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Abstract- Performance evaluation is a serious challenge in 
designing or optimizing reconfigurable instruction set processors. 
The conventional approaches based on synthesis and simulations 
are very time consuming and need a considerable design effort. A 
combined analytical and simulation-based model (CAnSO∗) is 
proposed and validated for performance evaluation of a typical 
reconfigurable instruction set processor. The proposed model 
consists of an analytical core that incorporates statistics gathered 
from cycle-accurate simulation to make a reasonable evaluation 
and provide a valuable insight. Compared to cycle-accurate 
simulation results, CAnSO proves almost 2% variation in the 
speedup measurement.   

I. Introduction 

Reconfigurable instruction set processors (RISPs) introduce an 
effective approach for implementing embedded systems similar to 
application-specific instruction set processors (ASIPs) and 
extensible processors. A RISP mainly consists of a 
microprocessor core that is extended with a reconfigurable 
accelerator (RAC) [1] The base processor (BP) implements non-
critical parts of the applications and reconfigurable accelerator is 
responsible for executing critical parts.  

Fig. 1 shows a general template of a reconfigurable instruction 
set processor including a baseline processor (BP), a 
reconfigurable accelerator (RAC), which is based on a matrix of 
functional unit (FUs), and a configuration memory. Hot portions 
of applications are identified and used for generating custom 
instructions (CIs). CIs are the instruction set extensions which are 
extracted from critical portions of target applications. CIs are 
mapped onto the RAC and configuration’s bit-stream is generated 
for each CI and stored in the configuration memory prior to 
application execution. The associated bit-stream is loaded on the 
RAC while a CI is encountered and then the CI is executed on the 
RAC at runtime. RAC acts as an accelerator and brings about 
higher performance [2][7][12][10].  

Performance evaluation of a RISP challenges both the 
designing of such system and optimizing an existing one for an 
objective function. In either event, a designer is interested in 
obtaining optimum system configuration and therefore needs to 
perform a performance analysis in terms of the performance 
metrics e.g. speedup, area, energy consumption and etc. 
Performance evaluation models are divided into to broad classes 
including structural models and analytical models [5]. The former 
one includes empirical studies based on measurements and 
simulations of the target system. The latter one incorporates a 
system (usually simplified) structure to obtain mathematically 
solvable models.  

                                                          
∗ CAnSO in Japanese means simple.

The main contribution of this paper is to introducing and 
validating an analytical model for performance evaluation of a 
reconfigurable instruction set processor. Even though the core is 
an analytical model, it utilizes trace-driven information e.g. miss-
events’ rates and the latency of executing CIs on the base 
processor to emphasize on the application aspect and provide a 
reasonably accurate evaluation. Recent research shows that the 
achieved performance highly depends on the applications’ 
characteristics [3].  

Experimental Setup: Throughout this research we conducted 
some experiments for displaying the observations and 
demonstrating the achievements. The experimental setup is as 
follows. A reconfigurable instruction set processor matching to 
the general template in Fig. 1 is assumed. Fourteen applications 
of Mibench [8] from various domains (e.g. automotive, security, 
consumer, network, telecommunication) are used for generating 
CIs (DFGs) similar to the approach in [10].To commence with 
the CI generation, applications are executed on Simplescalar [11] 
as an ISS (Instruction Set Simulator) and profiled to identify the 
hot segments. Then, the CIs are extracted from the hot segments 
(excluding floating point, control and memory access instructions 
except one store). The number of CIs generated for different 
applications varies from one (in crc) up to 80 (in rijndael). Also, 
CIs include at least five and at most 59 instructions. 
Simplescalar’s cycle accurate simulator [11] has been extended to 
simulate a reconfigurable instruction processor. According to Fig. 
2 the RAC is responsible for executing almost 30% of dynamic 
instructions of applications in average. The more execution on the 
RAC, higher speedup is achievable.

