (e.g. size,
dimensions and etc.) of the accelerator. It substantially shortens
the exploration time with a reasonable accuracy.

III. The Analytical Model

A. Processor’s Template

Fig. 1 illustrates processor’s structure. In our template
architecture, the BP is an in-order general five-stage RISC
processor and RAC is a coarse-grained tightly-coupled
reconfigurable hardware which implements custom instructions.
CIs are indexed for direct accessing of the associated
configuration bit-stream from the configuration memory. To
access required operands in the RAC, the content of all registers
are sent to the RAC (by sharing the register file between RAC
and conventional functional units) and the registers are used with
respect to configuration inside of the RAC. Controlling
configurations i.e. the task of loading and initiating the RAC, can
be hardware or software-based. In a software-based mechanism
starting address of a CI is replaced with a special instruction
(might be referred as invocation instruction [10]). To implement a
hardware-based method, starting address of each CI and index to
the configuration memory is stored in a content addressable
memory (CAM) for a quick retrieval of the corresponding bit-
stream. Memory accesses might be included or excluded. In case
of inclusion, the impact of data and instruction caches hits/misses
should be taken into account. In addition, in case of presence of
control instructions in the CIs, the effect of branch results should
be applied to the model.

Fig. 3. Model extraction and model utilization phases

B. Basic Model Definitions

Below our terminology and some definitions are presented:
ntcc: The total number of clock cycles spent for executing an

application on the base processor including entire miss-events.
il : The number of primitive instructions (belonging to the

BP’s instruction set architecture-ISA) in CIi.
i
BPτ : The time required for executing the sequence of

instructions of CIi on the BP in term of the number of clock
cycles.

()
imiiiii ,321 ,...,,, θθθθθ = , where ijθ is the frequency of jth

occurrence of CIi and im is the number of times that CIi is
executed during the application execution. Correspondingly,

=

=Ο
im

j
iji

1

θ is the total number of executions of CIi.

Two type of execution are assumed for CIi:

Single execution: in the jth occurrence of CIi, it is executed
once (1=ijθ). In Fig. 4, second occurrence of CI1 and first
occurrence of CI2 are the single executions (112 =θ , 121 =θ). Fig. 4
also indicates that an overhead time exists in either of CI loadings
on the RAC.

Continuous execution: in a continuous execution, CI is
repeatedly executed (1>ijθ), and the RAC is configured at the
first execution and operates without need to reconfiguration for
the next executions of the same occurrence. Fig. 4 shows that CI1
and CI2 in their first and second occurrences are executed
continuously (211 =θ , 322 =θ).

Based on the two above definitions, iS and iC are introduced
which contain the index of intervals of single and continuous
executions of CIi }1},,...1{{ =∈= ijii mjjS θ

and }1},,...1{{ >∈= ijii mjjC θ .

CIn : The total number of CIs.

RACτ : A fixed-delay for executing a CI on the RAC. This
timing factor also includes all latencies concerning to execution
of a CI on the RAC.

OVHτ : The overhead time including RAC reconfiguration
time, the time required for setting RAC up and communicating
between RAC and BP. This overhead time also depends on the

565

6A-4

controlling mechanism of the configurations. In the software-
based method,

Fig. 4. Various types of a CI execution on the RAC

an additional cycle is spent for executing the CI invocation
instruction whilst in the hardware-based method no additional
cycle is considered.

is : Denotes the accumulated partial speedup for CIi and ijs
indicates the partial speedup achievable via jth execution of CIi.

()−×+
+

= 1ij
RAC

i
BP

OVHRAC

i
BP

ijs θ
τ
τ

ττ
τ (1)

Therefore, speedup for CIi can be calculated as:

()
==

−×+
+

×==
ii m

j
ij

RAC

i
BP

OVHRAC

i
BP

i

m

j
iji mss

11

1θ
τ
τ

ττ
τ

 (2)

