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Abstract This article gives an overview of growing knowledge of translation speed of an axisymmetric
vortex ring, with focus on the influence of viscosity. Helmholtz-Lamb’s method provides a short-cut to
manipulate the translation speed at both small and large Reynolds numbers, for a vortex ring starting
from an infinitely thin core. The resulting asymptotics significantly improve Saffman’s formula (1970)
and give closer lower and upper bounds on translation speed in an early stage. At large Reynolds
numbers, Kelvin-Benjamin’s kinematic variational principle achieves a further simplification. At small
Reynolds numbers, the whole life of a vortex ring is available from the vorticity obeying the Stokes
equations, which is closely fitted, over a long time, by Saffman’s second formula.
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1 Introduction

Vortex rings are ubiquitous coherent structures in high-Reynolds-number flows, and are of fundamental
importance in fluid mechanics as indicated by the fact that visualized cross-section of a vortex ring
is put on the cover of Batchelor’s textbook [1]1. Okabe [2] recollected that such a beautiful pattern
was gained only once or twice among a hundred trials, and an interval of 20 or 30 minutes between
trials were required to wait for the water in a tank becoming clean and still. Vortex rings are used
for producing thrust and lift by insects, fishes and animals. Vortex rings are capable of transporting
neutrally buoyant materials. Recently they find their utility for creating virtual reality in the field of
entertainment. There is an attempt to use an air cannon, as a means of olfactory display, to deliver
smells encapsulated in a vortex ring to a targeted person. In a theater, virtual reality contents are
created solely by image and sound. Reality is enhanced if we appeal to tactile display. A mini-theater
is planned in which air cannons are designed to produce vortex rings, in synchronization with the
image and the sound, so that the audience experiences direct impact and freshness [3].

These applications to entertainment necessitate controlled vortex rings, and raise questions per-
taining to an inverse problem. When does a vortex ring arrive at a specified point? How far does the
ring travel? How large the vortex ring has grown at the moment of impact? The purpose of this article
is to give a possible answer to these questions, under restricted situations, while giving a brief survey
of the growth of knowledge of traveling speed of a vortex ring.
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1 G. K. Batchelor knew Okabe-Inoue’s photographs through the annual report of their Institute (private
communication with J. Okabe).
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Study on motion of vortex rings started simultaneously with the birth of the field of vortex dy-
namics when Helmholtz introduced the vorticity and proved its property of being frozen into the fluid
in his seminal paper a century and a half ago [4]. By an elaboration from the Euler equations, now
being widely known through Lamb’s textbook [5]. Helmholtz had reached an identity for U of a thin
axisymmetric vortex ring, steadily translating in an inviscid incompressible fluid of infinite extent.
Helmholtz-Lamb’s method is expounded in Sect. 3. Ignoring constant terms compared with a logarith-
mically large term, Helmholtz related the translation speed U to the total kinetic energy H and the
hydrodynamic impulse Pz, and made a crude estimation of this relation for a thin core, of core radius
σ and ring radius R0 carrying the circulation Γ , as

U ≈ H/Pz ≈ Γ

4πR0

[
log
(

8R0

σ

)
+ const.

]
. (1)

Continuing Helmholtz’s analysis, Kelvin (1867) determined the constant to be −1/4 in the above
formula, for a distribution of vorticity, in the core, proportional to the distance from the axis of
symmetry. Only the resulting expression, without derivation, was recorded in an appendix to Tait’s
English translation of Helmholtz’s paper [4].

On those days, vortex rings were hot as possible entities of atoms embedded in the ether. The
implication of Helmholtz’ laws, invariance in time of the circulation and linkages of vortex lines, led
Kelvin to this belief. J. J. Thomson pursued the idea of the vortex atoms [6]. To derive the translation
speed, he employed a straightforward approach of taking the boundary of the core as a free boundary
coincident with a streamline, but Kelvin’s formula was unattained; the constant that he gave was -1
rather than -1/4. This discrepancy was traced back to his insufficient treatment of the Biot-Savart law
for deriving the velocity field around the vortex core, and was rescued by Hicks [7]. An interpretation
of this difference was explained in Sect. 2.

By adapting his technique for calculating the gravity potential around the Saturn ring, Dyson [8]
contrived an ingenious systematic perturbation method evaluating the Biot-Savart law, and thereby
overcame the difficulty to proceed to third (virtually fourth) order in ε = σ/R0.

U =
Γ

4πR0

{
log
(

8R0

σ

)
− 1

4
− 3σ2

8R2
0

[
log
(

8R0

σ

)
− 5

4

]
+O(ε4 log ε)

}
. (2)

The same result was reached, in a thin limit, by transforming the free boundary-value problem of the
Euler equations into an integral equation [9,10]. This integral equation was solved for the whole family
of axisymmetric vortex rings with vorticity in the core being proportional to the distance from the
symmetric axis. This is referred to as Fraenkel-Norbury’s family [11]. Fraenkel [10] pointed out that,
by a suitable renormalization of thickness parameter ε with which the fat limit corresponds to ε =

√
2,

(2) is applicable, with an error no more than 5 per cent, to the translation speed of Hill’s vortex, the
fat limit (ε =

√
2). This agreement has inspired us to generalize Dyson’s formula to more realistic

vortex rings [12–14].
To O(ε), Kelvin’s formula was extended to allow for an arbitrary distribution of vorticity as