Fig. 1. A RISP’s general template 
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Fig. 2. Breakdown of applications’ exec. time on  the BP and RAC 
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II. Combined Analytical and Simulation-based Model 
(CAnSO) 

The design or optimization of a reconfigurable accelerator 
requires a considerable time in exploring the design space and 
finding a proper architecture meeting the design constraints and 
gaining a desirable performance. Although high performance 
computers can be used for cycle-accurate simulation of the 
workloads in a shorter time at these days, exploring a large design 
space is still both human and computationally intensive [9]. 
Furthermore, it should be noted that some simulations are never 
to end. This motivates a performance evaluation approach based 
on computationally simple analytical model. Relying only on the 
analytical model may not be able to precisely take the effect of 
realistic factors of application behavior including miss-events (e.g. 
data and instruction cache misses or branch miss-predictions) into 
account. The proposed model (CAnSO) has a qualitative insight 
in providing trace-driven information from the application. On 
the other hand, in the CAnSO, some of the parameters are 
obtained by means of cycle-accurate simulation of applications. 
Therefore, it emphasizes on both real observations and analytical 
model.  

Fig. 3 depicts how a combined model is generated and then 
utilized for performance evaluation. In the first step, all the 
demanded applications are simulated using a cycle-accurate 
simulator and required information (e.g. the number of CIs, 
execution frequency of CIs and so on that will be later introduced 
in detail) are collected. Afterward, the information is used for 
simplifying and calibrating the proposed pure analytical model to 
make it more precise and empirical. After establishing the model, 
CAnSO can be used for performance evaluation of each 
application. Again the statistics gathered from the corresponding 
application can be utilized for more accurate estimation of the 
performance. One usage of such model is in design space 
exploration of the accelerator where designer intends to study the 
effect of changes in the architectural specifications (e.g. size, 
dimensions and etc.) of the accelerator. It substantially shortens 
the exploration time with a reasonable accuracy. 

III. The Analytical Model 

A. Processor’s Template 

Fig. 1 illustrates processor’s structure. In our template 
architecture, the BP is an in-order general five-stage RISC 
processor and RAC is a coarse-grained tightly-coupled 
reconfigurable hardware which implements custom instructions. 
CIs are indexed for direct accessing of the associated 
configuration bit-stream from the configuration memory. To 
access required operands in the RAC, the content of all registers 
are sent to the RAC (by sharing the register file between RAC 
and conventional functional units) and the registers are used with 
respect to configuration inside of the RAC. Controlling 
configurations i.e. the task of loading and initiating the RAC, can 
be hardware or software-based. In a software-based mechanism 
starting address of a CI is replaced with a special instruction 
(might be referred as invocation instruction [10]). To implement a 
hardware-based method, starting address of each CI and index to 
the configuration memory is stored in a content addressable 
memory (CAM) for a quick retrieval of the corresponding bit-
stream. Memory accesses might be included or excluded. In case 
of inclusion, the impact of data and instruction caches hits/misses 
should be taken into account. In addition, in case of presence of 
control instructions in the CIs, the effect of branch results should 
be applied to the model. 

Fig. 3. Model extraction and model utilization phases 

B. Basic Model Definitions 

Below our terminology and some definitions are presented: 
ntcc: The total number of clock cycles spent for executing an 

application on the base processor including entire miss-events. 
il : The number of primitive instructions (belonging to the 

BP’s instruction set architecture-ISA) in CIi.
i
BPτ : The time required for executing the sequence of 

instructions of CIi on the BP in term of the number of clock 
cycles. 

( )
imiiiii ,321 ,...,,, θθθθθ = , where ijθ is the frequency of jth

occurrence of CIi and im is the number of times that CIi is 
executed during the application execution. Correspondingly, 

=

=Ο
im

j
iji

1

θ  is the total number of executions of CIi.

Two type of execution are assumed for CIi:

Single execution: in the jth occurrence of CIi, it is executed 
once ( 1=ijθ ). In Fig. 4, second occurrence of CI1 and first 
occurrence of CI2 are the single executions ( 112 =θ , 121 =θ ). Fig. 4 
also indicates that an overhead time exists in either of CI loadings 
on the RAC. 

Continuous execution: in a continuous execution, CI is 
repeatedly executed ( 1>ijθ ), and the RAC is configured at the 
first execution and operates without need to reconfiguration for 
the next executions of the same occurrence. Fig. 4 shows that CI1
and CI2 in their first and second occurrences are executed 
continuously ( 211 =θ , 322 =θ ). 