C. Speedup Formulation

The fraction of application execution time which is transferred
to the RAC and the fraction of application running on the BP are
as Eq. 3 and 4, respectively. The numerator of Eq. 3 represents
the portion of application’s execution time elapsed on the RAC
and the numerator of Eq. 4 denotes the application execution time
that is run on the BP. According to the Amdahl’s law, the overall
speedup (so) can be calculated as Eq. 5. The first term of
denominator denotes the portion of execution time associated to
the BP and second term of denominator represents the summation
of execution times of a CI on the RAC divided by partial speedup
related to that CI. The execution on the RAC and BP are not
performed concurrently; therefore the total execution time of
application on the reconfigurable instruction set processor is the
summation of two above mentioned terms.

tccn

n

i
i

i
BP

RACf

CI

=

Ο×

= 1

τ

 (3) RACf
tccn

n

i
i

i
BPccn

BPf

CI

−=
=

Ο×−

= 1
1

τ

(4)

()τθψτ ,

1

+

=

Ο×−

=
CIn

i
i

i
BPtccn

tccn
os (5)

()() () ()()()
= ∈

×−++

∈

++×=
CI

ii

n

i Cj
RACijOVHRAC

Sj
OVHRACij

1

1),(τθττττθτθψ

(6)

D. The Effect of CI Length

In a CI generation tool as a part of compilation tool, the
number of available resources (functional units) and other
architectural constraints of the RAC should be considered during
CI generation [10]. One important task of the compilation tool is
to mapping CIs onto the RAC which is referred as mapping tool.
A mapping tool takes a data flow graph of a CI and tries to map
its nodes onto the functional units of the RAC [6]. In the CI
generation phase, some CIs might be generated which contain
more instructions than the number of resources available in the
RAC. Dividing larger CIs to a number of smaller CIs through a

temporal partitioning algorithm [6] is one solution. These CIs
should be subsequently loaded and executed on the RAC.

When FUi nl > , supposing }},,...,1{{ FUkCI nlnkkL >∈= and

},{ =∈=
FU

k
kk n

l
pLkpP each ()LkCIk ∈ is divided to kp smaller

CIs. A temporal partitioning algorithm can be utilized for
dividing a large CI to a number of smaller CIs without violation
of the timing constraints. It should be noted that a large CI
execution irrespective of whether it is single or continuous is
divided to a number of single executions; therefore execution of
each partition of the CI necessitates a reconfiguration. It means
for each kCI :

iLkkiLk mmpm =′×Ο=′ ∉∈ ,

() () ()() LkLkLkLkLk m ∉∉∈∈∈ =′′=′=′ θθθθ ,,1,...,1,...,1,...,1,1,...,1

iLiiLi SSmS =′′=′ ∉∈ },,...1{ and iLiLi CCC =∅= ∉∈ ',' (7)
In Eq. 5,),(τθψ would be replaced with),(τθψ ′′ .

E. Side-Effects

Control Instructions: In case of inclusion of control
instructions in the CIs, the rate of miss-predicted branches might
be reduced which results in increase in the speedup [10]. bmδ is
defined as variation in branch miss-predictions and bmp as a
number of penalty cycles imposed by a branch miss-prediction
(Eq. 8). bmδ is negative when the number of miss-predictions
reduces, otherwise it is positive. As aforementioned, ntcc
encompasses all miss-events as well as branch miss-predictions.

Instruction Cache Misses: The similar influence can be seen
when the impact of instruction cache misses are taken into
account. Since, the execution of CIs is performed on the RAC
without need for fetching instructions belonging to the CIs, the
rate of accesses to instruction cache and instruction caches misses
might be reduced [10]. It is assumed that the instruction cache
misses reduction is imδ . This implies that the fraction of time
concerning to BP reduces and speedup rises not only because of
execution of CIs on the RAC, but also due to reduction in cache
miss rate. Eq. 8 is introduced for overall speedup (os) calculation
and includes the side-effects as well.

