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Abstract

We consider the problem of constructing a functional regression modeling pro-
cedure with functional predictors and a functional response. Discretely observed
data set are expressed by Gaussian basis expansions for individuals, using smooth-
ing methods. Parameters involved in the functional regression model are estimated
by the regularized maximum likelihood method, assuming that coefficient functions
are expressed by basis expansions. For the selection of regularization parameters in-
volved in the regularization method, we extend information theoretic and Bayesian
model selection criteria for evaluating the estimated model. The proposed model-
ing strategy is applied to the analysis of real data, predicting functions rather than
scalars.

Key words: Basis expansion, Functional data, Model selection criteria, Regulariza-
tion.

1 Introduction

Functional data analysis provides a useful tool for analyzing a data set observed at pos-

sibly differing time points for each individual, and its effectiveness has been reported in

various fields of applications such as ergonomics, meteorology and chemometrics (see e.g.,

Ramsay and Silverman, 2002; 2005; Ferraty and Vieu, 2006). We consider the problem of

constructing a functional regression model which is the functional version of the ordinary

regression model.

For functional regression models for functional predictors and scalar responses, various

kinds of estimation method are considered. For example, Cardot et al. (2003) considered

estimating the model by the principal component regression. Rossi et al. (2005) described

a neural network approach and James (2002) extended the model to the generalized linear

model. Furthermore, Araki et al. (2008) proposed the use of Gaussian basis functions

along with the technique of regularization and information criteria and Matsui et al.

(2008) extended the model to the functional version of the multivariate regression model.

While on the other hand, Ramsay and Dalzell (1991) considered a functional regression

model which both predictor and response are given as functions, and thereafter Ramsay

and Silverman (2005) considered the modeling strategy of them. They estimated the
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model by the least squares method, and then evaluated it by R2 in the framework of

the functional regression model. Yao et al. (2005) also applied the modeling strategy

to sparse longitudinal data. Furthermore, Malfait and Ramsay (2003) and Harezlak et

al. (2007) considered historical functional linear models which are used to model such

dependencies of the response on the history of the predictor values. Although they mainly

estimated the model by the least squares method, it may give unstable or unfavorable

estimates. Moreover, R2 is considered to be the goodness of fit, and is not appropriate to

the prediction of newly observed data. Yamanishi and Tanaka (2003) estimated it by the

weighted least squares method and evaluated it by the cross-validation. Although cross-

validation is commonly used for selecting smoothing parameters, it can be computationally

expensive.

We develop estimation and evaluation methods for functional regression models where

both multiple predictors and the response are functions. Discretized observations are

converted into functions using a Gaussian basis expansion along with the technique of

regularization. Advantages of Gaussian basis functions are that it can provide a useful

instrument for transforming discrete observations into functional form and also be applied

to analyze a set of surface fitting data. Then a functional regression model is estimated

by the maximum penalized likelihood method. Our modeling strategy yields more flexible

results for prediction ability.

A crucial issue in functional regression modeling is the choice of smoothing parameters

involved in the maximum penalized likelihood procedure. We derive model selection crite-

ria from an information-theoretic and Bayesian approach in order to select regularization

parameters effectively. The proposed modeling strategy is applied to the analysis of me-

teorology data. We predict the fluctuation of annual precipitation using the information

of weather data, and also predict the velocity of the wind of a typhoon, observed from the

generation to disappearance of it, from the position and the center atmospheric pressure.

This paper is organized as follows. In Section 2 we introduce a functional regression

model with functional predictors and a functional response. In Section 3 we discuss how

to estimate the model. Firstly we introduce the ordinal estimation method and secondly

propose an new estimation method. In Section 4 we derive some model selection criteria

for evaluating the model estimated by the proposed method. The proposed modeling

strategy is applied to the analysis of real data in Section 5. Concluding remarks are

discussed in Section 6.
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2 Functional regression model with functional pre-

dictors and a response

Suppose we have n sets of M functional predictors and a functional response {(xαm(s),

yα(t)); s ∈ Sm, t ∈ T , α = 1, . . . , n, m = 1, . . . ,M}. We assume that both functional

predictors xαm(s) and functional responses yα(t) are expressed by basis expansions, that

is,

xαm(s) =
Jm∑
j=1

c̃αmjϕmj(s) = c̃′αmϕm(s), yα(t) =
K∑
k=1

d̃αkψk(t) = d̃
′
αψ(t) (1)

respectively, where c̃αm = (c̃αm1, . . . , c̃αmJm)′ and d̃α = (d̃α1, . . . , d̃αK)′ are coefficient

vectors, ϕm(s) = (ϕm1(s), . . . , ϕmJm(s))′ and ψ(t) = (ψ1(t), . . . , ψK(t))′ are vectors of

