
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Code and Data Placement for Embedded Processors
with Scratchpad and Cache Memories

Ishitobi, Yuriko
Graduate School of Information Science and Electrical Engineering, Kyushu University

Ishihara, Tohru
System LSI Research Center, Kyushu University

Yasuura, Hiroto
Faculty of Information Science and Electrical Engineering, Kyushu University

https://hdl.handle.net/2324/13160

出版情報：Journal of Signal Processing Systems, 2008-11-05. Springer
バージョン：
権利関係：

Noname manuscript No.
(will be inserted by the editor)

Code and Data Placement for Embedded Processors with
Scratchpad and Cache Memories

Yuriko ISHITOBI · Tohru ISHIHARA · Hiroto YASUURA

Received: date / Accepted: date

Abstract This paper proposes a code placement prob-
lem, its ILP formulation, and a heuristic algorithm for
reducing the total energy consumption of embedded
processor systems including a CPU core, on-chip and
off-chip memories. Our approach exploits a non-cacheable
memory region for an effective use of a cache memory
and as a result, reduces the number of off-chip accesses.
Our algorithm simultaneously finds a code layout for
a cacheable region, a scratchpad region, and the other
non-cacheable region of the address space so as to mini-
mize the total energy consumption of the processor sys-
tem. Experiments using a commercial embedded pro-
cessor and an off-chip SDRAM demonstrate that our
algorithm reduces the energy consumption of the pro-
cessor system by 23% without any performance degra-
dation compared to the best result achieved by the con-
ventional approach

Keywords code placement · energy reduction ·
embeded processor

Yuriko ISHITOBI
Graduate School of Information Science and Electrical Engineer-

ing, Kyushu University
Motooka 744, Nishiku, Fukuoka-shi, 819-0395 Japan
E-mail: ishitobi@c.csce.kyushu-u.ac.jp

Tohru ISHIHARA

System LSI Research Center, Kyushu University
Momochihama 3-8-33, Sawara-ku, Fukuoka-shi, 814-0001 Japan
E-mail: ishihara@slrc.kyushu-u.ac.jp

Hiroto YASUURA
Faculty of Information Science and Electrical Engineering,
Kyushu University
Motooka 744, Nishi-ku, Fukuoka-shi, 819-0395 Japan

E-mail: yasuura@c.csce.kyushu-u.ac.jp

1 Introduction

On-chip memories are one of the most power hungry
components of today’s microprocessors. For example,
ARM920T microprocessor dissipates 43% of the power
in its cache memories [1,2]. StrongARM SA-110 proces-
sor, which specifically targets low power applications,
dissipates about 27% of the power in its instruction
cache [3]. Many techniques have been proposed for
optimizing cache configuration considering tradeoff be-
tween energy consumption of off-chip memory and cache
memory [4–8]. All these approaches use the fact that
while a bigger cache consumes more energy per access,
it can reduce the number of cache misses and as a re-
sult can reduce the energy consumption of the off-chip
memory.

 Memory Address Space

 Non-cacheable
 region

 Cacheable
 region

 Scratchpad

 file

 register

 Scratchpad

 Cache

 region

Processor

CPU
core

Fig. 1 Overview of Our Code Layout

One of the most effective approaches for reducing
the energy consumption of off-chip memories without
increasing a cache size is the code placement technique [9–
14]. The idea is to modify the placement of basic blocks,
procedures and/or data objects in the address space so
that the number of cache conflict misses is minimized.
This can significantly reduce the number of cache misses
and improve a program’s execution time. However, none

2

of the previous methods takes the non-cacheable mem-
ory region into consideration in their methods. The non-
cacheable memory region represents address spaces as-
signed for a scratchpad memory and the other mem-
ory sections which can be directly accessed from CPU
core without caching the data. If we consider the non-
cacheable section of address space, we can find better
code placement which further reduces the energy con-
sumption of processor systems.

Scratchpad memory can be used as a design alter-
native for the on-chip cache memory [15]. Current em-
bedded processors particularly in the area of multime-
dia applications have on-chip scratchpad memories. In
cache memory systems, the mapping of program ele-
ments is done during runtime, while in scratchpad mem-
ory systems this is done by the programmer or the com-
piler. Unlike the cache memory, the scratchpad memory
does not need tag search operations and, as a result, it
is more power efficient than the cache memory if pro-
grammers or compilers can optimally allocate code and
data on the scratchpad memory [16]. Our approach also
exploits a non-cacheable memory region for bypassing
streaming data which has a low temporal locality.

This paper proposes a code placement technique
which reduces the energy consumption of embedded
processor systems including a CPU core, scratchpad,
cache, and off-chip memories. This paper is an exten-
sion of our previous work [17]. In this paper, a code
placement problem for minimizing the energy consump-
tion of embedded processor systems is formally defined.
An ILP formulation for the code placement problem is
given as well. To the best of our knowledge, this is the
first ILP formulation of the code placement problem in
which the optimal code layouts for a cacheable region, a
scratchpad region, and the other non-cacheable region
are simultaneously determined.

The rest of the paper is organized as follows. Section
2 summarizes previous work and our approach. A for-
mal definition of our code placement problem and its
integer linear programming (ILP) formulation is pre-
sented in Section 3. Section 4 presents a heuristic algo-
rithm. Experimental results are summarized in Section
5. The paper concludes in Section 6.

2 Previous Work and Our Approach

2.1 Cache Conflict Miss Reduction

We first explain the idea behind the conventional code
placement technique. Consider a direct-mapped cache
of size C (= 2m words) whose cache line size is L words,
i.e., L consecutive words are fetched from the main
memory on a cache read miss. In a direct-mapped cache,

the cache line containing a word located at memory
address M can be calculated by (bM/LcmodbC/Lc).
Therefore, two memory locations Mi and Mj will be
mapped onto the same cache line if the following con-
dition holds,

(⌊
Mi

L

⌋
−

⌊
Mj

L

⌋)
mod

C

L
= 0 (1)

Several code placement techniques have used the
above formula.

...

...

L=32 bytes

D

A

B
B B

main memoryI-cache

...