Based on the two above definitions, iS and iC are introduced 
which contain the index of intervals of single and continuous 
executions of CIi }1},,...1{{ =∈= ijii mjjS θ

and }1},,...1{{ >∈= ijii mjjC θ .

CIn : The total number of CIs. 

RACτ : A fixed-delay for executing a CI on the RAC. This 
timing factor also includes all latencies concerning to execution 
of a CI on the RAC. 

OVHτ : The overhead time including RAC reconfiguration 
time, the time required for setting RAC up and communicating 
between RAC and BP. This overhead time also depends on the 
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controlling mechanism of the configurations. In the software- 
based method, 

Fig. 4. Various types of a CI execution on the RAC 

an additional cycle is spent for executing the CI invocation 
instruction whilst in the hardware-based method no additional 
cycle is considered. 

is : Denotes the accumulated partial speedup for CIi and ijs
indicates the partial speedup achievable via jth execution of CIi.

( )−×+
+

= 1ij
RAC

i
BP

OVHRAC

i
BP

ijs θ
τ
τ

ττ
τ   (1) 

Therefore, speedup for CIi can be calculated as:  
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  (2)

C. Speedup Formulation  

The fraction of application execution time which is transferred 
to the RAC and the fraction of application running on the BP are 
as Eq. 3 and 4, respectively. The numerator of Eq. 3 represents 
the portion of application’s execution time elapsed on the RAC 
and the numerator of Eq. 4 denotes the application execution time 
that is run on the BP. According to the Amdahl’s law, the overall 
speedup (so) can be calculated as Eq. 5. The first term of 
denominator denotes the portion of execution time associated to 
the BP and second term of denominator represents the summation 
of execution times of a CI on the RAC divided by partial speedup 
related to that CI. The execution on the RAC and BP are not 
performed concurrently; therefore the total execution time of 
application on the reconfigurable instruction set processor is the 
summation of two above mentioned terms.  
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D. The Effect of CI Length 

In a CI generation tool as a part of compilation tool, the 
number of available resources (functional units) and other 
architectural constraints of the RAC should be considered during 
CI generation [10]. One important task of the compilation tool is 
to mapping CIs onto the RAC which is referred as mapping tool. 
A mapping tool takes a data flow graph of a CI and tries to map 
its nodes onto the functional units of the RAC [6]. In the CI 
generation phase, some CIs might be generated which contain 
more instructions than the number of resources available in the 
RAC. Dividing larger CIs to a number of smaller CIs through a 

temporal partitioning algorithm [6] is one solution. These CIs 
should be subsequently loaded and executed on the RAC.  

When FUi nl > , supposing }},,...,1{{ FUkCI nlnkkL >∈=  and 

},{ =∈=
FU

k
kk n

l
pLkpP  each ( )LkCIk ∈  is divided to kp smaller 

CIs. A temporal partitioning algorithm can be utilized for 
dividing a large CI to a number of smaller CIs without violation 
of the timing constraints. It should be noted that a large CI 
execution irrespective of whether it is single or continuous is 
divided to a number of single executions; therefore execution of 
each partition of the CI necessitates a reconfiguration. It means 
for each kCI :

iLkkiLk mmpm =′×Ο=′ ∉∈ ,

( ) ( ) ( )( ) LkLkLkLkLk m ∉∉∈∈∈ =′′=′=′ θθθθ ,,1,...,1,...,1,...,1,1,...,1

iLiiLi SSmS =′′=′ ∉∈ },,...1{ and iLiLi CCC =∅= ∉∈ ','    (7) 
In Eq. 5, ),( τθψ  would be replaced with ),( τθψ ′′ .

E. Side-Effects 

Control Instructions: In case of inclusion of control 
instructions in the CIs, the rate of miss-predicted branches might 
be reduced which results in increase in the speedup [10]. bmδ is 
defined as variation in branch miss-predictions and bmp as a 
number of penalty cycles imposed by a branch miss-prediction 
(Eq. 8). bmδ  is negative when the number of miss-predictions 
reduces, otherwise it is positive. As aforementioned, ntcc
encompasses all miss-events as well as branch miss-predictions.  