Gaussian basis functions (Kawano and Konishi, 2007) in the form

ϕmj(s) = exp

{
−

(s− τ
(m)
j+2)

2

2h2
m

}
, ψk(t) = exp

{
−(t− τk+2)

2

2h2

}
, (2)

where τ
(m)
j and τk are equally spaced knots so that the τ

(m)
j satisfy τ

(m)
1 < . . . < τ

(m)
4 =

min(s) < . . . < τ
(m)
J+2 = max(s) < . . . < τ

(m)
J+4 and τk similarly, hm = (τ

(m)
j+2 − τ

(m)
j )/3

and h = (τk+2 − τk)/3. Coefficients c̃αm and d̃α are obtained by smoothing techniques

described in Appendix A. In order to model the relationship between predictors and a

response, we consider the following functional regression model (Ramsay and Silverman,

2005; Shimokawa et al., 2000):

yα(t) = β0(t) +
M∑
m=1

∫
Sm

xαm(s)βm(s, t)ds+ εα(t), (3)

where β0(t) is a parameter function, βm(s, t) are bivariate coefficient functions which im-

pose varying weights on xαm(s) at arbitrary time t ∈ T , and εα(t) are error functions. The

coefficient functions βm(s, t) are assumed to be expressed using the same basis functions

as those used for the predictor and response functions as follows:

βm(s, t) =
∑
j,k

ϕmj(s)bmjkψk(t) = ϕ′
m(s)Bmψ(t), (4)

where Bm = (bmjk)j,k are Jm ×K coefficient matrices.

The function β0(t) plays the role of a constant term in the standard regression model.

Here, we eliminate it by centering the functional regression model (3) for the subsequent
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estimation procedure. Centered predictors xαm(s) and responses yα(t) are obtained by

x∗αm(s) = xαm(s) − x̄m(s) y∗α(t) = yα(t) − ȳ(t)

= c̃′αmϕm(s) − c̄′mϕm(s) = d̃
′
αψ(t) − d̄′

ψ(t) (5)

= c′αmϕm(s), = d′
αψ(t)

respectively, where cαm = c̃αm − c̄m and dα = d̃α − d̄ with c̄m =
∑

α c̃αm/n and d̄ =∑
α d̃α/n. Then (3) can be rewritten in the form

y∗α(t) =
M∑
m=1

∫
Sm

x∗αm(s)βm(s, t)ds+ ε∗α(t), (6)

where ε∗α(t) = εα(t)− ε̄(t). Using assumptions (1) and (4), the functional regression model

(6) can be expressed using matrix and vector notation as

d′
αψ(t) =

M∑
m=1

c′αmWϕmBmψ(t)ds+ ε∗α(t)

= z′αBψ(t) + ε∗α(t), (7)

where zα = (c′α1Wϕ1 , . . . , c
′
αMWϕM

)′ withWϕm =
∫
ϕm(s)ϕ′

m(s)ds andB = (B′
1, . . . , B

′
M)′.

When we use the Gaussian basis functions given in (2), (j, k)-th elements of Wϕm are given

by

W
(j,k)
ϕm

=
√
πh2

m exp

{
−

(τ
(m)
j+2 − τ

(m)
k+2)

2

4h2
m

}
,

and therefore Wϕm is positive definite. From equation (7), the problem of estimating the

coefficient functions βm(s, t) in (3) is replaced by the problem of estimating the parameter

matrix B.