...

main memory

main loop

conflict misses
in cache-line 1

DC
C

AA

D

Fig. 2 An Example of Code Placement

Suppose we have a direct mapped cache with 4 cache-
lines, where each cache-line is 32 bytes. Functions A, B,
C and D are placed in the main memory as shown in
the left side of Figure 2. If functions A, B, and D are
accessed in a loop, conflict misses occur because A and
D are mapped onto the same cache line. If the locations
of C and D are swapped as shown in the right side of
Figure 2, the cache conflict is resolved. Code placement
modifies the placement of basic blocks or functions in
the address space so that the total number of cache
conflict misses is minimized [9–14]. We use this idea in
our algorithm.

2.2 Code Placement for Scratchpad Memory

Unlike the cache memory, the scratchpad memory does
not need complicated hardware mechanisms for retain-
ing LRU (Least Recently Used) lines and for the tag
search operations. Therefore, scratchpad memory is more
power efficient than the cache memory if programmers
or compilers can optimally allocate code and data on
the scratchpad memory. Banakar et al. proposed a tech-
nique for selecting an on-chip memory configuration
from various sizes of cache and scratch pad memories [15].
Their experiments show that scratchpad based approach
outperforms cache-based approach on almost all as-
pects. For example, the total energy consumption of

3

scratchpad based systems is less than that of cache-
based systems by 40% on an average. Steinke et al. pro-
posed a compiler-oriented optimization technique for
selecting program and data parts which should be placed
in the scratchpad memory. Their experiments showed
that the energy consumption of the memory system
was reduced by 40% compared to the cache based ap-
proach [16]. However, their approach does not effec-
tively work for a processor with both scratchpad and
cache memories.

2.3 Cache Bypassing

The cache energy consumption can be reduced by sim-
ply not caching data which has a low temporal locality.
This also leads to an effective use of the cache memory
and, as a result, can reduce the number of cache misses.
Johnson et al. perform a run-time analysis to detect
spatial and temporal locality [18]. By monitoring data
access patterns and bypass non-temporal data through
the use of cache bypass buffers. Note that the non-
temporal data denotes data which has a low temporal
locality. Rivers et al. proposed the NTS (non-temporal
stream) cache for bypassing streaming data [19]. Their
primary focus is on reducing conflict misses in direct-
mapped L1 caches by using a separate fully associative
buffer, and selectively caching data in the main cache.
Although the idea of cache bypassing is used in our
approach, our approach does not need any additional
hardware like the cache bypass buffers nor the stream
buffers. Our approach identifies the non-temporal stream-
ing data from profiling information and places the non-
temporal data onto a non-cacheable memory region so
that the non-temporal streaming data is not cached.
To the best of our knowledge, this is the first compiler-
based technique which finds non-temporal data objects
bypassed without caching.

2.4 Motivational Example

The conventional code placement algorithm for a scratch-
pad memory does not necessarily find the optimal code
and data placement if the target processor employs
both scratchpad and cache memories. Suppose we have
three functions and they are executed on a processor
with 2KB scratchpad and 2KB cache memories as shown
in Figure 3.

The code size of each function is 2KB as well. In this
case, only one function can be placed in the scratchpad
memory and the other two functions are allocated on
a cache region in the address space. In the first half

8,000
Instruction
executed

1,500
instruction
executed

Execution time

Function-1

16,000 instruction executed

Function-2

12,000 instruction executed Function-3

15,000 instruction executed

2,500
instruction
executed

Fig. 3 An Example of Program Execution Schedule

of the execution, Function-1 and 2 are alternately exe-
cuted, and the later, Function-2 and 3 are alternately
executed. If Function-1 which occupies the processor for
the longest period of time is placed in the scratchpad,
a lot of cache misses occur when Function-2 switches
to Function-3 because these functions share the cache
memory most of the time.

The number of cache misses can be drastically re-
duced by allocating Function-2 on the scratchpad mem-
ory, while the conventional technique allocates Function-
1 to the scratchpad memory because it occupies the
processor for the longest period of time. Even if there
is no space left in the scratchpad memory, we still have
a chance to reduce the number of cache misses by al-
locating Function-2 on the other non-cacheable mem-
ory regions. Our approach selectively finds program and
data objects which should be placed in the scratchpad
memory with taking the cache behavior into consider-
ation.

2.5 Our Approach

As mentioned above, finding code placements separately
for a cacheable region, a scratchpad region and the
other non-cacheable region does not result in minimiz-
ing the total energy consumption of the embedded sys-
tem. Our approach simultaneously finds code layouts
for the cacheable region, the scratchpad region and the
other non-cacheable region so as to minimize the to-
tal energy consumption of embedded processor systems.
Note that the scratchpad memory is used as a compile-
time memory in our approach. The overview of our
technique for optimizing the code placement is shown in
Figure 4. We first extract hardware dependent param-
eter values like the energy consumption and clock cy-
cles required for a memory access using a netlist of the
target processor. Instruction and data address traces
for a target application program can be obtained using
instruction-set simulator (ISS). Then, our code place-
ment algorithm finds the optimal code layout using
these previously obtained hardware and software char-
acteristics.

4

Register

File

CPU

core

SPM

Cache

SPM
region

Memory Address SpaceProcessor

Non-cacheable

region

Cacheable

region

Energy and clock

cycles required for on-

chip memory access,

off-chip access, logic

part, and etc.

Application Program

Address Trace

Energy Characterization

Our Code Placement

Profiling

Fig. 4 Code Layout Optimization Flow

3 Problem Definition

3.1 Assumptions

This section gives assumptions for our code placement
problem. Our code placement problem is designed for
finding locations of memory objects in a memory ad-
dress space as shown in Figure 5. The memory objects
include functions, global variables, and constants. For
the problem formulation, we assume all memory objects
are aligned to a boundary of a memory block whose
size is equal to the cache line size. Any memory ob-
ject can be placed in a cacheable region, a scratchpad
region or a non-cacheable region. In the rest of this pa-
per, we call the other non-cacheable region which can
be directly accessed from CPU core without caching
as a non-cacheable region simply. Since the locations
of memory objects in the cacheable region affects the
number of cache misses as described in Section 2.1, the
optimal order of memory objects in the cacheable region
must be found for minimizing the energy consumption.
This paper extends a code placement problem previ-
ously proposed by Tomiyama et al. in [11] which tar-
gets instruction codes only. Our code placement prob-
lem targets not only instruction codes but also global
variables and constants. Therefore, in this paper, we
formulate the number of write-backs from dirty cache
lines to a main memory so that we can find the optimal
order of data objects in the cacheable region.