U0 =
Γ

4πR0

{
log
(

8R0

σ

)
+A− 1

2
+O (ε, ε log ε)

}
; A = lim

r→∞

{
4π2

Γ 2

∫ r

0

r′v0(r′)2dr′ − log
( r
σ

)}
, (3)

where v0(r) is the local velocity of circulatory motion of the fluid, in the cross-section, around the
toroidal center circle, as a function only of the local distance r from the circle [9,16,17]. The functional
form of v0(r) remains indeterminate, but, if the viscosity ν is called into play, a unique profile as a
function of time t is singled out once the initial profile is given. The small parameter gives way to
ε =

√
ν/Γ [12,15]. Suppose that, at time t = 0, the vorticity is concentrated on a circle of radius R0,

the leading-order terms of toroidal vorticity ζ0 and azimuthal velocity v0 are provided by the Oseen
diffusing vortex

ζ0 =
Γ

4πνt
e−r2/4νt, v0 = − Γ

2πr

(
1 − e−r2/4νt

)
. (4)

The minus sign in v0 comes from our choice of local azimuthal coordinates (see Fig. 1) Saffman [16]
showed that viscous diffusion of vorticity gets along with Helmholtz-Lamb’s identity and obtained the
translation speed of a vortex ring in a viscous fluid, simply by inserting (4) into (3), as

U0 =
Γ

4πR0

{
log
(

8R0

2
√
νt

)
− 1

2
(1 − γ + log 2) +O

[
νt

R2
0

,
νt

R2
0

log
(
νt

R2
0

)]}
, (5)
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where γ = 0.57721566 · · · is Euler’s constant2. The radius of viscous core is σ ≈ 2
√
νt, and (5) is valid at

early times when the core is thin
√
νt � R0. The same formula was derived via the method of matched

asymptotic expansions [15,17]. Recently, Fraenkel-Saffman’s formula (3) is extended to O(ε3). In other
words, Dyson’s formula (2) is generalized to accommodate a general distribution of vorticity. At the
same time, an extension of Saffman’s formula to O(ε3) is achieved. A brief announcement of these
results is given in ref. [14]. It is worth emphasizing that Helmholtz-Lamb’s method is far more efficient
than matched asymptotic expansions. The former leads us to the correction of O(ε3) to translation
speed of a vortex ring without having to enter into the O(ε3) velocity field.

The development of theories of vortex rings attained before the early 90s is well recorded in refs.
[18–21]. This article supplements these by focusing on theoretical development made after that, with
particular emphasis put on higher-order extension of velocity formula and on viscous vortex rings at
both very high and very low Reynolds numbers. Dyson’s technique for asymptotic development of the
Biot-Savart law is instrumental for deriving the expression of the velocity field near the core. Before
going to a description of higher-order extension of the translation speed, we sketch the essence of this
technique in Sect. 2. Thereafter, Sect. 3 gives an account of Helmholtz-Lamb’s method, and, resorting
to this method, presents the third-order correction to translation speed in Sect. 4.

A variational principle brings a further simplification in derivation for an inviscid vortex [18,22,
23]. Take the density of fluid to be ρf = 1 and define the hydrodynamic impulse by

P =
1
2

∫∫∫
x × ωdV. (6)

The translation velocity U of a vortex ring is then calculable through the variation

δH − U · δP = 0, (7)

under the constraint that, for any smooth Lagrangian displacement of fluid particles, the vorticity is
frozen into the fluid. Section 5 touches upon this principle, which is the theme of ref. [14]. We may
view (7) as a refinement of the crude estimate (1). Behind (7) lies Kelvin’s variational principle [24,
25], as generalized to make allowance for motion [26,27], that a stationary configuration of vorticity
in an inviscid incompressible fluid, in a steadily moving frame, is realizable as an extremal of energy
on an iso-vortical sheet. Intriguingly, the same principle encompasses motion of a vortex ring ruled by
the cubic nonlinear Schrödinger equation, which serves as a model for superfluid liquid helium and a
Bose-Einstein condensate, at zero temperature [29].

The rest of paper is concerned with motion of a vortex ring at very low Reynolds numbers. There
is no permanent vortex ring. Without unstable waves, a vortex ring dies away due to the action of
viscosity while entraining surrounding irrotational flows [30–32]. The decaying laws of an axisymmetric
vortex rings in a viscous fluid were handled separately in the literature. Recently a solution of an initial-
value problem valid over the whole time range is found for an axisymmetric vortex ring at low Reynolds
numbers [33,34] which enables us to view, in perspective, the early-time behavior (5), Saffman’s second
law valid in the matured stage

√
νt ≈ R0 [16], and the decaying law

U =
7Pz

240
√

2 (πνt)3/2
≈ 0.0037037954

Pz

(νt)3/2
, (8)

at large times
√
νt � R0 [20,35–37]. A concise description of the low-Reynolds-number solution is

given in Sect. 6. The last section (Sect. 7) is devoted to a summary and conclusions.

2 Asympytotic development of Biot-Savart law: Dyson’s technique

Dyson’s ingenious technique [8] is, in effect, indispensable for manipulating asymptotic expansions of
the flow field around the vortical core to high orders. Here we delineate its essence as generalized to
an arbitrary distribution, including a continuous one, of vorticity [12].