3 Estimation

We consider the problem of estimating the parameter matrix B. First we describe the

least squares method, given by Ramsay and Silverman (2005), and then describe the

proposed method, based on the maximum likelihood procedure.
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3.1 Least squares method

Ramsay and Silverman (2005) and Shimokawa et al. (2000) estimated B in the model (7)

by minimizing the integrated residual sum of squares given by

LMSSE(B) =
n∑

α=1

∫
T

[
y∗α(t) −

M∑
m=1

∫
Sm

x∗αm(s)βm(s, t)ds

]2

dt

=

∫
T

tr
{
(Dψ(t) − ZBψ(t)) (Dψ(t) − ZBψ(t))′

}
dt

= tr
{
(D − ZB)Wψ (D − ZB)′

}
, (8)

where D = (d∗
1, . . . ,d

∗
n)

′, Z = (z1, . . . , zn)
′ and Wψ =

∫
T ψ(t)ψ′(t)dt. Therefore the least

squares estimator B̂ is given by

vecB̂ = (Wψ ⊗ Z ′Z)−1vec(Z ′DWψ). (9)

When we use Gaussian basis functions (2) Wψ is nonsingular, so then B̂ can be expressed

as

B̂ = (Z ′Z)−1Z ′D. (10)

This has the same form as a least squares estimator for ordinary multivariate regression

models with a design matrix Z and a response matrix D.

3.2 Maximum likelihood method

Here we consider estimating the functional regression model (7) in the framework of

the maximum likelihood method. Suppose error functions ε∗α(t) are represented by a

linear combination of basis functions ψk(t), which are the same as those for the response

functions y∗α(t), that is,

ε∗α(t) =
K∑
k=1

eαkψk(t) = e′αψ(t), (11)

where eα = (eα1, . . . , eαK)′ are K-dimensional vectors which are independent and identi-

cally normally distributed with mean vector 0 and variance-covariance matrix Σ. There-

fore, (7) can be represented as

d′
αψ(t) = z′αBψ(t) + e′αψ(t), eα ∼i.i.dNK(0,Σ). (12)
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By multiplying the equation (12) by ψ′(t) and then integrating with respect to T , (12)

can be rewritten as

d′
αWψ = z′αBWψ + e′αWψ. (13)

Then if Wψ is nonsingular we obtain

dα = B′zα + eα, eα ∼i.i.dNK(0,Σ), (14)

which has the same form as a multivariate regression model with predictors zα and re-

sponses dα.

From (14) we can obtain a statistical model for a functional response yα given a

functional predictor xα as follows:

f(yα|xα;θ) =
1

(2π)K/2|Σ|1/2
exp

{
−1

2
(dα −B′zα)

′Σ−1(dα −B′zα)

}
, (15)

where θ = {B,Σ} is a parameter vector. Therefore, maximum likelihood estimators of B

and Σ are given by

B̂ = (Z ′Z)−1Z ′D, Σ̂ =
1

n
(D − ZB̂)′(D − ZB̂) (16)

respectively. Comparing this result with (10), we find that the maximum likelihood

estimator of B coincides with the least squares estimator.

3.3 Maximum penalized likelihood method

Since least squares or maximum likelihood method sometimes results in unstable estima-

tors, we consider estimating the functional regression model using the maximum penalized

likelihood method. From the statistical model (15) the penalized log-likelihood function

is given by

lλ(θ) =
n∑

α=1

f(yα|xα;θ) −
n

2
tr {B′(ΛM ⊙ Ω)B} , (17)

where ΛM is a (
∑

m Jm) × (
∑

m Jm) matrix of regularization parameters λ1, . . . , λM that

adjust a fluctuation of B, that is, ΛM = λMλ
′
M with λM = (

√
λ11

′
J1
, . . . ,

√
λM1′

JM
)′.

Furthermore, ⊙ represents the Hadamard product and Ω is a (
∑

m Jm) × (
∑

m Jm) pos-

itive semi-definite matrix. Maximizing the function (17), maximum penalized likelihood

estimators B̂，Σ̂ are given by

vecB̂ =
(
Σ̂−1 ⊗ Z ′Z + nIK ⊗ (ΛM ⊙ Ω)

)−1

(Σ̂−1 ⊗ Z ′)vecD, (18)

Σ̂ =
1

n
(D − ZB̂)′(D − ZB̂)
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respectively, where ⊗ represents a Kronecker product. Since B̂ and Σ̂ depend on each

other, we provide an initial value for the variance covariance matrix; then they are updated

until convergence. Therefore, the maximum penalized likelihood estimator of D is given

by

vecD̂ = vec(ZB̂)

= SλvecD, (19)

where Sλ = (IK ⊗Z)(Σ̂−1 ⊗Z ′Z+nIK⊗(ΛM ⊙Ω))−1(Σ̂−1 ⊗Z ′) is a hat matrix for vecD.