3.2 Preliminaries

In the rest of this paper, the following definitions and
notations are used.

1

2

3

4

5

memory objectsmemory area

cacheable
region

non-cacheable
region

scratchpad
region

1

2
6

4

6

5
3

memory area

Fig. 5 An Example of Memory Object Placement

Nobj : The total number of memory objects
i : A memory object ID number

Bi : The number of memory blocks required for placing
the memory object i

Xi : The number of accesses to the memory object i

Nset : The number of cache sets
Nway : The number of cache ways
Sspm : The number of memory blocks assigned to scratch-

pad memory

The values of above parameters are given as inputs
of the code placement problem. The values for Xi can
be obtained by using instruction set simulator. The lo-
cations of the memory object i are determined by 0-1
variables ci, si, ui, and yi,i′ defined below.

ci =

1 : if memory object i is placed in

a cacheable region
0 : otherwise

(2)

si =

1 : if memory object i is placed in

a scratchpad region
0 : otherwise

(3)

ui =

1 : if memory object i is placed in

a non-cacheable region
0 : otherwise

(4)

yi,i′ =

1 : if ci = 1 ∧ ci′ = 1
and memory object i is placed at addresses
higher than that of memory object i′

0 : if ci = 0 ∨ ci′ = 0
or memory object i is placed at addresses
lower than that of memory object i′

(5)

Suppose we have three memory objects 1, 5 and
3 as shown in Figure 6 (a). In this case, since memory

5

object 1 is placed at addresses lower than those of mem-
ory objects 3 and 5 in cacheable region, {y1,3, y1,5} =
{0, 0}. Similarly, since the memory object 5 is placed
between memory objects 1 and 3, {y5,1, y5,3} = {1, 0}.
If a memory object i′ is placed to the scratchpad re-
gion or non-cacheable region and if a memory object i
is placed to the cacheable region, any yi,i′ should be 0.
This is because the addresses for scratchpad and non-
cacheable regions are assumed to be higher than those
of cacheable region in our formulation. Therefore, if the
memory object 5 is placed in the scratchpad region and
others are placed in the cacheable region, any yi,5 is set
to 0. More specifically, (y1,5, y3,5) = (0, 0) in this case
as shown in Figure 6 (b).

The following formula (6) ensures that any memory
object is placed in one of cacheable, scratchpad and
non-cacheable regions.

ci + si + ui = 1 (6)

3.3 Objective Function

The goal of our code placement is to minimize the to-
tal energy consumption required for executing a given
application program with or without a constraint of to-
tal execution time. The objective function of the prob-
lem is given by (7). TEtotal is the total energy con-
sumption of CPU and off-chip memory. Ecache denotes
the energy consumption for a cache access. Emiss and
Ewb represent the energy consumptions for a cache miss
and a cache write-back, respectively. Ncache , Nmiss and
Nwb are the numbers of cache accesses, cache misses
and cache misses with write-back, respectively. Espm

denotes the energy dissipation required for an access
to the scratchpad memory. Nspm is the number of ac-
cesses to the scratchpad memory. α is the number of
off-chip memory accesses in case of a cache miss or a

memoryobject 1

memoryobject 5

memoryobject 3

Cacheable

region

Scratchpad region

Non-cacheable region

memoryobject 1

memoryobject 3

memoryobject 5

(a) (b)

)0,0,0(),,(

)0,0,0(),,(

)1,1,1(),,(

531

531

531

=

=

=

uuu

sss

ccc

)0,0,0(),,(

)1,0,0(),,(

)0,1,1(),,(

531

531

531

=

=

=

uuu

sss

ccc

Fig. 6 An Example of Code Placement in Cacheable Region

cache write-back, which can be determined by a spec-
ification of the target processor. Pexe and Pstall rep-
resent average power consumption of logic part when
executing instructions and that of logic part when the
pipeline is stalling, respectively. texe and tstall represent
the total time spent for executing instructions and that
spent for the pipeline stall, respectively. Eoff and Poff

denote the energy consumption for an off-chip access
and the static power consumption in off-chip memory.
Noffs is the number of non-burst accesses to the non-
cacheable region. CNinst , CNmiss , CNwb and CNoffs

respectively denote the average numbers of clock cycles
needed for executing an instruction, an off-chip burst-
read in case of a cache miss, an off-chip burst-write for a
cache write-back and an off-chip non-burst access. Ninst

represents the total number of instructions executed for
a given application program. CT is the clock cycle time
of the target processor. Eoff and Poff are obtained from
a specification of the target memory device. The values
of Ecache , Emiss , Ewb and Espm can be estimated using
a circuit simulator and a logic simulator. Pexe and Pstall

can be estimated from results of logic level simulation.
The values of CNmiss , CNwb , CNoffs and α can be ob-
tained from a specification of the target processor. The
value of CNinst is estimated from the result of cycle
accurate simulation of each application program.

Our code placement problem is defined as follows;
“For given Bi , Xi , Nset , Nway , Sspm , Ecache , Emiss ,
Ewb , Espm , Eoff , Pexe ,Pstall Poff , CT , CNinst , CNmiss ,
CNwb , CNoff and a memory footprint of the target
application program TR, find values of ci, si,ui and
yi,i′ which minimize TEtotal”.

TEtotal =TEcache + TEspm + TElogic + TEoff (7)

TEcache =Ncache · Ecache + Nmiss · Emiss + Nwb · Ewb

TEspm =Nspm · Espm

TElogic =Pexe · texe + Pstall · tstall
TEoff =(αNmiss + αNwb + Noffsr)Eoff

+ Poff · tall
tall =texe + tstall (8)

texe =CT · Ninst · CNinst

tstall =CT (Nmiss · CNmiss

+ Noffs · CNoffs + Nwb · CNwb)

3.4 Detailed Problem Formulation

The values of Ncache , Nspm and Noffs can be obtained
from the following formulas.

6

Ncache =
Nobj∑
i=1

ci · Xi (9)

Nspm =
Nobj∑
i=1

si · Xi (10)

Noffs =
Nobj∑
i=1

ui · Xi (11)

Since the size of a scratchpad memory is limited and
is usually much smaller than the size of object codes,
the following constraint is introduced.