Consider an axisymmetric vortex ring of circulation Γ moving in an infinite expanse of fluid. Choose
cylindrical coordinates (ρ, φ, z) with the z-axis along the axis of symmetry and φ along the vortex lines
as shown in Fig. 1. We consider an axisymmetric distribution of vorticity ω = ζ(ρ, z)eφ localized

2 In (3) and (5), Saffman’s estimate of the remaining terms has been improved [12].
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Fig. 1 Cylindrical and local moving coordinates

about the circle (ρ, z) = (R(t), Z(t)), where eφ is the unit vector in the azimuthal direction. The
vector potential A(x) of the velocity field u(x) (u = ∇ × A) has azimuthal component only. We
introduce the Stokes streamfunction ψ by A(x) = −(ψ/ρ)eφ. The requirement of vanishing the vector
potential at infinity, that is |A| ∝ 1/|x|2 as |x| → ∞, facilitates the calculation of the total kinetic
energy. With this requirement, the Biot-Savart law is represented for the Stokes streamfunction as

ψ(ρ, z) = − ρ

4π

∫ ∞

−∞

∫ 2π

0

∫ ∞

0

ζ(ρ′, z′)ρ′ cosφ′dρ′dφ′dz′√
ρ2 − 2ρρ′ cosφ′ + ρ′2 + (z − z′)2

. (9)

We introduce, in the meridional plane, local Cartesian coordinates (x̂, ẑ) = (ρ−R, z−Z) centered
at (R(t), Z(t)). Supposing a rapid decay of ζ(x) with the distance from the circle, we perform an
asymptotic expansion of (9) valid near the core. The first of the key steps of Dyson’s technique is to
utilize the shift operator to rewrite (9) as

ψ = − ρ

4π

∫∫ ∞

−∞
dx̂′ddẑ′ζ(x̂′, ẑ′) exp

(
x̂′

∂

∂R
− ẑ′

∂

∂ẑ

)∫ 2π

0

R cosφ′dφ′√
ρ2 − 2ρR cosφ′ +R2 + ẑ2

. (10)

The asymptotic form of (9) is automatically generated by expanding the exponential function of the
operators as

ψ(ρ, z) =
∫∫ ∞

−∞
dx̂′dẑ′ζ(x̂′, ẑ′)

{
1 +

(
x̂′

∂

∂R
− ẑ′

∂

∂z

)
+

1
2!

(
x̂′

∂

∂R
− ẑ′

∂

∂z

)2

+
1
3!

(
x̂′

∂

∂R
− ẑ′

∂

∂z

)3

+
1
4!

(
x̂′

∂

∂R
− ẑ′

∂

∂z

)4

+ · · ·
}
ψm(ρ, z;R) . (11)

Here

ψm(ρ, z;R) = −ρR
4π

∫ 2π

0

cosφ′dφ′√
ρ2 − 2ρR cosφ′ +R2 + (z − Z)2

, (12)

is the streamfunction for the flow induced by a circular line vortex of unit strength placed at (R,Z),
or a delta-function core ζ(ρ, z) = δ(ρ−R)δ(z − Z).

Observe that the monopole field (12) is symmetric with respect to interchange between ρ and R.
It follows from the connection between ψ and ζ that, except at the core (ρ, z) = (R,Z), ψm obeys(
∂2

∂R2
+

∂2

∂z2

)
ψm =

1
R

∂ψm

∂R
at (ρ, z) 
= (R,Z). (13)

The second of the key steps of Dyson’s technique is to invoke this identity to replace the combination
of second derivatives by single first derivative. The importance of this step for promoting cancelation of
terms cannot be overemphasized. Without the help from (13), a flood of terms become uncontrollable.

We introduce local cylindrical coordinates (r, θ) in the meridional plain by (x̂, ẑ) = (r cos θ, r sin θ).
The radius r is the shortest distance from the given point x to the vortex loop. Integration of (12) is
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implemented, in terms of the first and the second complete elliptic integrals [5]. Use of the asymptotic
formulas of the complete elliptic integrals for modulus close to unity leads us to the near field of ψm,
valid for σ � r � R, as

ψm = − R

2π

{
log
(

8R
r

)
− 2 +

r

2R

[
log
(

8R
r

)
− 1
]

cos θ

+
r2

24R2

([
2 log

(
8R
r

)
+ 1
]
−
[
log
(

8R
r

)
− 2
]

cos 2θ

)
+ · · ·

}
, (14)

(see ref. [8]). The exponential decrease of coefficients, that is, in increase power of 2−1, makes the
higher-order formula of translation speed applicable to fat cores.

We anticipate, for the vorticity ζ(x, z) = ζ0(r)+ζ
(1)
11 cos θ+

(
ζ
(2)
0 + ζ

(2)
21 cos 2θ

)
+· · · , compatible with

the Euler and the Navier-Stokes equations. For the coefficients ζ(k)
ij , being functions of r, k designates

the order of perturbation and i labels the Fourier mode with j = 1 and 2 corresponding to cos iθ
and sin iθ respectively. With this form, we perform integration with respect to x̂′ and ẑ′ in (11) and
simplify the resulting expression with the help of (13). Substitution from (14) yields the asymptotic
form of the Biot-Savart law, whose expression is, if we retain to first order in ε = σ/R say, as

ψ = −ΓR0

2π

[
log
(

8R0

r

)
− 2
]