Substituting the maximum penalized likelihood estimator θ̂ = {B̂, Σ̂} into (15) we obtain

the statistical model

f(yα|xα; θ̂) =
1

(2π)K/2|Σ̂|1/2
exp

{
−1

2
(dα − B̂′zα)

′Σ̂−1(dα − B̂′zα)

}
. (20)

4 Model selection criteria

Since the statistical model (20) estimated by the regularization method depends on the

regularization parameters λ1, . . . , λM , selection of these values is an important issue. Al-

though cross-validation is widely used for the regularization parameter selection, it can

be computationally expensive. We propose the use of certain model selection criteria for

evaluating the functional regression model. We select the model that minimizes these

values and then consider the corresponding model to be the optimal model.

(1) Generalized cross validation

Generalized cross validation (GCV; Craven and Wahba, 1979) for evaluating the func-

tional regression model (20) is obtained by applying the hat matrix Sλ given in (19), that

is,

GCV =
tr {(D − ZB)′(D − ZB)}
nK (1 − trSλ/(nK))2 . (21)

(2) Modified AIC

Hastie and Tibshirani (1990) modified the AIC (Akaike, 1973) for evaluating the model

estimated by the regularization method by substituting a trace of the hat matrix for the

number of degrees of freedom, since the hat matrix can be viewed as a measure of the

complexity of the model estimated by the regularization method. Using this result, the
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modified AIC evaluating the model (20) is given by

mAIC = −2
n∑

α=1

f(yα|xα; θ̂) + 2trSλ. (22)

A problem may arise in the theoretical justification for the use of the bias-correction terms

in MAIC, since AIC covers only models estimated by the maximum likelihood method.

(3) Generalized information criterion

Imoto and Konishi (2003) derived an information criterion GIC (Konishi and Kitagawa

(1996)) for evaluating a statistical model estimated by the maximum penalized likelihood

method. Using this result, the GIC for evaluating the model (20) is given by

GIC = −2
n∑

α=1

f(yα|xα; θ̂) + 2tr{Rλ(θ̂)
−1Qλ(θ̂)}, (23)

where Rλ(θ)，Qλ(θ) are given by

Rλ(θ) = − 1

n

n∑
α=1

∂2 {log f(yα|xα;θ) − tr {B′(ΛM ⊙ Ω)B} /2}
∂θ∂θ′

, (24)

Qλ(θ) =
1

n

n∑
α=1

∂ {log f(yα|xα;θ) − tr {B′(ΛM ⊙ Ω)B} /2}
∂θ

·

∂ log f(yα|xα;θ)
∂θ′

(25)

respectively.

(4) Generalized Bayesian information criterion

The Bayesian information criterion (BIC) has been proposed by Schwarz (1978), from the

viewpoint of Bayesian inference, based on the idea of maximizing the posterior probability

of candidate models. However, the BIC only covers models estimated by the maximum

likelihood method. Konishi et al. (2004) extended the BIC so that it could be used

for evaluating models fitted by the maximum penalized likelihood method, thus deriving

GBIC. We derive the GBIC for evaluating the model (20) fitted by the maximum penalized

likelihood method, which is given by

GBIC = −2
n∑

α=1

f(yα|xα; θ̂) + ntr {B′(ΛM ⊙ Ω)B} + (r +Kq) log n

− (r +Kq) log(2π) −K log |ΛM ⊙ Ω|+ + log |Rλ(θ̂)|, (26)

where q = p − rank(Ω), p =
∑

m Jm, r = K(K + 1)/2 and | · |+ denotes the product of

the non-zero eigenvalues of a matrix. The derivation of (26) is given in Appendix B.
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Figure 1: Examples of weather data converted into functions.