Nobj∑
i=1

si · Bi ≤ Sspm (12)

We calculate the values of Nmiss and Nwb from a
memory footprint TR. The following shows an example
of TR.

p2,0p4,0p1,0p1,1p2,0p4,0p1,0p1,1p2,0p4,1p2,0p2,1 (13)

pi,j represents an access to a memory block j in a mem-
ory object i. The above TR shows that memory objects
are accessed in the order shown in Figure 7.

0

1

2

0

1

2

3

0

1

2

0

1

memory object 1

memory object 2

memory object 3

memory object 4

1,5,9,10,11

3,7

4,8

12

2,6

10

Fig. 7 An Example of Memory Footprints

Next, let us introduce a block address which repre-
sents an address of a memory block in a memory ad-
dress space. The size of the memory block is equal to
the cache line size as described in Section 3.1. The block
address assigned to the memory block j in the memory
object i is calculated by (14).

bn(i, j) = start address +
Nobj∑
i′=1

yi,i′ · Bi′ + j (14)

where the start address represents a base address of
the cacheable region. This formula calculates the cu-
mulative number of memory blocks placed at addresses
lower than the address of the memory block j of the
memory object i.

Next, we introduce di,j,l and gi,j,l for calculating
Nmiss and Nwb , respectively. The di,j,l represents a se-
quence of memory block accesses which appear between
lth and (l + 1)th appearances of pi,j in a given TR as
follows.

di,j,l = {pi′,j′ |pi′,j′(i 6= i′orj 6= j′) appear between
the lth and the (l + 1)th appearances of pi,j

in TR}

For example in (13), d1,0,0 = {p1,1, p2,0, p4,0}, d2,0,0 =
{p4,0, p1,0, p1,1}, d2,0,1 = {p4,0, p1,0, p1,1} and d2,0,2 =
{p4,1}. Since di,j,l usually appears more than once in
a typical memory access footprint, we newly introduce
ai,j,k to eliminate repetitions of di,j,l (l = 0, 1, 2 . . .).
Note that ai,j,k (k = 0, 1, 2, . . .) is not equal to ai,j,k′

if k 6= k′. Since d2,0,0 = d2,0,1, this repetition can be
removed. As a result, a2,0,k’s can be defined as follows;

a2,0,0 = {p4,0, p1,0, p1,1}, a2,0,1 = {p4,1}.

We next introduce fi,j,k which represents the number
of appearances of ai,j,k in a memory footprint TR. For
example in (13), f2,0,k’s are defined as follows;

f2,0,0 = 2, f2,0,1 = 1

The gi,j,l represents a sequence of ai,j,k which ap-
pear between the lth appearance of pi,j and the next
write access to the jth memory block of the memory
object i in the TR.

gi,j,l =

{ai,j,k|ai,j,k appear between
the lth appearance of pi,j

and the next write access : lth pi,j is write
to the jth block of the
memory object i in a TR

φ : lth pi,j is read

Suppose the first and the third appearances of p2,0 in
(13) are write accesses and only the second p2,0 is a
read access. In this case, g2,0,0 = {a2,0,0, a2,0,1}. Similar
to di,j,l, gi,j,l may appear more than once in TR. We
eliminate the repetitions of gi,j,l by introducing wi,j,k

(k = 0, 1, 2, . . .). Note that wi,j,k 6= wi,j,k′ if k 6= k′.
The number of appearances of wi,j,k in TR is defined
by ei,j,k.

Nmiss =
∑

∀ai,j,k

fi,j,k · replace(ai,j,k) (15)

7

Nwb =
∑

∀wi,j,k

ei,j,k · writeback(wi,j,k) (16)

Nmiss in (15) represents the number of cache con-
flict misses which occur in a given TR. Nwb in (16) rep-
resents the number of write-backs which transfer data
from dirty cache lines to the main memory. The write-
back occurs in case that the target cache line accessed
is dirty.

replace(ai,j,k) =1 :
∑

pi′,j′∈ai,j,k

conflict(pi,j , pi′,j′) ≥ Nway

0 : otherwise

(17)

writeback(wi,j,k) =

1 :
∑

ai,j,m∈wi,j,k

replace(ai,j,m) > 0

0 : otherwise

(18)

conflict(pi,j , pi′,j′) in (17) denotes whether or not
pi,j and pi′,j′ are mapped on the same cache line. If
these two are mapped on the same cache line, the value
of conflict(pi,j , pi′,j′) is set to 1 and otherwise it is set
to 0 as shown in (19).

conflict(pi,j , pi′,j′) =

1 : if ci 6= 0, ci′ 6= 0 and

(bn(i, j) mod Nset)
= (bn(i′, j′) mod Nset)

0 : otherwise

(19)

The value of TEtotal can be calculated using (9)-
(12), (14)-(19), TR, ci, si, ui, yi,i′ and the other hard-
ware dependent parameters shown in 3.2.

3.5 ILP Formulation

In formulations presented in Sections 3.2, 3.3 and 3.4,
the objective function and several constraints are not
expressed in a linear formula. This section shows lin-
earizations for these function and constraints.

First, we linearize (5). The function yi,i′ defined in
(5) can be modified into the following linear inequali-
ties.

−yi,i′ + ci′ ≥ 0
yi,i′ + yi′,i + ci + ci′ < 4

yi,i′ + yi′,i − ci − ci′ ≥ −1
0 ≤ yi,i′ + yi′,i′′ − yi,i′′ ≤ 1

yi,i′ ∈ {0, 1}

(20)

The first inequality in (20) sets yi,i′ to 0 in case that
the memory object i′ is placed in the scratchpad or the
non-cacheable region. The second and the third inequal-
ities set one of yi,i′ and yi′,i to 1 and the other one to
0 if both of memory objects i and i′ are placed in the
cacheable region. The fourth inequality prevents mem-
ory objects from being in a three cornered deadlock.
Suppose the memory object i is placed at addresses
higher than that of memory object i′ and the memory
object i′ is placed at addresses higher than that of mem-
ory object i′′. In this case the memory object i must be
placed at addresses higher than that of memory object
i′′.

