
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

ONE-WAY SEQUENTIAL SEARCH SYSTEMS AND THEIR
POWERS

Arikawa, Setsuo
Research Institute of Fundamental Information Science, Kyushu University

https://doi.org/10.5109/13149

出版情報：統計数理研究. 19 (3/4), pp.69-85, 1981-03. Research Association of Statistical
Sciences
バージョン：
権利関係：

ONE-WAY SEQUENTIAL SEARCH SYSTEMS

 AND THEIR POWERS

 By

 Setsuo ARIKAWA*

(Received November 1, 1980)

 Abstract

 One-way sequential search systems based on pattern matching

machines are described. The powers of the systems are evaluated

from a viewpoint of formal language theory. Their applicability to

medical information processing is briefly discussed.

 1. Introduction.

 Sequential searches based on pattern matching have mainly been studied for text
editing and symbol manipulations [1], [2], [3], and have not been understood so

practical for information retrievals, because they, to say the least, require time pro
portional to the length of file to be scanned. However the newly invented techniques
of pattern matching, together with the recent development and diffusion of high-speed
external memory units, are making it possible to apply the sequential searches to some

practical information retrieval systems [4], [5], [6], [7].
 The author, in co-operation with his colleagues, has developed a sequential search

system TEXTIR at Kyushu University and at Edinburgh Western General Hospital in
order to solve the following problems :

 (1) Statistical study on natural languages, particularly on sentence patterns in
 abstracts of scientific documents.

 (2) Study on automatic indexing.

 (3) Development of information system for researchers' use.

 (4) Patient record system for doctors' use.
 (5) Support system for everyday business in laboratories.

 We have constructed three variants of TEXTIR, paying attention to getting an

efficient realization of the pattern matching machines and enlarging the functions as
much as possible without trading the efficiency off to it. They are different in re

trieving powers but have two distinctive features in common :

* Research Institute of Fundamental Information Science
, Kyushu University 33, Fukuoka

 812, Japan

 69

70S. ARIKAWA

 (a) Retrievals of records of the form x, • • • x, • • r3 • • • x4. Every variant of TEXTIR
can retrieve records of that form, where the triple dots • • • mean "some string". The

function is particularly useful for check of some contextual conditions concerning the

order of occurrences of keywords.

 (b) Independence of record formats. Our systems do not assume any definite
formats on records or files to be scanned, but assume the whole file of records as one

very long string of characters. We can freely set up the so called output delimiters
like the usual keywords and can consider strings intervening between a pair of output

delimiters as virtual records.
 In the present paper we shall describe the three variants of TEXTIR and discuss

their powers from viewpoint of formal language theory, and then briefly refer to the

realization of our systems and to their applicability to the medical information processing.

 2. Preliminaries.

 We begin with a simple formalism of records, files and related concepts, and then

give a brief overview of Aho-Corasick's pattern matching machine which plays a key

role in our search systems.

 2.1 Formalism of concepts.

 Let I be an alphabet, that is, a finite nonempty set of characters, I* be the set

of all words or strings over I including the empty word s and I+ be the set I"— .

Then a record is a string in I* and a file is a subset of 1".

 When a file is organized or its elements are collected according to some definite

rules, the set of rules can be taken as a grammar G and the file as a language L(G)

generated by G. Usually the file is a set of collected samples from L(G) which

possibly has infinitely many strings.
 Retrieving some set of records which statisfy a query Q corresponds to making

an intersection L(G)nL(G'), where G' is a grammar defined by the query Q. This

understanding of the concepts will lead us to a new qualitative evaluation of the

powers of one-way sequential search systems.
 The class of grammars for queries is convenient if they have ability to define all

reasonable subsets of L(G) or X. We call a one-way sequential search system R

universal if the class of all languages defined by the system and the queries to it

contains the class of all regular languages, i. e., languages recognized by finite automata.

 2.2. Aho-Corasick machine.

 Aho-Corasick's pattern matching machine is an efficient finite automaton which

runs on text strings and detects all possible occurrences of keywords. Thus their

retrieval system mainly consists of a constructor of the finite automaton from the set

K of keywords and an interpreter which makes the automaton run along the text

strings in I* and detects the keywords in them.

 The constructor is divided into two subsystems—the goto function constructor and

the failure function constructor. We show an example of their machine in Fig. 1,

One-way sequential search systems and their powers71

Fig. 1. A pattern matching machine by Aho-Corasick

where the set of keywords

 K-- {AC, BA, BB, BAA, BACD}

are given in this ordering, the unbroken arrows, circles and lines are constructed by

the goto function constractor, and the broken ones by the failure function constructor.