5 Real data example

In this section we apply the proposed functional regression modeling strategy to the

analysis of real data, examining the effectiveness of the modeling strategy. Firstly we

applied it to the analysis of Japanese weather data, predicting the variation of monthly

precipitation. We then applied it to the analysis of typhoon data, and predicted the

velocity of the wind of the typhoon using information about its position and pressure,

observed from the typhoon’s generation to its disappearance.

5.1 Japanese weather data

Weather data, available on Chronological Scientific Tables 2005, are recorded from Jan-

uary to December at 79 weather stations in Japan. These data include the annual monthly

average temperature, monthly total times of daylight and monthly total precipitation.

These data are averaged over the values obtained from 1971 to 2000. We consider pre-

dicting monthly total precipitation using the temperature and times of daylight. For

daylight and precipitation data we used the logarithms of observed data.

We performed some pre-processings before applying functional regression modeling.

First, we obtained functional data sets by smoothing the data via regularized Gaussian

basis function expansion. The resulting functional data sets are shown in Figure 1. Next,

the 79 observed data sets were randomly divided into 45 training data sets and 34 test

data sets. The training data were centered by subtracting the sample average. We

treated temperature and daylight functions as predictors and the precipitation function

as a response, thereby constructing a functional regression model.

The model was estimated by the maximum likelihood and maximum penalized like-
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Table 1: Results on the analysis of weather data. λ1 and λ2 are regularization parameters
selected by each model selection criteria.

MLE GCV mAIC GIC GBIC
λ1 — 2.51 × 10−2 3.98 × 10−2 5.01 × 10−2 8.91 × 10−1

λ2 — 1.26 × 10−1 1.78 × 10−1 1.78 × 10−1 8.91 × 10−1

Test error 7.25 × 10−2 5.98 × 10−2 5.90 × 10−1 5.83 × 10−2 5.37 × 10−2

lihood method; four model selection criteria were then used to evaluate the model for

maximum penalized likelihood estimates. We used the average squared errors between

the smoothed test data and the predicted functional data at 100 time points as the test

error.

Table 1 shows regularization parameters for temperature (λ1) and daylight (λ2) se-

lected by each model selection criteria and test errors of corresponding models. From

these results we find that the maximum penalized likelihood method is superior to the

maximum likelihood method in prediction accuracy. In particular, for the four model

selection criteria, GBIC minimized the test error. Figure 3 shows the results of fitting

eight weather stations with the test set. These figures reveal that the predicting functions

captured the original data well. The estimated coefficient functions of each predictor are

shown in Figure 2. This figure shows that while the temperature around January and the

times of daylight around October have negative weights, the temperature at the end of

the year and the times of daylight around March have a positive weight for predicting the

precipitation. Therefore, if the former values increase the precipitation decreases, and if

the latter values increase the precipitation increases.

5.2 Typhoon data

Next, we applied functional regression modeling to the analysis of typhoon data. Typhoon

data are available on the website ”Digital Typhoon: Typhoon Images and Information”

1. The data set contains the position (longitude and latitude), the central atmospheric

pressure and the wind velocity near the center of typhoons generated from 1951 to 2006.

Each of them was observed every six hours from the generation to the disappearance of

the typhoon. However, for the wind velocity only those generated after 1977 are observed.

Thus, we predicted the velocity of the wind of the typhoons before 1976 using information

1URL: http://agora.ex.nii.ac.jp/digital-typhoon/
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Figure 2: Estimated coefficient functions.
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Figure 3: Results on fitting the test data for 8 stations. Solid lines show smoothed test
data and dashed lines show the predicted functions by the functional regression model.
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Figure 4: 10 examples of raw typhoon data and functional data. Top left: Longitude.
Top right: Latitude. Bottom left: Central atmospheric pressure. Bottom right: Velocity
of wind near centers.

about the position and the central atmospheric pressure. Moreover, we conducted variable

selection to determine which pair of predictors are the most informative.

The data were standardized with respect to the generation and disappearance time

of all typhoons by scaling time points at which the data were observed by scaling the

time to [0,1]. Since survival times differ for each typhoon, the time points also differ.