()),(
1},{

τθψτδ ′′+Ο×+×−

=

==

DIn

i
i

i
BP

ibx
xmxmtcc

tcc
o

pn

n
s (8)

F. RF’s Input/Output Ports

Register file is shared between BP and RAC in the template
architecture. It is assumed that regΔ / reg∇ are the number of

read/write ports of the register file, and i
CIΔ / i

CI∇ are the number
of inputs and outputs of the CIi. Additional clock cycles for
reading/writing from/to the register file should be taken into
account when the number of inputs/outputs of the CI is greater
than the available number of register file’s read/write ports. The
overhead time increases as Eq. 9:

),0max(),0max(
∇

∇−∇
+

Δ

Δ−Δ
+=′

reg

reg
i
CI

reg

reg
i
CI

OVHOVH ττ (9)

6A-4

566

G. RAC’s Delay

The RAC’s delay is an essential element regardless of whether
the analytical or simulation approaches are used for performance
evaluation. One way is to synthesizing the RAC and obtaining its
delay which is time consuming particularly in case of need for
examining different architectures (e.g. in a design space
exploration process). Here, a simple approach is introduced
which estimates the latency of the critical path in the RAC by
means of analyzing the RAC’s structure and using the delays of
RAC’s basic components (obtained through their synthesis)
comprising functional and routing resources.

In our template architecture, w
hRAC includes a matrix of FUs

with the width equal to w and height equal to h and basically has
a combinational logic (Fig. 5). Each FU implements an
instruction level operation. RAC does not have any temporal
storage unit such as local memory or register file. Multiplexers
(muxes) are utilized as routing resources to route appropriate data
between FUs. Routing resources are available from each FU in a
row to FUs in consecutive row and also to adjacent FUs at the
same row (dashed upward line shows a connection to the same
row). A piece of connection scheme is depicted in Fig. 5.

It is assumed that all FUs in the RAC architecture implement
similar operations and have the same functionality and latency
(i.e. FU

i
jFUji ττ =∀ ,). Each mux in row i receives all outputs

of the FUs in upper rows and also from its adjacent FUs at the
same row. Furthermore, the total number of muxes in row i is
equal to the number of FUs in (i+1)th row (which is ni+1)
multiplied by two due to existing two input sources for each FU,
however, we use the same indices for two muxes of a FU.
Delays of FUs and muxes are achieved by synthesizing them or
using the pre-synthesized library information. The delay for all
FUs is similar, but, different sizes of muxes are synthesized to
achieve their latencies. Consequently, critical path delay
of w

hRAC can be calculated as:

{ }wk
h

i

k
iMUX

h

i
FU

w
hRAC ,...,1,0,

1

11

∈+=
−

==

τττ (10)

where, i
jmuxτ is jth mux between rows i and i+1.

Increasing values of h and w can affect the critical path delay
of the RAC, due to their impact on the number of FUs and muxes
locating in the critical path and the size of muxes as well. It is
assumed that entire muxes including mux(n2 to 1) are available
and other mux sizes should be replaced with the closest greater
size mux. For instance, all muxes including mux(5 to 1), mux(6
to 1) and mux(7 to 1) are replaced with a mux(8 to 1). In Eq. 8,
we replace ()τθψ ,′′ with ()OVH

w
hRAC ττθψ +′′ , to reflect the effect

of RAC’s dimensions in the speedup evaluation. Obviously, for a
different RAC architecture, a corresponding delay model should
be replaced.

IV. Simplification and Calibration
The proposed analytical model can be simplified and

calibrated according to the following observations:
1. In our template architecture, control instructions are not

supported and are excluded from CIs, hence there is no reduction
in branch miss-prediction.

2. Loading configurations from the configuration memory
without need for fetching instructions from instruction cache
results in reduction in instruction cache accesses as well as cache

misses. Fig. 6 depicts that the average reduction in access to
instruction cache is almost 17% and in cache misses is almost 3%.

3. It is assumed that the ratio of single to continuous
execution for each application is α . This ratio can be measured
during the simulation in model extraction phase. Fig. 7 shows the
fraction of single CIs encountered in the attempted applications
as well as the fraction of CIs comprising the CIs generated from
partitioning large CIs. For some applications e.g. cjpeg and djpeg
the number of single executions increases after partitioning large
CIs. In some applications like crc or adpcmd, CIs are executed
ceaseless, thus 0=α . On the contrary, for patricia or qsort almost
all CI executions are intermittent. The average value for α is
almost 43%. Putting altogether, following equations would be
obtained:

+′′+Ο×−×−

=

∗

=

∗
∗∗∗∗

∗

∗

OVH
w
hRAC

n

i
ii

BPimimtcc

tcc
o

DI

pn

ns

ττθψτδ ,
1

(11)

()
=

∗∗
+′××Ο=+′′

*

1

,
CIn

i
RAC

w
hOVHiOVH

w
hRAC τταττθψ

In above equations, all variables marked with the * are
obtained via simulation in the model extraction phase (Fig. 3).