+

{
− Γ

4π

[
log
(

8R0

r

)
− 1
]
r +

d1

r

}
cos θ + · · · , (15)

where Γ = 2π
∫∞
0 rζ0dr, and the strength d1 of the dipole is connected with ζ0 and ζ(1)

11 .
The asymptotic form (15) serves as the inner limit of the outer solution and thus supplies the

matching condition on the inner solution. Given ζ0, the profiles of ζ(1)
11 , ζ(2)

0 and ζ
(2)
21 should be de-

termined by solving the Navier-Stokes or Euler equations in the inner region. When the vorticity is
confined in the core, the expression (15) is validated to the edge of the core, and the translation speed
is determined by imposing the condition that the boundary is coincident with a streamline. This was
the approach taken by the successors of Kelvin [6–8]. To recover Kelvin’s formula, representation (15),
valid to O(ε), is sufficient, but J. J. Thomson [6] overlooked the contribution from the local dipole
field which includes d1. This dipole field stems from an effective vortex pair generated by vortex-line
stretching on the convex side and contraction on the concave side when a strait vortex tube is bent
into a torus, which has ability to derive itself. For Kelvin’s vortex ring, d1 = 3σ2Γ/(16πR0) and this
is equivalent to the flow field around a cylinder of radius σ moving in the z direction with the speed
Γ/(4πR0) × 3/4 [12,13]. This contribution repairs J. J. Thomson’s results.

For a general distribution of vorticity, to carry out the inner expansion along with the extension of
(15) is a rather cumbersome task. The treatment initiated by Helmholtz sidesteps the inner solution to
a great extent, which is the topic of the following section. We note in passing that Dyson’s technique
has been extended to a helical vortex tube [38] and to a general three-dimensional vortex tube [39].

3 Helmholtz-Lamb’s method

Helmholtz-Lamb’s method is very efficient in that it allows us to reach the correction of O(ε3) to
translation speed of a vortex ring without having to derive the O(ε3) velocity field. Rott-Cantwell [37]
gave a lucid account of this method.

Under the boundary condition |A| → 0 as |x| → ∞, on the vector potential A, the total kinetic
energy H of fluid filling an unbounded space, defined by H = 1/2

∫
u2dV, has a representation, for the

axisymmetric flow, of

H =
1
2

∫∫∫
ω · AdV = −π

∫∫
ζψ dA

(
= −π

∫∫
ζψ dρdz

)
. (16)

The hydrodynamic impulse (6) is reduced to

P = Pzez; Pz = π

∫∫
ζρ2dA. (17)
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Remember that the impulse is a constant even in the presence of viscosity [1,5,19].
Helmholtz [4] introduced the vorticity centroid

Z =
∫∫

ζρ2zdA
/∫∫

ζρ2dA, (18)

and thought of its time derivative as the traveling speed of the vortex ring. By virtue of constancy of (17)
and of the vorticity flux across a material surface whose local form is ζdA [25–27], the differentiation
of (18) in time t immediately yields the traveling speed U = dZ/dt in the form:

U =
∫∫ (

uzζρ
2 + 2uρζzρ

)
dA
/ ∫∫

ζρ2dA. (19)

It was verified that the viscous diffusion of vorticity does not alter this form [16,37]. Two alternative
representations of energy H =

∫∫∫
ω · AdV/2 =

∫∫∫
u · (x × ω)dV reads, for the axisymmetric flow[4]

−1
2

∫∫
ψζ dA =

∫∫ (
uzρ

2 − uρzρ
)
ζdA. (20)

This is used to eliminate the integral
∫
uzζρ

2dA from (19), leaving Helmholtz-Lamb’s identity

U

∫∫
ζρ2dA = −1

2

∫∫
ψζ dA+ 3

∫∫
ρzuρζ dA. (21)

It is noteworthy that the derivation does not depend much on the detail of the dynamics, and hence
(21) is applicable to a wide class of solutions. Helmholtz-Lamb’s identity (21) and Rott-Cantwell’s
identity (19) both require the knowledge of velocity field in the core or the inner solution. We recall
the asymptotic solution of the Euler or the Navier-Stokes equations at large Reynolds numbers [12] in
the following section and at small Reynolds numbers [34] in Sect. 6.

4 High-Reynolds-number vortex ring

The inner solution for steady motion of a vortex ring or quasi-steady motion, in the presence of viscosity,
is found by solving the Euler or the Navier-Stokes equations, subject to the matching condition (15),
in powers of the small parameter ε [12]. This is then substituted into (21). In the sequel we give an
outline of evaluating (21) to obtain the third-order correction to the translation speed. The detailed
procedure of calculating integrals in (21) is presented in the forthcoming paper [40].

To work out the inner solution, we introduce the relative velocity ũ in the meridional plane by
u = ũ + (Ṙ, Ż). Here a dot stands for differentiation with respect to time. Let us nondimensionalize
the inner variables. The radial coordinate is normalized by the core radius εR0(= σ) and the local
velocity (u, v), relative to the moving frame, by the maximum velocity Γ/(εR0). In view of (2), the
normalization parameter for the ring speed (Ṙ(t), Ż(t)), the slow dynamics, should be Γ/R0. The
suitable dimensionless inner variables are thus defined as

r∗ = r/εR0, t∗ = t/
R0

Γ
, ψ∗ =

ψ

ΓR0
, ζ∗ = ζ/

Γ

R2
0ε

2 , ũ∗ = ũ/
Γ

R0ε
, (Ṙ∗, Ż∗) = (Ṙ, Ż)/

Γ

R0
.(22)

The difference in normalization between the last two of (22) should be kept in mind. Correspond-
ingly to (22), the kinetic energy (16) and the hydrodynamic impulse (17) are normalized as H∗ =
H/Γ 2R0, P

∗
z = Pz/ΓR

2
0. Hereinafter we drop the superscript ∗ for dimensionless variables. Dimen-

sionless form of the radial position R of the core center is R = 1 + ε2R(2) + O(ε3). We can maintain
the first term to be unity by adjusting disposable parameters, bearing with the origin of coordinates,
in the first-order field [12]. The second-order correction ε2R(2) is tied with the viscous expansion.