Instruction Cache Misses: The similar influence can be seen 
when the impact of instruction cache misses are taken into 
account. Since, the execution of CIs is performed on the RAC 
without need for fetching instructions belonging to the CIs, the 
rate of accesses to instruction cache and instruction caches misses 
might be reduced [10]. It is assumed that the instruction cache 
misses reduction is imδ . This implies that the fraction of time 
concerning to BP reduces and speedup rises not only because of 
execution of CIs on the RAC, but also due to reduction in cache 
miss rate. Eq. 8 is introduced for overall speedup ( os ) calculation 
and includes the side-effects as well. 

( ) ),(
1},{

τθψτδ ′′+Ο×+×−

=

==

DIn

i
i

i
BP

ibx
xmxmtcc

tcc
o

pn

n
s (8) 

F. RF’s Input/Output Ports  

Register file is shared between BP and RAC in the template 
architecture. It is assumed that regΔ / reg∇ are the number of 

read/write ports of the register file, and i
CIΔ / i

CI∇ are the number 
of inputs and outputs of the CIi. Additional clock cycles for 
reading/writing from/to the register file should be taken into 
account when the number of inputs/outputs of the CI is greater 
than the available number of register file’s read/write ports. The 
overhead time increases as Eq. 9: 

),0max(),0max(
∇

∇−∇
+

Δ

Δ−Δ
+=′

reg

reg
i
CI

reg

reg
i
CI

OVHOVH ττ      (9) 
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G. RAC’s Delay 

The RAC’s delay is an essential element regardless of whether 
the analytical or simulation approaches are used for performance 
evaluation. One way is to synthesizing the RAC and obtaining its 
delay which is time consuming particularly in case of need for 
examining different architectures (e.g. in a design space 
exploration process). Here, a simple approach is introduced 
which estimates the latency of the critical path in the RAC by 
means of analyzing the RAC’s structure and using the delays of 
RAC’s basic components (obtained through their synthesis) 
comprising functional and routing resources.  

In our template architecture, w
hRAC  includes a matrix of FUs 

with the width equal to w and height equal to h and basically has 
a combinational logic (Fig. 5). Each FU implements an 
instruction level operation. RAC does not have any temporal 
storage unit such as local memory or register file. Multiplexers 
(muxes) are utilized as routing resources to route appropriate data 
between FUs. Routing resources are available from each FU in a 
row to FUs in consecutive row and also to adjacent FUs at the 
same row (dashed upward line shows a connection to the same 
row). A piece of connection scheme is depicted in Fig. 5.  

It is assumed that all FUs in the RAC architecture implement 
similar operations and have the same functionality and latency 
(i.e. FU

i
jFUji ττ =∀ , ). Each mux in row i receives all outputs 

of the FUs in upper rows and also from its adjacent FUs at the 
same row. Furthermore, the total number of muxes in row i is 
equal to the number of FUs in (i+1)th row (which is ni+1)
multiplied by two due to existing two input sources for each FU, 
however, we use the same indices for two muxes of a FU. 
Delays of FUs and muxes are achieved by synthesizing them or 
using the pre-synthesized library information. The delay for all 
FUs is similar, but, different sizes of muxes are synthesized to 
achieve their latencies. Consequently, critical path delay 
of w

hRAC can be calculated as:  

{ }wk
h

i

k
iMUX

h

i
FU

w
hRAC ,...,1,0,

1

11

∈+=
−

==

τττ   (10) 

where, i
jmuxτ  is jth mux between rows i and i+1.

Increasing values of h and w can affect the critical path delay 
of the RAC, due to their impact on the number of FUs and muxes 
locating in the critical path and the size of muxes as well. It is 
assumed that entire muxes including mux( n2 to 1) are available 
and other mux sizes should be replaced with the closest greater 
size mux. For instance, all muxes including mux(5 to 1), mux(6 
to 1) and mux(7 to 1) are replaced with a mux(8 to 1). In Eq. 8, 
we replace ( )τθψ ,′′  with ( )OVH

w
hRAC ττθψ +′′ ,  to reflect the effect 

of RAC’s dimensions in the speedup evaluation. Obviously, for a 
different RAC architecture, a corresponding delay model should 
be replaced. 