Next, we linearize (19). A large integer number U is
used in this linearization. We introduce new variables
q(i,j),(i′,j′) and z(i,j),(i′,j′). These variables intuitively
hold the values of conflict(pi,j , pi′,j′) and (bn(i, j) −
bn(i′, j′))/Nset , respectively.

0 ≤ (bn(i, j) − bn(i′, j′)) − Nset · z(i,j),(i′,j′) < Nset

0 < (bn(i, j) − bn(i′, j′)) − Nset · z(i,j),(i′,j′)

+q(i,j),(i′,j′) + (1 − ci) + (1 − ci′) ≤ Nset

(bn(i, j) − bn(i′, j′)) − Nset · z(i,j),(i′,j′)

−(1 − q(i,j),(i′,j′)) · U ≤ 0
q(i,j),(i′,j′) ∈ {0, 1}

z(i,j),(i′,j′) ∈ Z

(21)

The value of q(i,j),(i′,j′) is 1 if the memory objects i

and i′ are placed in two different memory blocks which
are mapped on to the same cache line. New variables
vi,j,k are introduced to linearize (17), which intuitively
hold the values of replace(ai,j,k). Using vi,j,k, (17) is
replaced by the following linear expressions.

∑
pi′,j′∈ai,j,k

q(i,j),(i′,j′) + (1 − vi,j,k) · U ≥ Nway∑
pi′,j′∈ai,j,k

q(i,j),(i′,j′) − vi,j,k · U < Nway

vi,j,k ∈ {0, 1}

(22)

At last, we linearize (18). We introduce variables
xi,j,k which hold the values of writeback(wi,j,k) intu-
itively. The following linear expressions replace (18).∑

ai,j,m∈wi,j,k

vi,j,m − xi,j,k · U ≤ 0∑
ai,j,m∈wi,j,k

vi,j,m + (1 − xi,j,k) · U > 0

xi,j,k ∈ {0, 1}

(23)

Finally, the code placement problem is successfully
linearized. The variables to be determined in this prob-
lem are ci, si, ui, yi,i′ , q(i,j),(i′,j′), z(i,j),(i′,j′), vi,j,k and
xi,j,k.

8

4 Heuristics

The number of variables to be determined in our code
placement problem defined in the previous section is
more than 300,000 for a typical application program.
Therefore, it is infeasible to use an ILP solver to find
exact solution. Instead, in this section, we introduce
heuristics for finding near optimal solutions. In our heuris-
tics, the assumption for sizes of memory objects ex-
plained in Section3.1 is not necessary.

The heuristic algorithm consists of a main routine
(Main) and three subroutines (Explore scratchpad re-
gion, Swap locations of memory objects and Explore
non-cacheable region). As an input of our algorithm, a
list of memory objects F , where the elements are sorted
by descending order of access ratio is used. The access
ratio is defined as the number of accesses to the memory
object divided by its code size. Our algorithm, at the
first of Main, calculates the total execution time for the
original object code and save it to tconst . The main loop
of the algorithm starts from the original code where all
the memory objects are placed in a cacheable region.
Then the optimal location of each memory object is
found in the address space. This is done by choosing a
single memory object o from top of F and changing the
placement of the memory object in the address space.
Main calls three subroutines and search the optimal lo-
cation of each memory object. If the algorithm finds
a new location for a memory object, where the energy
consumption can be reduced by allocating the mem-
ory object to the location, Location[∗] is updated. The
Location[∗] keeps locations of every memory objects.

Main
Input: TR,F ,Sspm ,Ecache ,Espm ,Eoff ,Emiss ,Ewb

Plogic ,Poff ,CT ,CNinst ,CNoffb ,CNoffs

Output: location of memory objects in optimized object
code

tconst = tall ; TEmin=tmin=infinity;
Srest = Sspm ;

repeat
for(t = 0; t < |F |; t + +)do

o = F [t];

TEorg = TEmin ; torg = tmin ;
go Explore scratchpad region;
go Swap locations of memory objects;
go Explore non-cacheable region;

end of search:
if(tmin ≤ tconst)then

Update Location[∗];
end if

end for
until TEmin stops decreasing
Output locations of memory objects

Explore scratchpad region checks whether or not the
memory object o can be placed in a scratchpad region.
This is done by comparing the space left in the scratch-
pad memory (Srest) and the size of o (SIZE[o]). If

there is enough space left in the scratchpad memory
and if the energy consumption can be reduced by al-
locating o into the scratchpad region, o is placed there
and the Location[∗] is updated accordingly. In this case,
the algorithm skips Swap locations of memory objects
and Explore non-cacheable region. In Swap the locations
of memory objects, the location of memory object o is
exchanged with the other memory object o′. Even if
there is no space left for o in the scratchpad memory,
Swap the locations of memory objects places o in the
scratchpad memory by evicting o′ from the scratchpad
memory if this leads to an energy reduction. The o′

evicted from the scratchpad memory is placed to the
position where the o is formerly placed. Even if both
of o and o′ reside in the cacheable region, our algo-
rithm swaps the locations of o and o′ if this leads to
an energy reduction. Locations of all memory objects
which correspond to the optimal value of the object
function are saved to Location[∗] in Swap the locations
of memory objects. Explore non-cacheable region tenta-
tively places the memory object o to the non-cacheable
region and compares the energy consumption with that
corresponding to the previous locations of o.

If there is an energy reduction, Location[∗] is up-
dated to the locations where o is placed to the non-
cacheable region. For each placement of o, the algorithm
updates the memory address trace (TR) according to
the location of memory objects and calculates the value
of the objective function and the value of the execution
time (tall) using equations (7) and (8) presented in the
section 3.3. TEmin keeps a tentatively minimized en-
ergy value and Location[∗] is updated.

After executing three subroutines, Location[∗] is up-
dated if the execution time is less than or equal to tconst .
The main loop continues as long as the total energy
consumption (TEtotal) reduces.