A glance at the Euler or the Navier-Stokes equations shows that the dependence, on θ, of the
solution in a power series in ε is

ψ = ψ(0)(r) + εψ
(1)
11 (r) cos θ + ε2

[
ψ

(2)
0 (r) + ψ

(2)
21 (r) cos 2θ

]
+O(ε3), (23)

ζ = ζ(0)(r) + εζ
(1)
11 (r) cos θ + ε2

[
ζ
(2)
0 (r) + ζ

(2)
21 (r) cos 2θ

]
+O(ε3). (24)
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Upon substitution from (23) and (24), we obtain a representation, to O(ε2) in dimensionless form,
H = H(0) + ε2H(2) and Pz = P (0) + ε2P (2) of the kinetic energy and the hydrodynamic impulse, as

H(0) = −2π2

∫ ∞

0

rζ(0)ψ(0)dr, H(2) = −2π2

∫ ∞

0

r

(
1
2
ζ
(1)
11 ψ

(1)
11 + ζ(0)ψ

(2)
0 + ζ

(2)
0 ψ(0)

)
dr, (25)

P (0) = π, P (2) = π
(
2R(2) − 4πd(1)

)
, (26)

where d(1) = d1/(Γσ2) is the dimensionless strength of dipole.
Evaluation of (25) and (26) is relatively easy as these does not include the quadrupole field ψ(2)

21 and
ζ
(2)
21 . Given ζ(0) to O(ε0), the azimuthal velocity to O(ε0) satisfies v(0) = −∂ψ(0)/∂r, and the Stokes

streamfunction complying with (15) is, to O(ε0),

ψ(0) = −
∫ r

0

v(0)(r′)dr′ + lim
r→∞

{∫ r

0

v(0)(r′)dr′ − 1
2π

[
log
(

8
εr

)
− 2
]}

. (27)

Without viscosity, the vorticity profile ζ(0) may be taken to be arbitrary, but viscosity plays the role
of selecting its functional form [15]. It is expedient to handle the streamfunction ψ̃ for the flow relative
to the coordinates moving with the same speed Ż as the vortex ring along the z-direction, namely,
ψ = −Żρ2/2 + ψ̃. The first-order solution comprises a dipole field. Denoting the dipole coefficient of
the streamfunction for the flow, relative to the moving frame, to be ψ̃(1)

11 = ψ
(1)
11 + rŻ(0), the coefficient

function ψ̃(1)
11 is given by

ψ̃
(1)
11 = −v(0)

{
r2

2
+
∫ r

0

dr′

r′[v(0)(r′)]2

∫ r′

0

r′′
[
v(0)(r′′)

]2
dr′′
}

+ c
(1)
11 v

(0), (28)

where c(1)11 is a disposable parameter tied with choice of the origin r = 0 of the local coordinates. The
vorticity is found from ζ

(1)
11 = aψ̃

(1)
11 + rζ(0) with a(r, t) = −1/v(0)(∂ζ(0)/∂r). The Fourier coefficient

ψ̃
(2)
0 (r) of the monopole component of O(ε2), relative to the moving coordinate frame, defined by
ψ̃

(2)
0 = ψ

(2)
0 + Ż(0)r2/4 is written in terms of v(0), ψ̃(1)

11 and ζ(2)
0 . The O(ε2) monopole component ζ(2)

0
of vorticity obeys a heat-conduction equation with source terms [12].

A steady inviscid vortex ring or a quasi-steady viscous vortex corresponds to a state of the maximum
energy and this critical states favors core shape with back-to-fore symmetry [26,41]. This symmetry,
ζ(ρ,−ẑ) = −ζ(ρ, ẑ) and uρ(ρ,−ẑ) = −uρ(ρ, ẑ), simplifies the last integral in (21) to

J =
∫∫

ρzuρζ dA =
∫ 2π

0

∫ ∞

0

r sin θ

(
sin θ

∂ψ̃

∂r
+

cos θ
r

∂ψ̃

∂θ

)
ζrdrdθ. (29)

Substituting from (23) and (24), (29) becomes J = J (0) + ε2J (2), to O(ε2), where

J (0) = −π
∫ ∞

0

r2v(0)ζ(0)dr =
1
8π
, (30)

J (2) = −π
∫ ∞

0

r2

[
v(0)

(
ζ
(2)
0 − 1

2
ζ
(2)
21

)
+

1
4

(
ψ̃

(1)
11

r
− ∂ψ̃

(1)
11

∂r

)
ζ
(1)
11 +

(
ψ̃

(2)
21

r
+

1
2
∂ψ̃

(2)
21

∂r
− ∂ψ̃

(2)
0

∂r

)
ζ(0)

]
dr.