Therefore, it is difficult to apply the ordinary regression model directly. However, by

treating these data as smooth functions, we can analyze them easily. Figure 4 shows 10

examples of typhoon data smoothed by the technique described in the Appendix A. We

treated longitude, latitude and central atmospheric pressure as functional predictors and

the wind speed as a response, constructing a functional regression model. We estimated

the model by the maximum penalized likelihood method and then evaluated it by the

model selection criterion GBIC. Furthermore, in order to examine which variable has the

greatest effect on predicting the velocity of the wind, we also conducted variable selection

using GBIC.

Table 2 shows the result of the model selection . From this table, the model with X2

andX3 as predictors minimize the GBIC. It indicates that latitude and center atmospheric

pressure are the most informative for predicting the velocity of the wind. We fitted the

data observed before 1976 to the selected model in order to predict the velocity of the

wind. The results are shown in Figure 5. In particular, the two typhoons depicted with

heavy lines (Typhoon No. 22 in 1955 and No. 12 in 1956) had strong velocities. Indeed,

these typhoons caused damage to tens of thousands of properties and also damaged a great

deal of agricultural land. The result shows the effectiveness of our modeling strategy.

12



Table 2: Results on the model selection for typhoon data. Predictors X1, X2 and X3

indicate longitude, latitude and central atmospheric pressure respectively, and λm are the
corresponding regularization parameters selected by GBIC.

Predictor GBIC λ1 λ2 λ3

X1 2053 3.16 × 101 — —
X2 2028 — 1.00 × 102 —
X3 2021 — — 3.16 × 101

X1, X2 2038 3.98 × 101 3.98 × 101 —
X2, X3 2013 — 3.16 × 101 1.00 × 102

X1, X3 2039 1.00 × 102 — 2.51 × 102

FULL 2074 1.00 × 101 1.00 × 101 5.62 × 10
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Figure 5: Result of the prediction of wind velocities.

6 Concluding remarks

We discussed the functional regression modeling procedure for functional predictors and a

functional response. We proposed to estimate the model by the maximum penalized likeli-

hood method to obtain more stable estimates. In order to select regularization parameters

involved in the maximum penalized likelihood estimates, we derived model selection cri-

teria by extending those of ordinary models. We applied the proposed modeling strategy

to the analysis of weather and typhoon data, predicting response functions rather than

scalars. Results show that our modeling strategy perform well in stability and prediction

ability.

Future works reminds on constructing functional regression models that take the corre-

13



lation among predictors into consideration. Furthermore, nonlinear functional regression

model for functional predictors and functional responses are needed.

Appendix

A Converting discrete data to functional data

Since data are generally obtained discretely we need to explain these data as functions.

We use a smoothing method via regularized basis expansions for converting raw data into

functional data. In this section we only refer to the predictor, however, same is true of

the response.

Suppose we have n observations x1, . . . ,xn, where each xα are vectors of Nα observa-

tions {xα1, . . . , xαNα ; α = 1, . . . , n} at {sα1, . . . , sαNα ; sαi ∈ S ⊂ R, i = 1, . . . , Nα}. We

assume that xαis are given by adding Gaussian noises εαi to unknown smooth functions

uα(s) at sαi, that is,

xαi = uα(sαi) + εαi, i = 1, . . . , Nα, (27)

where εαi are independently normally distributed with mean 0 and variance σ2
xα.

We assume that uα(s) are represented by the basis function expansion such as

uα(s) =
J∑
j=1

cαjϕj(s) = c′αϕ(s), (28)

where cα = (cα1, . . . , cαJ)
′ are vectors of coefficient parameters and ϕ(s) = (ϕ1(s), . . . ,

ϕJ(s))
′ are vectors of basis functions. We assume that basis functions ϕj(s) (j = 1, . . . , J)

are Gaussian basis functions defined in (2). From these results the regression model (27)

has a probability density function

f(xαi|sαi; cα, σ2
xα) =

1√
2πσ2

xα

exp

{
−(xαi − c′αϕ(sαi))

2

2σ2
xα

}
. (29)