Explore scratchpad region
if(Srest ≥ SIZE[o])then

place memory object o to scratchpad region;
Srest = Srest − SIZE[o]
Update TR according to new location;
Calculate TEtotal and tall ;

if(TEtotal ≤ TEmin)
TEmin = TEtotal ; tmin = tall ;
Update Location[∗];
go end of search

end if
end if

9

Swap locations of memory objects
for each o′ ∈ F and o′ 6= o do

if(o′ resides in scratchpad &&
SIZE[o] − SIZE[o′] ≤ Srest)then
Evict o′ from scratchpad region to cacheable
region and place o to scratchpad region;

Update TR according to new location;
Calculate TEtotal and tall ;

else if(o′ placed in the cacheable region) then

Swap the placement memory object o for o′;
Update TR according to new location;
Calculate TEtotal and tall ;

end if

end if
if(TEtotal < TEmin) then

TEmin = TEtotal ; tmin = tall ;
Update Location[∗];

end if
end for

Explore non-cacheable region
Place o to non-cacheable region;

Update TR according to new locations;
Calculate TEtotal and tall ;
if(TEtotal < TEmin)then

TEmin = TEtotal ; tmin = tall ;

Update Location[∗];
end if

5 Experimental Results

5.1 Target System

We target a system which consists of a CPU core, on-
chip cache and scratchpad memories, and SDRAM as
an off-chip main memory as shown in Figure 4.

A Micron’s SDRAM DDR-II [20] and an SH3-DSP
processor are used for our experiments. Our SH3-DSP
processor design has a CPU core, a DSP core, an uni-
fied instruction and data cache, and a scratchpad mem-
ory. The processor is synthesized with a 0.18µm CMOS
standard cell library and an SRAM module library.
The power consumed in the logic part of the processor
is estimated by gate-level simulation. First, we gener-
ate the Switching Activity Interchange Format (SAIF)
file through gate-level simulation using NCV erilogTM

from Cadence design systems. Then, the power con-
sumption, Plogic is calculated using PowerCompilerTM ,
a gate-level power calculation tool from SYNOPSYS.
For calculating the memory access delays and the en-
ergy consumptions for the SRAM modules, NanoSim
from SYNOPSYS is used. Specifications of the SRAM
modules are described in Table 1. We choose supply
voltages for the modules so that the access delay of each
module is equal to or less than 954 [p sec] which is the
read access time for the 4KB scratchpad memory. Note
that the normal and the maximum supply voltages for
the target process technology are 1.80V and 2.50V, re-
spectively. In [21], Panwer et al. showed that cache-tag

access and tag comparison do not need to be performed
for all instruction fetches. Consider an instruction j ex-
ecuted immediately after an instruction i. If i is non-
branch instruction and is not located at the end of the
cache line, it is easy to detect that j resides in the same
cache-way as i. Therefore, there is no need to perform
a tag lookup for instruction j [21,22]. In this case,
only a single cache way has to be activated. We refer to
this case as single-way access. The energy consumption
corresponding to the single-way access is shown in the
third column of TABLE 1. On the other hand, a tag
search operation is required for a non-sequential fetch
such as a branch or a sequential fetch across a cache
line boundary. In this case all cache ways including tag
arrays and data arrays should be activated. We refer to
this access as full-way access. The energy consumption
for the full-way access is shown in the fourth column of
TABLE 1.

Table 1 Specification of SRAM models

Memory Size Supply Single-way Full-way
Voltage access energy access energy

8kB4-way 128-

set cache 1.70V 420.308pJ 2209.34pJ

16kB4-way 256-
set cache 1.80V 573.696pJ 2946.672pJ

4kB scratchpad 1.75V 520.896pJ

8kB scratchpad 2.25V 1381.440pJ

16kB scratchpad 2.50V 2382.240pJ

5.2 Benchmark Program

Three benchmark programs are used in our experiment;
adpcm, compress, JPEG encoder, and MPEG2 encoder.
All of the programs are compiled with ”-O3” option.
The GNU C compiler and debugger for SH3-DSP archi-
tecture are used for generating address traces. The trace
of each benchmark program is one million instructions
long. Table 2 shows the code size in byte and the num-
ber of memory objects for each benchmark program.
The code size is the total size of all memory objects.
The memory objects include functions, global variables
and constants.

5.3 Results of ILP Solution

We use CPLEX, an ILP solver of ILOG, for obtaining
solutions of our ILP problem. The objective of the ILP
formulation is to evaluate the quality of our heuristics
with respect to both computational time and values of

10

Table 2 Specification of benchmark programs

Benchmark Code size # of Memory objects

adpcm 1,380,608byte 48

compress 36,778byte 130

JPEG encoder 138,334byte 427

MPEG2 encoder 133,998byte 477

Table 3 Platform Specification

CPU Memory

Platform1 Intel(R) Xeon(R) CPU 3.0GHz 16GB

Platform2 Intel(R) Xeon(R) CPU 3.0GHz 8GB

objective function. An Intel Xeon quad CPU computer
running Linux at 3GHz with 16GB or 8GB memory is
used for the evaluation as shown in Table3. Platform1 is
used for experiments of compress MPEG2 and JPEG
benchmarks. Platform2 is used for the experiment of
adpcm benchmark.

Figure8, Figure9 and Table4 show results of compress
and adpcm obtained by CPLEX and our heuristics.
ITE and HTE shown in Figure8 and Figure 9 respec-
tively represent the total energy consumption obtained
by CPLEX and that obtained by our heuristic algo-
rithm. IST and HST respectively represent the CPU
time spent for CPLEX and that for our heuristic al-
gorithm. As shown in Figure8 and Figure9, differences
between the energy consumption results obtained by
the ILP solution and those obtained by our heuristics
are negligible. Regarding the CPU time, our heuristics
largely outperforms the ILP solution.

5.4 Result Using Our Heuristics

This subsection focuses on the results of energy con-
sumption and performance of benchmark programs run

0

2

4

6
SPM Cache Logic Off-chip

IT
E

H
T

E

IT
E

H
T

E

IT
E

H
T

E

IT
E

H
T

E

IT
E

H
T

E

IT
E

H
T

E

SPM4KB SPM8KB SPM16KB SPM4KB SPM8KB SPM16KB

4-way set-associative cache

#set:128; cache size 8KB
4-way set-associative cache

#set:256; cache size 16KB

En
er

gy
 c

on
su

m
pt

io
n[

m
J]

Fig. 8 Result of ILP solver and heuristics

on the SH3-DSP processor. Figure 10, 11, and 12 show
the energy consumption and performance results for
compress, JPEG encoder, and MPEG encoder, respec-
tively. Left and right sides of each figure show results
for 16kB and 8kB 4-way caches, respectively. 16kB, 8kB
and 4kB scratchpad memories are examined as well.
Vertical bar charts and straight lines represent the en-
ergy consumption and the number of cycles executed,
respectively. The following five approaches are com-
pared.