(31)

The leading-order term H(0) of energy is evaluated with ease, by introducing (27) into (25), which
is expressed, in dimensional variables, as

H0/Γ
2 =

1
2
R0

{
log
(

8R0

σ

)
+A− 2

}
, (32)

where H0 = Γ 2R0H
(0) and A is defined by (3). This expression, along with P (0) and J (0), gives rise

to Fraenkel-Saffman’s formula (3), via (21). The third-order correction U2 to the translation speed
of the vortex ring requires evaluation of H(2) and J (2). Evaluation of (31) is rather involved as it
includes ζ(2)

21 and ψ̃(2)
21 , the quadrupole field of O(ε2). But (31) is somehow simplified by use of equation



8 Y. Fukumoto

200
100

50

��Ν�0.01

0 0.01 0.02 0.03 0.04 0.05
Νt�R 02

0.15

0.2

0.25

0.3
UR0��

Fig. 2 Variation of speed of a viscous vortex ring with time. The upper and lower solid lines are the high-
and low-Reynolds number asymptotics (36) and (44), respectively, while the thick dashed line is the Saffman’s
formula (5). The dashed lines are the values read off from the graph of numerical simulations [42].

governing ψ̃(2)
21 and the relation between ψ̃

(2)
21 and ζ

(2)
21 . For an inviscid vortex ring in steady motion,

R2 = R0ε
2R(2) ≡ 0 without loss of generality, and, after some manipulations, we arrive at

U2 =
1
R3

0

{
d1

2

[
log
(

8R0

σ

)
− 2
]
− πΓB +

π

2Γ

∫ ∞

0

r4ζ0v0dr

}
, (33)

where v0 = Γv(0)/σ and ζ0 = Γζ(0)/σ2 are dimensional variables, and

B = lim
r→∞

{
1
Γ 2

∫ r

0

r′v0ψ̃
(1)
11 dr′ +

r2

16π2

[
log
( r
σ

)
+A

]
+

d1

2πΓ
log
( r
σ

)}
. (34)

This is an extension, to O(ε3), of Fraenkel-Saffman’s formula (3). The same formula was reached by
way of the variational principle [14] as will be touched upon in the following section.

Even if viscosity is switched on, the higher-order asymptotics U2 is not invalidated at a large
Reynolds number. Taking, as the initial condition, a circular line vortex of radius R0,

ζ(ρ, z, 0) = Γδ(ρ−R0)δ(z − Z) at t = 0, (35)

the leading-order vorticity ζ0 is given by (4) [16,15], and the inhomogeneous heat-conduction equation
governing ζ(2)

0 becomes tractable, with an introduction of similarity variables. The parameters c(1)11 in
(28) and R2, both being functions of t, play a common role of specifying the radial position of the ring
at O(ε2) relative to R0. This redundancy is removed, for instance, by taking c(1)11 ≡ 0. Thus we are led
to an extension of Saffman’s formula (5) in the form

U ≈ Γ

4πR0

{
log
(

4R0√
νt

)
− 0.55796576− 3.6715912

νt

R2
0

}
. (36)

Fig. 2 displays the comparison of the asymptotic formula (36) with a direct numerical simulation
of the axisymmetric Navier-Stokes equations [42]. The normalized speed UR0/Γ of the ring is drawn
as a function of normalized time νt/R2

0 for its small values. The upper thick solid line is our formula
(36), and the thick broken line is the first-order truncation (5). The dashed lines are the results of the
numerical simulations, attached with the circulation Reynolds number Γ/ν, ranging from 0.01 to 200.
Augmented only with a single correction term, (33) appears to furnish a close upper bound on the
translation speed. Notably, the large-Reynolds-number asymptotic formula (36) compares fairly well
with the numerical result of even moderate and small Reynolds numbers.
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Constancy of the hydrodynamic impulse (17), regardless of the presence of viscosity, provides us
with a short-cut to reach the radial motion of the ring; the third-order motion R(2) is gained solely
from the first-order velocity field [12]. For the initial δ-function core (35), the peak-vorticity circle of
radius Rp(t) and the vorticity centroid Rc in the radial direction expands, respectively, as [12]

Rp ≈ R0 + 4.5902739
νt

R0
, Rc =

π

Pz

∫∫
ρ3ζrdrdθ ≈ R0 +

3νt
R0

. (37)

The third-order formulas (36) and (37), intended for
√
νt � R0, has a wider applicability than

envisaged, but ceases to be valid when the core is so swollen as to touch itself and cancellation of
vorticity takes place on the symmetry axis (ρ = 0). Saffman [16] made a judicious treatment of
simplifying the Navier-Stokes equations for estimation of the traveling speed of a vortex ring valid
after νt ≈ R2

0, and obtained, with use of some constant k and k′.

R2 = R2
0 + k′νt, U =

Pz

k

(
R2

0 + k′νt
)−3/2

. (38)

This tends, at νt � R2
0, to Rott-Cantwell’s decaying law (8). Saffman’s matured-stage formula (38)

exhibits a good fit to an experimental measurement of using the DPIV [43]. The measurements of
location of peak vorticity tells k′ = 7.8. If the small-time asymptotics (37) is translated into (38),
k′ = 9.1805478. The agreement is acceptable.