The parameters cα and σ2
xα are estimated by using regularization method, which

maximizes a penalized log-likelihood function

lζα(cα, σ
2
xα) =

Nα∑
i=1

log f(xαi|sαi; cα, σ2
xα) −

Nαζα
2
c′αΩcα, (30)

where ζα are smoothing parameters which adjust the smoothness of the estimated func-

tion, and Ω is a J × J positive semi-definite matrix. The maximum penalized likelihood

14



estimators ĉα and σ̂2
xα are given by

ĉα = (Φ′
αΦα +Nαζασ̂

2
xαΩ)−1Φ′

αx(α), σ̂2
xα =

1

Nα

(x(α) − Φαĉα)
′(x(α) − Φαĉα), (31)

respectively, where Φα = (ϕ(sα1), . . . ,ϕ(sαNα))′ and x(α) = (xα1, . . . , xαNα)′.

The maximum penalized likelihood estimates based on Gaussian basis functions de-

pend on the regularization parameters ζα and the number of basis functions J . For the

choice of these parameters some model selection criteria are used. Details are referred

to Konishi and Kitagawa (2008). Selecting appropriate values of ζα and J , leading to

appropriate estimates ûα(s). Therefore we obtain functional data

xα(s) ≡ ûα(s) = ĉ′αϕ(s). (32)

We use a set of functions {xα(s); s ∈ S, α = 1, . . . , n} as data instead of observed data

set {(sαi, xαi); i = 1, . . . , Nα, α = 1, . . . , n}.

B Derivation of GBIC

We show the derivation of the model selection criterion GBIC (26) for evaluating the

functional regression model estimated by the regularization method.

The penalized log-likelihood function (17) is rewritten as

lΛ(B,Σ) = log
{
f(y|θ) exp

[
−n

2
tr{B′(ΛM ⊙ Ω)B}

]}
= log

{
f(y|θ)

K∏
k=1

exp
[
−n

2
b′(k)(ΛM ⊙ Ω)b(k)

]}
, (33)

where log f(y|θ) =
∑

α f(yα|xα;θ). We set the prior density of θ as a product of K

multivariate normal distribution, that is,

π(θ|ΛM) =
K∏
k=1

n(p−q)/2|ΛM ⊙ Ω|1/2+

(2π)(p−q)/2 exp
[
−n

2
b′(k)(ΛM ⊙ Ω)b(k)

]
. (34)

Then the marginal likelihood of y given θ with prior distribution (34) can be expressed

as

p(y|ΛM) =

∫
f(y|θ)π(θ|ΛM)dθ

=

∫
exp

[
n× 1

n
log{f(y|θ)π(θ|ΛM)}

]
dθ

=

∫
exp {nq(θ|ΛM)} dθ, (35)
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where q(θ|ΛM) = log{f(y|θ)π(θ|ΛM)}/n.

A Taylor series expansion of q(θ|ΛM) around θ̂, the maximum penalized likelihood

estimator of θ, is given by

q(θ|ΛM) = q(θ̂|ΛM) − 1

2
(θ − θ̂)′Rλ(θ̂)(θ − θ̂) + · · · (36)

since ∂q(θ̂|ΛM)/∂θ = 0. Substituting (36) into (35), we obtain the following Laplace

approximation∫
exp {nq(θ|ΛM)} dθ =

∫
exp

[
n

{
q(θ̂|ΛM) − 1

2
(θ − θ̂)′Rλ(θ̂)(θ − θ̂) + · · ·

}]
dθ

≈ exp
{
nq(θ̂|ΛM)

}∫
exp

{
−n

2
(θ − θ̂)′Rλ(θ̂)(θ − θ̂)

}
dθ

=
(2π)(r+Kp)/2

n(r+Kp)/2|Rλ(θ̂)|1/2
exp

{
nq(θ̂|ΛM)

}
. (37)

Therefore, the GBIC evaluating the multivariate functional regression model estimated

by the maximum penalized likelihood method is given by

−2 log p(y|ΛM) = − 2 log

{∫
f(y|θ)π(θ|ΛM)dθ

}
≈− 2

n∑
α=1

f(yα|xα; θ̂) + ntr{B̂′(ΛM ⊙ Ω)B̂} + (r +Kq) log n

− (r +Kq) log(2π) −
K∑
k=1

log |ΛM ⊙ Ω|+ + log |Rλ(θ̂)|. (38)
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