– ORG: Given benchmark programs are compiled with
-O3 option. Every functions and data objects resides
in a cacheable region in this case.

– CHE: Locations of functions and data objects are
optimized using the technique proposed in [9,12].
Scratchpad memory is not used in this case.

– SPM: Functions and data objects are relocated to
a scratchpad memory using the technique proposed
in [16].

– CBN: Locations of functions and data objects are
optimized by applying CHE just after applying SPM.

– OUR: Locations of functions and data objects are
optimized by our algorithm presented in Section 4.

As one can see from Figure 10, 11, and 12, the energy
consumption of any program in TABLE 2 optimized
with our approach, OUR, is always the smallest of all.
If we employ a large scratchpad memory on a chip,
the object code optimized with SPM or CBN consumes
higher energy than that optimized with CHE. This is
because the scratchpad memory can be less energy ef-
ficient than the cache memory if the energy per access
for the scratchpad memory is much larger than that for
the cache memory. In this case, CHE outperforms SPM
and CBN in terms of energy consumption. However,
the object code optimized with CHE needs more exe-
cution time than that optimized with SPM or CBN. In

0

2

4

6

8
SPM Cache Logic Off-chip

IT
E

H
T
E

IT
E

H
T
E

IT
E

H
T
E

IT
E

H
T
E

IT
E

H
T
E

IT
E

H
T
E

SPM4KB SPM8KB SPM16KB SPM4KB SPM8KB SPM16KB

4-way set-associative cache

#set:128; cache size 8KB
4-way set-associative cache

#set:256; cache size 16KB

En
er

gy
 c

on
su

m
pt

io
n

[m
J]

Fig. 9 Result of ILP solver and heuristics

11

Cache 4way #set128 4way #set:256

SPM 4KB 8KB 16KB 4KB 8KB 16KB

compress IST [sec] 47.3 120.1 1220.8 44.0 43.3 11711.2

HST [sec] 6.5 56.1 39.6 6.1 18.0 58.7

adpcm IST [sec] 1387.9 1139.2 1622.2 363.5 613.1 471.9
HST [sec] 5.3 13.3 7.8 5.6 8.5 16.0

MPEG2 IST [sec] over 300,000
HST [sec] 177.6 598.8 613.8 163.8 294.3 333.8

JPEG IST [sec] over 300,000
HST [sec] 1268.4 898.9 2108.0 2540.3 1444.9 2474.2

Table 4 The result of Solution Times

many cases, our approach is better than the best result
obtained with the other approaches in terms of both
energy consumption and execution time.

For compress, our approach outperforms on almost
all aspects. For example, for the processor with 8KB 4-
way set-associative cache and 16KB scratchpad memo-
ries, the object code optimized with OUR is 23% smaller
in energy consumption and 2% faster in execution time
compared to CBN. Even if the processor employs smaller
scratchpad memory, our approach works effectively. For
the processor with 8KB 4-way set-associative cache and
4KB scratchpad memories, the object code optimized
with OUR is 10% smaller in energy consumption and
6% faster in execution time compared to CBN. For
JPEG encoder, our approach works well for a proces-

14

15

16

17

18

0

1

2

3

4

5

6

SPM Cache Logic Off-chip time

O
R

G
C

H
E

S
P

M
C

B
N

O
U

R

O
R

G
C

H
E

S
P

M
C

B
N

O
U

R

O
R

G
C

H
E

S
P

M
C

B
N

O
U

R

O
R

G
C

H
E

S
P

M
C

B
N

O
U

R

O
R

G
C

H
E

S
P

M
C

B
N

O
U

R

O
R

G
C

H
E

S
P

M
C

B
N

O
U

R

SPM:4KB SPM:8KB SPM:16KB SPM:4KB SPM:8KB SPM:16KB
4-way set-associative cache

#set=256; cache size=16KB

4-way set-associative cache

#set=128; cache size=8KB

E
n

e
rg

y
 c

o
n

s
u

m
p

ti
o

n
 [

m
J
]

E
x
e

c
u

ti
o

n
 t
im

e
 [

u
s
]

Fig. 10 Result for compress

15.5

16.5

17.5

18.5

0

2

4

6

8

10
SPM Cache Logic Off-chip time

O
R

G
C

H
E

S
P

M
C

B
N

O
U

R

O
R

G
C

H
E

S
P

M
C

B
N

O
U

R

O
R

G
C

H
E

S
P

M
C

B
N

O
U

R

O
R

G
C

H
E

S
P

M
C

B
N

O
U

R

O
R

G
C

H
E

S
P

M
C

B
N

O
U

R

O
R

G
C

H
E

S
P

M
C

B
N

O
U

R

SPM:4KB SPM:8KB SPM:16KB SPM:4KB SPM:8KB SPM:16KB
4-way set-associative cache

#set=256; cache size=16KB

4-way set-associative cache

#set=128; cache size=8KB

E
n

e
rg

y
 c

o
n

s
u

m
p

ti
o

n
 [

m
J
]

E
x
e

c
u

ti
o

n
 t
im

e
 [

u
s
]

Fig. 11 Result for JPEG encoder

12

13

14

15

0

1

2

3

4

5

6

7
SPM Cache Logic Off-chip time

O
R

G
C

H
E

S
P

M
C

B
N

O
U

R

O
R

G
C

H
E

S
P

M
C

B
N

O
U

R

O
R

G
C

H
E

S
P

M
C

B
N

O
U

R

O
R

G
C

H
E

S
P

M
C

B
N

O
U

R

O
R

G
C

H
E

S
P

M
C

B
N

O
U

R

O
R

G
C

H
E

S
P

M
C

B
N

O
U

R

SPM:4KB SPM:8KB SPM:16KB SPM:4KB SPM:8KB SPM:16KB
4-way set-associative cache

#set=256; cache size=16KB

4-way set-associative cache

#set=128; cache size=8KB

E
n

e
rg

y
 c

o
n

s
u

m
p

ti
o

n
 [

m
J
]

E
x
e

c
u

ti
o

n
 t
im

e
 [

u
s
]

Fig. 12 Result for MPEG2 encoder

sor with a 16-KB 4-way set-associative cache. For the
processor with 16KB cache and 16KB scratchpad mem-
ories, the energy consumption can be reduced by 16%
with a 0.6% improvement in execution time compared
with CBN. The results obtained by our approach do not
have obvious improvement for MPEG2 encoder com-
pared to the results obtained by the other approaches.
This is because only a few basic blocks are frequently
executed in this program and these basic blocks can
reside in cache or scratchpad memory in any memory
configuration. However, important observation is that
our approach always minimizes the energy consumption
with only 0.1% performance loss compared to the best
result achieved by the other approaches.