Although Helmholtz-Lamb’s method (21) saves the labor, the integral J in (21), with including ζ(2)
21

and ζ
(2)
21 , stands as an obstacle. The variational principle (7), which comprises only the total energy

H and the impulse Pz , dispenses with ζ(2)
21 and ζ(2)

21 . A further simplification is achieved by relying on
the variational principle with kinematic constraints.

5 Kelvin-Benjamin’s variational principle

It is well known that a stationary configuration of vorticity, embedded in an inviscid incompressible
fluid, is realizable as an extremal of energy on an iso-vortical sheet [24,25]. An iso-vortical sheet com-
prises volume-preserving diffeomorphisms, or smooth maps of fluid particles, with vorticity frozen into
the fluid. Put it in another way, the critical state is sought among the class of ω that is reached by rear-
rangement of the initial distribution. Extending this conditional variational principle to a moving state,
Benjamin [26] stated that an axisymmetric vortex ring moving steadily in an inviscid incompressible
fluid is realizable as the maximum state of the kinetic energy H on an iso-vortical sheet, subject to the
constraint of constant hydrodynamic impulse (6). An upper bound of the kinetic energy, supplied by
a topological invariant [27,28], guarantees the existence of the maximum state. When translated into
three dimensions, Kelvin-Benjamin’s principle takes the form of (7) with constant vector U playing
the role of the Lagrangian multipliers [41]. The restriction of axisymmetry can be lifted and (7) is
extended to a stationary vorticity distribution in a steadily moving frame [14].

An iso-vortical sheet is of infinite dimension. A family of solutions of the Euler equations includes a
few parameters. By imposing certain relations among these parameters, we can maintain the solutions
on a single iso-vortical sheet, and the restricted family of the solutions constitutes a finite dimensional
set on the sheet. Thus the traveling speed of a vortex ring may be calculable through (7). Dyson’s
vortex ring (2) was dealt with in this framework [22]. The same is true of Saffman’s formula (5) [14],
though excluded from the list of [18].

We pose, as a natural profile of local velocity field featuring a vortex ring,

v0(r) = − Γ

2πr
f
( r
σ

)
, ζ0 =

Γ

2πr
d
dr
f
( r
σ

)
; f (ξ) = O(ξ2) as ξ → 0, f (ξ) → 1 as ξ → ∞. (39)

where f is an arbitrary function, though subjected to the above boundary conditions. The parameter σ
introduces the scale for the core thickness. Suppose that the fluid particles occupying a toroidal region of
radius r around the center circle of radius R is mapped to another toroidal region of radius r̂ around the
center circle of radius R̂. To maintain these flow field on an iso-vortical sheet, it is necessary for the local
circulation along any material loop to remain unchanged [25,27,28]. Preservation of material volume
enforces 2π2r2R = 2π2r̂2R̂, 2π2σ2R = 2π2σ̂2R̂, from which follows r/σ = r̂/σ̂. Consequently, the
local circulation around the circle of radius r, Γ (r) = 2π

∫ r

0
ζ0(r′)r′dr′ = Γf(r/σ), is made invariant:
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Γ (r) = Γ (r̂). Under an infinitesimal perturbation of R → R̂ = R + δR, σ → σ̂ = σ + δσ, with
R = R0 +R2, (5) demands that, at each order, σ2R0 = const. and σ2R2 = const., and therefore that
2δσ/σ = −δR0/R0 = −δR2/R2. We can show that, under this perturbation, Â = A + O

(
(δR)2

)
. In

view of these constraints, the variation of (32) with respect to an iso-vortical perturbation becomes

δH0 =
Γ 2

2

[
log
(

8R0

σ

)
+A− 1

2

]
δR0. (40)

The variation of the leading term of impulse P0 = ΓπR2
0 is δP0 = 2πΓR0δR0, and application of (7)

restores Fraenkel-Saffman’s formula (3).
This principle is extensible to higher orders, whereby the O(ε3) corrections (33) and (36) are

produced [14]. Mohseni [44] devised an efficient algorithm of combining (7) with the slug model to
estimate the translation velocity of fat vortex rings.

6 Low-Reynolds-number vortex ring

Saffman’s second law (38) well describes the timewise variation of traveling speed after the matured
stage (

√
νt ≥ R0), by an adjustment of the disposable parameters k and k′. For

√
νt � R0, (38)

approaches Rott-Cantwell’s decaying law (8) for which the velocity field is given by Phillips’ spherical
dipole [45], an exact solution of the Stokes equations. Given an initial delta function core (35), the
early-time behavior (5) of the translation speed is common to O(ε), independently of the Reynolds
number Γ/ν. At low Reynolds numbers, there is a solution that is valid over the whole time range
(t ≥ 0), illustrating how the early time behavior (5) of a thin core crosses over to (8) [33,34].

We suppose that the vorticity is governed by the Stokes equations. Their solution, subject to the
initial condition ζ0(z, ρ, 0) = Γ0δ(z)δ(ρ−R0), with Γ0 being a constant, is

ζ =
Γ0R0

4
√
π(νt)3/2

exp
(
−z

2 + ρ2 +R2
0

4νt

)
I1

(
R0ρ

2νt

)
, (41)

where I1 is the first-kind modified Bessel function of order unity. This expression was first found math-
ematically as a similarity solution [46] and was then given an interpretation in the context of evolution
of a viscous vortex ring [33,34]. The total vorticity in the half meridional plane (ρ ≥ 0) decreases
as Γ = Γ0

[
1 − exp

(−R2
0/4νt

)]
, and the hydrodynamic impulse is Pz = πR2

0Γ0. The corresponding
Stokes streamfunction is

Ψ = −Γ0R0ρ

4

∫ ∞

0

[
epzerfc

(
2pνt+ z

2
√
νt

)
+ e−pzerfc

(
2pνt− z

2
√
νt

)]
J1(pR0)J1(pρ)dp. (42)

The behavior of (41) and (42) at large times (
√
νt � R0) coincides with that of Phillips’ solution.