V. Experiments
Some experiments were conducted to validate CAnSO and

study the significance of different variables in the performance
evaluation as well (due to space limitation, only some part of
results are given here). Firstly, our analytical model is established
according to the first phase in Fig. 3. All attempted applications
(including fourteen applications from [8]) are simulated and
required information (variables superscripted with the * in Eq. 11)
are collected. It takes almost four hours to completion (on a PC
Dual Core, Intel 6600@2400Mhz, 2GB RAM). Next, the model
simplification and calibration is accomplished. As
aforementioned, Simplescalar [11] has been modified for cycle-
accurate simulation of the intended processor. Other experimental
setup details were mentioned in Section 1. The RAC structure
comprises sixteen FUs locating in five rows including six, four,
three, two and one FUs, respectively (similar to a RAC in [6][10]).
The basic elements of RAC including FUs and various size
multiplexers were synthesized and their delays were obtained.

Then, the delay of RAC (6
5

=
=

w
hRACτ) is calculated using the

approach in Section III.G. Due to tight-coupling of the RAC to
the BP, OVHτ is assumed to be one clock cycles that is reasonable,
because the configuration bit-stream size is hundreds of bits [10].
The clock frequency of the BP which is a MIPS-like RISC
processor is 200MHz.

Fig. 5. Assumed RAC architecture

567

6A-4

0
5

10
15
20
25
30
35

ad
pcm

(dec
)

blowfis
h(en

c)

blowfis
h(dec

)
crc

cjp
eg

djped

dijk
str

a
lam

e

patr
ici

a
qso

rt

rijn
dae

l(e
nc)

rijn
dae

l(d
ec) sh

a
su

sa
n

Avera
ge

%
Reduction in i-Cache accesses

Reduction in i-Cache misses

Fig. 6. Percentage of reduction in i-Cache accesses and misses

0
10
20
30
40
50
60
70
80
90

100

ad
pc

m(dec
)

blow
fis

h(en
c)

blow
fis

h(dec
)

crc
cjp

eg
djpe

d
dijk

str
a

lam
e

patr
ici

a
qso

rt
rijn

da
el(

en
c)

rijn
da

el(
de

c) sh
a

su
sa

n
Ave

rag
e

%
Single Executions

Single Executions after Partitioning CIs

Fig. 7. Fraction of CIs including single execution

A. Model Validation

Fig. 8 demonstrates CAnSO successfully tracks cycle-accurate
simulation. This accuracy is gained because of incorporating the
information of a trace-driven simulation in the model extraction
phase. We studied the effect of constructing analytical model
based on the information collected from cycle-accurate
simulation on the accuracy of the results. Ignoring some realistic
information from cycle-accurate simulation e.g. single or
continuous executions frequencies and statistics on miss-events as
well substantiates the efficacy of the CAnSO. According to Fig. 8,
the achieved speedup using uncalibrated CAnSO (in which some
simulation information are ignored) differs 22% in average with
cycle-accurate simulation, while the average variation of CAnSO
and cycle-accurate simulation is less than 2%. Moreover,
uncalibrated CAnSO does not successfully track the simulation
approach for some applications (e.g. djpeg and rijndael(enc)) due
to essential impact of the ignored parameters in those applications.

B. Design Space Exploration Using CAnSO

Designing an appropriate RAC for a reconfigurable instruction
set processor is a challenging issue. In [2], [4] and [10] a
quantitative approach has been used to cope with this issue. This
approach strongly depends on designer observations and
decisions on the statistics gathered from the applications. That is
time consuming and challenging approach that might necessitate
examining some design points to specify a design gaining more
performance [10].