6 Conclusion

In this paper, a code placement problem, its ILP formu-
lation, and a heuristic algorithm for reducing the total
energy consumption of embedded processor systems are
proposed. Our approach exploits a non-cacheable mem-
ory region for an effective use of a cache memory and
as a result, reduces the total energy consumption of a
processor system. Experiments using a commercial em-
bedded processor and an off-chip SDRAM demonstrate
that our algorithm reduces the energy consumption of
the processor system by 23% without any performance

12

loss compared to the best result achieved by the con-
ventional approach. In the other case, the result of our
approach is 10% smaller in energy consumption and 6%
faster in execution time compared to the best result ob-
tained by the conventional approach. Our future work
will be devoted to extend our current algorithm to find
a memory configuration and the best code layout for
them concurrently.

Acknowledgment

This work is supported by VDEC, the Univ. of Tokyo
with the collaboration of Renesas Technology Corp.,
ROHM Co., Ltd., Toppan Printing Co., Ltd., Synopsys,
Inc. and Cadence Design Systems, Inc. This work is also
supported by CREST ULP program of JST and Grant-
in-Aid for Scientific Research (A) 19200004.

References

1. S. Segars, ”Low Power Design Techniques for Microproces-
sors”, ISSCC Tutorial note, Feb., 2001.

2. ARM Ltd., ”ARM Processor Core Overview”,
http://www.arm.com/products/CPUs/

3. J. Montanaro et al., ”A 160 MHz, 32b 0.5W CMOS RISC
Microprocessor”, In Proc. of ISSCC, Feb., 1996.

4. C. Su and A. Despain, ”Cache Design Trade-offs for Power

and Performance Optimization: A Case Study”, In Proc. of
ISLPED, pp.63-68, Aug., 1995.

5. P. Hicks, M. Walnock, and R. M. Owens, ”Analysis of Power
Consumption in Memory Hierarchies”, In Proc. of ISLPED,

pp.239-242, Aug., 1997.

6. Y. Li, and J. Henkel, ”A Framework for Estimating and Min-
imizing Energy Dissipation of Embedded HW/SW Systems”,
In Proc. of DAC, pp.188-193, June, 1998.

7. W. T. Shine, and C. Chacrabarti, ”Memory Exploration for
Low Power, Embedded Systems”, In Proc. of DAC, pp.140-145,
June, 1999.

8. A. Malik, B. Moyer and D. Cermak, ”A Low Power Unified
Cache Architecture Providing Power and Performance Flexibil-
ity”, In Proc. of ISLPED, pp.241-243, July 2000.

9. S. McFarling, ”Program Optimization for Instruction

Caches”, In Proc. of Int’l Conference on Architecture Support
for Programming Languages and Operating Systems, pp.183-
191, April 1989.

10. W. W. Hwu and P. P. Chang, ”Achieving High Instruction

Cache Performance with an Optimizing Compiler”, In Proc. of
ISCA, pp.242-251, May 1989.

11. H. Tomiyama and H. Yasuura, ”Optimal Code Placement of

Embedded Software for Instruction Caches”, In Proc. of Euro-
pean Design and Test Conference, pp.96-101, March, 1996.

12. P. Panda, N. Dutt, and A. Nicolau, ”Memory Organization
for Improved Data Cache Performance in Embedded Proces-

sors”, in Proc. of ISSS, pp.90-95, Nov. 1996.

13. A. H. Hashemi, D. R. Kaeli, and B. Calder, ”Efficient Pro-
cedure Mapping Using Cache Line Coloring”, in Proc. of Pro-
gramming Language Design and Implementation, pp.171-182,

June, 1997.

14. S. Ghosh, M. Martonosi, and S. Malik, ”Cache Miss Equa-
tions: A Compiler Framework for Analyzing and Tuning Mem-

ory Behavior”, ACM Trans. on Programming Languages and
Systems, vol.21, no.4, pp.703-746, July, 1999.

15. R. Banakar, S. Steinke, B.-S. Lee, M. Balakrishnan, and P.

Marwedel, ”Scratchpad Memory : A Design Alternative for
Cache On-Chip Memory in Embedded Systems”, in Proc. of
CODES, pp.73-78, May, 2002

16. S. Stenke, L. Wehmeyer, B. Lee, P Marwedel, ”Assigning

Program and Data Objects to Scratchpad for Energy Reduc-
tion”, in Proc. of DATE, pp.409-415, Mar. 2002.

17. Y. Ishitobi, T. Ishihara, H. Yasuura, ”Code Placement for
Reducing the Energy Consumption of Embedded Processors

with Scratchpad and Cache Memories”, in Proc. of ESTIMedia,
pp.13-18, Mar. 2007.

18. T. L. Johnson, M. C. Merten, and W. W. Hwu, ”Run-Time
Spatial Locality Detection and Optimization”, in Proc. of the

30th Int’l Symposium on Microarchitecture, pp. 57-64, Dec.,
1997.

19. J. A. Rivers and E. S. Davidson, ”Reducing Conflicts in

Direct-Mapped Caches with a Temporality-Based Design”, in
Proc. of the 25th Int’l Conference on Parallel Processing,
pp.154-163, Aug., 1996.

20. ”The Micron System Power Calculator”,

http://www.micron.com/support/designsupport/tools/power
calc/powercalc

21. R. Panwar, and D. Rennels, ”Reducing the Frequency of Tag
Compares for Low Power I-Cache Design”, In Proc. of ISLPED,

pp.57-62, August 1995.
22. M. Mullar, ”Power Efficiency & Low Cost: The ARM6 Fam-

ily”, In Proc. of Hot Chips IV, August 1992.