Upon substitution from (41) and (42), (21) gives rise to the desired formula for the translation velocity:

U =
Γ0R

2
0

96
√

2π(νt)3/2

{
2F2

(
3
2
,
3
2
;
5
2
, 3;−R2

0

2νt

)
− 36

5 2F2

(
3
2
,
5
2
; 2,

7
2
;−R2

0

2νt

)

+
72νt
R2

0

exp
(
−R2

0

4νt

)
I1

(
R2

0

4νt

)}
, (43)

where 2F2 is the generalized hypergeometric function [33]. One of advantages of this representation
is to use the expansion of 2F2 at small arguments and to exploit the analytic continuation to derive
asymptotic expansions at large arguments. Using the asymptotic form of 2F2 for negative large and
small values of the argument, we can deduce early- and long-time behavior of (43) as follows [34].

U ≈ Γ0

4πR0

{
log
(

4R0√
νt

)
− 0.55796576− 4.5

[
log
(

4R0√
νt

)
− 1.0579658

]
νt

R2
0

}
for

√
νt� R0, (44)

=
7Pz

240
√

2 (πνt)3/2

{
1 − 33

196
R2

0

νt
+

125
6272

(
R2

0

νt

)2

+O

((
R2

0

νt

)3)}
for

√
νt� R0. (45)
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The translation speed (43) based on the Stokesian dynamics of vorticity poses the strict lower bound
on U . Figure 2 confirms this at small values of t. Fair agreement is observed between (44) and the
numerical result of the Reynolds number Γ/ν = 0.01, the lowermost dashed line. Notice that the
traveling speed is not very sensitive to Γ/ν.

The large-time behavior (45) gives corrections to Rott-Cantwell’s formula (8). Comparison of the
first two terms of (45) with those of Saffman’s second formula (38) as expanded in R2

0/νt yields
k = 1320

√
11π3/2/2401 ≈ 10.15, k′ = 98/11 ≈ 8.909. With this choice, (38) furnishes an excellent

interpolation formula between (44) and (45), and exhibits a fairly good approximation to (43) even at
small values of νt/R2

0.
Another advantage of the representation (43) is that we can calculate, in a tidy form, the distance

s(t) =
∫ t

0
U(τ)dτ traversed over time t by the viscous vortex ring [34]. This expression gives a partial

answer to the question of the inverse problem raised in Sect. 1. When does a vortex ring arrive at a
specified point? The traveling speed slows down with t, and ultimately decreases to zero in proportion
to t−3/2 as is seen from (8). This implies that the vortex ring cannot be freely sent to remote regions.
Taking the limit t→ ∞ of s(t) shows that the distance smax of the furthermost reach is

smax =
5Γ0R0

24πν
=

5Pz

24π2R0ν
≈ 0.066314560

Γ0R0

ν
. (46)

The maximum reach smax extends in inversely proportion to ν. Given the impulse Pz , smax is larger
as the initial ring radius R0 is smaller.

The vortex bubble is a region encircling the vortex core bounded by a surface of zero streamfunction
of the flow relative to the ring motion. For an inviscid vortex ring, the volume of the vortex bubble
is a function of the Stokes streamfunction for the relative flow and is called the vortex-ring signature
[27,47]. The vortex-ring signature of our low-Reynolds-number solution, bears, with an appropriate
normalization, some resemblance with that of the direct numerical simulation of the axisymmetric
Navier-Stokes equations [32]. Recently, a family of similarity solutions is found [48], that includes (41)
and (42) as an extreme and may describe a turbulent vortex ring in the other extreme.

7 Summary

Vortex rings stimulated development of mathematical machinery. This article has described a partial
history of this development as exemplified by Helmholtz-Lamb identity for the movement of the vor-
ticity centroid, Dyson’s technique for asymptotic expansions of the Biot-Savart law, and Kelvin’s vari-
ational principle as augmented with the effect of motion of a vortical region by Benjamin. Helmholtz’s
seminal paper [4] illuminated the preservation of topology of the vorticity field. This topological idea
has been rediscovered in various guises over and over again and has played a vital role in developing
theories of vortex dynamics, including vortex-ring motion.

Mathematical labor to reach the same formula for the speed of a vortex ring dramatically decreases
in order of the method of matched asymptotic expansions [12], Helmholtz-Lamb’s method and the vari-
ational principle. By appealing to these efficient methods, we have succeeded in achieving higher-order
extension of Fraenkel-Saffman’s and Saffman’s formulas, which are applicable to fat cores. Hopefully
these methods carry over to helical vortex tubes with allowance made for torsion and the rotation
of the system (cf. [38]). For low-Reynolds-number motion, exploiting formulas associated with the
generalized hypergeometric functions is advantageous to extract rich information.
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to them. This work was partially supported by a Grant-in-Aid for Scientific Research from the JSPS (Grant
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