In [3] and [12] various design parameters are examined
through a design space exploration (DSE). The CAnSO is
suitable when designer intends to explore a large design space.
For instance, the design of a RAC including different
components entails a multitude of design parameters (e.g.
number of functional units or processing elements, input and
output ports, type of functional units and so on). One way for
involvement of several parameters in the design procedure is to
efficiently exploring the design space [9]. DSE could be very
time consuming even in case of simulation. For instance,
examining 100 design points and fourteen input applications by
means of simulation takes almost 17 days while using CAnSO, it
reduces to the range of hours (almost four hours). More

importantly, if CI generation tool would be similar to one
introduced in [10] which is based on dynamic profiling (i.e.
profile is achieved via application simulation), then it is possible
to gather the required information for establishing the analytical
model during CI generation. Consequently, re-simulating
applications is not needed thus required time and efforts for
extracting model are alleviated.

Fig. 9 shows the speedup variation with respect to different
RAC dimensions for some applications of Mibench [8].
Increasing the width of RAC increases speedup because of taking
benefits of parallelism in DFGs (of CIs), however for the widths
larger than six, no more speedup is attainable due to negative
impact of growing the number of routing resources and also their
sizes on the RAC’s delay and area. Obviously, among RAC
designs with similar speedup a design with smallest area is
preferred. Additionally, with respect to the height alterations
three different states are observed in the speedup variation.
According to Fig. 9, for the small heights the speedup is very low
because CIs with longer execution sequences can not be mapped
on the RAC without partitioning. On the other hand, when the
height increases, the speedup and area rises as well. For the
higher heights (almost more than five) the speedup declines again
due to the RAC’s longer delay. It should be noted that for a
different CIs set and RAC architecture the above mentioned
behavior might be different.

Another important advantage of CAnSO is to amortizing the
time required for repeating the simulation when some
modifications are applied to the design. Each iteration of the
CAnSO takes less than a minute, even if modifications are made
in the RAC’s architecture. To show the capability of CAnSO in
case of alteration of architectural specification, the speedup for
different number of read/write ports of RF have been obtained
from simulation and CAnSO as well. Increasing the number of
read/write ports (regardless of its negative effect on the area and
energy consumption) brings about more speedup. Aside from that,
Fig. 10 reveals that CAnSO produces results similar to cycle-
accurate simulation results. In the majority of CIs, the number of
inputs and outputs are more than 2 and 1, respectively. Therefore,
extra clock cycles are required when an RF with 2-read/1-write
port is used which reduces the achievable speedup. On the other
hand, speedup obtained for 4-read/2-write port RF and 8-read/4-
write one are almost similar.

VI. Conclusion and Future Work
An analytical model for speedup evaluation of a

reconfigurable instruction set processor was proposed. To
become more accurate and realistic, this model is established and

100

120

140

160

180

200

220

240

ad
pcm

(dec
)

blowfis
h(en

c)

blowfis
h(dec

) crc
cjp

eg
djped

dijk
str

a
lam

e

patr
ici

a
qso

rt

rijn
dae

l(e
nc)

rijn
dae

l(d
ec

)
sh

a
su

sa
n

Ave
rag

e

Sp
ee

du
p

x
10

0

Cycle-accurate simulation

CAnSO

Uncalibrated CAnSO

Fig. 8. CAnSO successfully tracks the cycle-accurate simulation
while uncalibrated CAnSO results in 22% difference in average

6A-4

568

1 2 3 4 5 6 7
1

4

760
70
80
90

100
110

120

130

Sp
ee

du
p

x
10

0

Heigth
Width

blowfish(enc)

1 2 3 4 5 6 7 1
3

5
7

60

70

80

90

100

110

120

130

Sp
ee

du
p

x
10

0

Heigth
Width

crc

1 2 3 4 5 6 7 1
2

3
4 5 6 7

60

70

80

90

100

110

120

130

Sp
ee

du
p

x
10

0

Heigth
Width

dikjstra

1 2 3 4 5 6 7
1

3

5
7

80

85

90

95

100

105

110

Sp
ee

du
p

x
10

0

Heigth

Width

qsort

1 2 3 4 5 6 1

3

5
7

70

80

90

100

110

120

S
pe

ed
up

 x
 1

00

Heigth

Width

rijndael(enc)