IV. Simplification and Calibration 
The proposed analytical model can be simplified and 

calibrated according to the following observations:  
1. In our template architecture, control instructions are not 

supported and are excluded from CIs, hence there is no reduction 
in branch miss-prediction.  

2. Loading configurations from the configuration memory 
without need for fetching instructions from instruction cache 
results in reduction in instruction cache accesses as well as cache 

misses. Fig. 6 depicts that the average reduction in access to 
instruction cache is almost 17% and in cache misses is almost 3%.   

3. It is assumed that the ratio of single to continuous 
execution for each application is α . This ratio can be measured 
during the simulation in model extraction phase. Fig. 7 shows the 
fraction of single CIs encountered in the attempted applications 
as well as the fraction of CIs comprising the CIs generated from 
partitioning large CIs. For some applications e.g. cjpeg and djpeg
the number of single executions increases after partitioning large 
CIs. In some applications like crc or adpcmd, CIs are executed 
ceaseless, thus 0=α . On the contrary, for patricia or qsort almost 
all CI executions are intermittent. The average value for α is 
almost 43%. Putting altogether, following equations would be 
obtained: 

+′′+Ο×−×−

=

∗

=

∗
∗∗∗∗

∗

∗

OVH
w
hRAC

n

i
ii

BPimimtcc

tcc
o

DI

pn

ns

ττθψτδ ,
1

(11) 

( )
=

∗∗
+′××Ο=+′′

*

1

,
CIn

i
RAC

w
hOVHiOVH

w
hRAC τταττθψ

In above equations, all variables marked with the * are 
obtained via simulation in the model extraction phase (Fig. 3). 

V. Experiments 
Some experiments were conducted to validate CAnSO and 

study the significance of different variables in the performance 
evaluation as well (due to space limitation, only some part of 
results are given here). Firstly, our analytical model is established 
according to the first phase in Fig. 3. All attempted applications 
(including fourteen applications from [8]) are simulated and 
required information (variables superscripted with the * in Eq. 11) 
are collected. It takes almost four hours to completion (on a PC 
Dual Core, Intel 6600@2400Mhz, 2GB RAM). Next, the model 
simplification and calibration is accomplished. As 
aforementioned, Simplescalar [11] has been modified for cycle-
accurate simulation of the intended processor. Other experimental 
setup details were mentioned in Section 1. The RAC structure 
comprises sixteen FUs locating in five rows including six, four, 
three, two and one FUs, respectively (similar to a RAC in [6][10]). 
The basic elements of RAC including FUs and various size 
multiplexers were synthesized and their delays were obtained. 

Then, the delay of RAC ( 6
5

=
=

w
hRACτ ) is calculated using the 

approach in Section III.G. Due to tight-coupling of the RAC to 
the BP, OVHτ is assumed to be one clock cycles that is reasonable, 
because the configuration bit-stream size is hundreds of bits [10]. 
The clock frequency of the BP which is a MIPS-like RISC 
processor is 200MHz. 

Fig. 5. Assumed RAC architecture 
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A. Model Validation 

Fig. 8 demonstrates CAnSO successfully tracks cycle-accurate 
simulation. This accuracy is gained because of incorporating the 
information of a trace-driven simulation in the model extraction 
phase. We studied the effect of constructing analytical model 
based on the information collected from cycle-accurate 
simulation on the accuracy of the results. Ignoring some realistic 
information from cycle-accurate simulation e.g. single or 
continuous executions frequencies and statistics on miss-events as 
well substantiates the efficacy of the CAnSO. According to Fig. 8, 
the achieved speedup using uncalibrated CAnSO (in which some 
simulation information are ignored) differs 22% in average with 
cycle-accurate simulation, while the average variation of CAnSO 
and cycle-accurate simulation is less than 2%. Moreover, 
uncalibrated CAnSO does not successfully track the simulation 
approach for some applications (e.g. djpeg and rijndael(enc)) due 
to essential impact of the ignored parameters in those applications.  

B. Design Space Exploration Using CAnSO 

Designing an appropriate RAC for a reconfigurable instruction 
set processor is a challenging issue. In [2], [4] and [10] a 
quantitative approach has been used to cope with this issue. This 
approach strongly depends on designer observations and 
decisions on the statistics gathered from the applications. That is 
time consuming and challenging approach that might necessitate 
examining some design points to specify a design gaining more 
performance [10]. 

In [3] and [12] various design parameters are examined 
through a design space exploration (DSE). The CAnSO is 
suitable when designer intends to explore a large design space. 
For instance, the design of a RAC including different 
components entails a multitude of design parameters (e.g. 
number of functional units or processing elements, input and 
output ports, type of functional units and so on). One way for 
involvement of several parameters in the design procedure is to 
efficiently exploring the design space [9]. DSE could be very 
time consuming even in case of simulation. For instance, 
examining 100 design points and fourteen input applications by 
means of simulation takes almost 17 days while using CAnSO, it 
reduces to the range of hours (almost four hours).  More 

importantly, if CI generation tool would be similar to one 
introduced in [10] which is based on dynamic profiling (i.e. 
profile is achieved via application simulation), then  it is possible 
to gather the required information for establishing the analytical 
model during CI generation. Consequently, re-simulating 
applications is not needed thus required time and efforts for 
extracting model are alleviated. 

Fig. 9 shows the speedup variation with respect to different 
RAC dimensions for some applications of Mibench [8]. 
Increasing the width of RAC increases speedup because of taking 
benefits of parallelism in DFGs (of CIs), however for the widths 
larger than six, no more speedup is attainable due to negative 
impact of growing the number of routing resources and also their 
sizes on the RAC’s delay and area. Obviously, among RAC 
designs with similar speedup a design with smallest area is 
preferred. Additionally, with respect to the height alterations 
three different states are observed in the speedup variation. 
According to Fig. 9, for the small heights the speedup is very low 
because CIs with longer execution sequences can not be mapped 
on the RAC without partitioning. On the other hand, when the 
height increases, the speedup and area rises as well. For the 
higher heights (almost more than five) the speedup declines again 
due to the RAC’s longer delay. It should be noted that for a 
different CIs set and RAC architecture the above mentioned 
behavior might be different.  

Another important advantage of CAnSO is to amortizing the 
time required for repeating the simulation when some 
modifications are applied to the design. Each iteration of the 
CAnSO takes less than a minute, even if modifications are made 
in the RAC’s architecture.  To show the capability of CAnSO in 
case of alteration of architectural specification, the speedup for 
different number of read/write ports of RF have been obtained 
from simulation and CAnSO as well. Increasing the number of 
read/write ports (regardless of its negative effect on the area and 
energy consumption) brings about more speedup. Aside from that, 
Fig. 10 reveals that CAnSO produces results similar to cycle-
accurate simulation results. In the majority of CIs, the number of 
inputs and outputs are more than 2 and 1, respectively. Therefore, 
extra clock cycles are required when an RF with 2-read/1-write 
port is used which reduces the achievable speedup. On the other 
hand, speedup obtained for 4-read/2-write port RF and 8-read/4-
write one are almost similar.  

VI. Conclusion and Future Work 
An analytical model for speedup evaluation of a 

reconfigurable instruction set processor was proposed. To 
become more accurate and realistic, this model is established and  
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calibrated based on statistics gathered from cycle accurate 
simulations of attempted applications. This model provides 
sufficient flexibility in a fast evaluation of modified architectures 
of the target instruction set processor.  That is also suitable when a 
large number of designs should be examined in an exploration 
procedure of a large design space. CAnSO can substantially 
reduce the design or optimization time while preserves a 
reasonable accuracy because of construction based on the realistic 
information of cycle-accurate simulations. It proves less than 2% 
variation in evaluation results while uncalibrated CAnSO depicts 
22% difference in average. Moreover, it can be expanded to 
handle other design metrics (e.g. energy consumption) as well.  
The proposed model is a naive and starting in the domain of 
reconfigurable instruction set processors. In the future, we intend 
to expand our model to support CIs which cross loop boundaries 
and include control instructions. In addition, more complicated 
RAC architectures will be considered. 
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