1 2 3 4 5 6 7
1

3

5
7

60

80

100

120

140

160

180

Sp
ee

du
p

x
10

0

Heigth

Width

susan

Fig. 9. Design space exploration using CAnSO for some applications

100

120

140

160

180

ad
pc

m(dec
)

blowfis
h(e

nc
)

blo
wfis

h(d
ec

)
crc

cjp
eg

djp
ed

dij
ks

tra
lam

e

pa
tri

cia
qs

or
t

rijn
dae

l(e
nc

)

rijn
dae

l(d
ec

)
sh

a
su

sa
n

Ave
rag

e

Sp
ee

du
p

x
10

0

Simulation (8-read/4-write port RF)
CAnSO (8-read/4-write port RF)
Simulation (4-read/2-write port RF)
CAnSO (4-read/2-write port RF)
Simulation (2-read/1-write port RF)
CAnSO (2-read/1-write port RF)

Fig. 10. CAnSO generates reliable results in a short time when
design parameters change

calibrated based on statistics gathered from cycle accurate
simulations of attempted applications. This model provides
sufficient flexibility in a fast evaluation of modified architectures
of the target instruction set processor. That is also suitable when a
large number of designs should be examined in an exploration
procedure of a large design space. CAnSO can substantially
reduce the design or optimization time while preserves a
reasonable accuracy because of construction based on the realistic
information of cycle-accurate simulations. It proves less than 2%
variation in evaluation results while uncalibrated CAnSO depicts
22% difference in average. Moreover, it can be expanded to
handle other design metrics (e.g. energy consumption) as well.
The proposed model is a naive and starting in the domain of
reconfigurable instruction set processors. In the future, we intend
to expand our model to support CIs which cross loop boundaries
and include control instructions. In addition, more complicated
RAC architectures will be considered.

Acknowledgments
This research was supported in part by Core Research for

Evolutional Science and Technology (CREST) of Japan Science
and Technology Corporation (JST).

References

[1] Barat, F., Lauwereins, R. and Deconinck, G., “Reconfigurable
instruction set processors from a hardware/software perspective,”
IEEE Trans. on Software Eng., Vol. 28, No. 9, pp. 847-861, 2002.

[2] Clark, N., Kudlur, M., Park, H., Mahlke, S. and Flautner, K.,
“Application-specific processing on a general-purpose core via
transparent instruction set customization,” The 37th Symp. on
Microarchitecture, pp. 30-40, 2004.

[3] Enzler, R. and Platzner, M., “Application-driven design of
dynamically reconfigurable processors,” http://e-
collection.ethbib.ethz.ch/browse/sg/092_e.html, 2001.

[4] Kim, Y., Kiemb, M. and Choi, K., “Efficient design space
exploration for domain-specific optimization of coarse-grained
reconfigurable architecture,” In Proc. of SoC Design Conference,
pp. 12-17, 2005.

[5] Kumar, B. and Davidson, E.S., “Computer system design using a
hierarchical approach to performance evaluation,” Communications
of the ACM, Vol. 23, No. 9, 1980.

[6] Mehdipour, F., Noori, H., Saheb Zamani, M., Inoue, K. and
Murakami, K., “Design space exploration for a coarse grain
accelerator,” Proc. of 13th Asia and South-Pacific Design
Automation Conference (ASPDAC), Korea, 2008, pp. 685-690.

[7] Mei, B., Vernalde, S., Verkest, D., Lauwereins, R., “Design
methodology for a tightly-coupled VLIW/reconfigurable matrix
architecture: A Case Study,” Design, Automation and Test in
Europe, Vol. 2, pp. 21-24, 2004.

[8] Mibench, www.eecs.umich.edu/mibench.
[9] Mohanty, S., Prasanna, V.K., Neema, S., Davis, J., “Rapid design

space exploration of heterogeneous embedded systems using
symbolic search and multi-granular simulation,” LCTES’02-
SCOPES’02, pp. 18-27, 2002.

[10] Noori, H., Mehdipour, F., Inoue, K., Murakami, K., “A
reconfigurable functional unit with conditional execution for multi-
exit custom instructions,” IEICE Trans. ELECTRON., Vol. E91-C,
No. 4, April 2008.

[11] Simplescalar, www.simplescalar.com
[12] Yehia, S., Clark, N., Mahlke, S. and Flautner K., “Exploring the

design space of LUT-based transparent accelerators,” Int’l
Conference on Compilers, Architecture, and Synthesis for
Embedded Systems, pp. 11-21, 2005.

569

6A-4