The machine has been optimized partly and the failure transitions, i. e., the broken

arrows to the state 1 from all the states except the states 1, 6 and 7, should be added.
The double circles mean the states with real outputs indicated by the underlined

strings, and 7 {A, B} under the state 1 means all symbols except A and B. The state

diagram works almost like that of finite automaton or sequential machine. The trans

itions indicated by the broken arrows correspond to the s-moves ; that is, the machine

simply changes its state while holding the head in the same place. The machine
behaves on text strings, say CBAAC as follows :

 text string C B A A

 state1 1 4 5 7 3

 2

 output BA BAA AC

 — The pattern matching machines of this type detect all possible occurrences of keywords

in K by a one-way sequential search. In the example, the keywords BA, BAA and

AC in K are detected in the text string CBAAC by a one-way sequential search from

left to right.

3. TEXTIR and its variants.

TEXTIR (TEXT Information Retrieval system) is a general purpose text infor

72S. AR1KAWA

mation retrieval system based on one-way sequential searches. This section describes

an outline of TEXTIR and its variants.

 3.1. Queries.

 A query to TEXTIR consists of lists of input/output delimiters, keywords and

logical formulae, and some other instructions such as selections of modes and object
files.

 3.1.1 Delimiters.

 TEXTIR makes use of input/output delimiters, which are strings in / assigned

to the variables A, B, ••• , Y. The output delimiters work for marking off some

virtual records from a long text string, while the input delimiters work for telling the

system when to evaluate the logical formulae. The system evaluates the formulae

every time it detects input delimiters. According to a condition at the second output

delimiter it displays the virtual record between the pair of output delimiters. The

work and relation of the input/output delimiters are illustrated in Fig. 2, where u1,

u2, u3 are output delimiters, n1, n2 are input delimiters and r1, r2 are the virtual records.
For example, in the usual retrieving, if the value of a logical formula is equal to 1

(true) at the output delimiter 723, then the system will display the record r2 as a reply
to the query.

 By virtue of these input/output delimiters we can use the system for very com

plicated retrievals if we are familiar with formats peculiar to the object files or text
strings.

 3.1.2 Keywords.

 We can use two kinds of keywords—the usual ones in I+ and ones with some

occurrences of triple dots. The keywords with triple dots such as

 X2 X3 x4

work for defining or detecting virtual records oftheform

 virtual
 , where xl, x2, x3, x4 are the usual keywords in I+ without triple dots ••• as a substring.

Thus the triple dots all together mean "some string" in I*. Hereafter we use a

symbol instead of the triple dots • •• in keywords to avoid a confusion, although we

use them in real retrievals.

 The function of keywords of this type, which is not new in symbol manipulations

[41, is particularly useful for checking some contextual conditions as to the order of
occurrences of keywords in records. For example, it is very difficult and sometimes

impossible for systems without this function to retrieve only the records which contain

Fig. 2. Input/output delimiters

One-way sequential search systems and their powers73

a keyword x followed by a keyword y, but it is quite simple in the case of our

 system ; it is done by a keyword x y.

 The listing of keywords should be done by using variables A, B, ••• , Y issued by

the system. We call the variables A, B, ••• , Y keyword variables.

 3.1.3 Logical f ormulae.

 A logical formula is a usual logical expression which is composed by using keyword

variables A, B, ••• , Y, logical operators --(for 'or'), • (for 'and') and - (for `not'), and
some pairs of brackets [and]. All keyword variables in the formula should be defined

in the preceding keyword listing. The listing of logical formulae is done after the

formula variables Z1, Z2, ••• , Z15 issued by the system.

 The system allows some abbreviations in listing of logical formulae. By a

logical sum of all keyword variables already defined is produced, by a logical

product, and by a negation of sum.
 Examples. Assume that keyword variables A, B, C, D are defined in keyword

listing. Then

 Z1=rAH-B1•[CH-D]

 Z2=-

 Z3=[A+B-1-C]•[--,D1

are examples of logical formulae, where Z2= is equivalent to Z2-=,--[A—B—CH-D].

 3.2. Basic components.
 TEXTIR mainly consists of three components, i. e., query editor, interpreter and

output editor. This section describes their functions.

 Query editor. The query editor receives the input/output delimiters, keywords and
logical formulae from a user's terminal. It successively makes a goto function from

these delimiters and keywords, in the course of which it encodes them into some

positive integers with the properties :

 code (keyword)< code (input delimiter)

 < code (output delimiter) ,

 code (A) < code (B)< ••• < code (Y) ,

where A, B, ••• , Y are variables issued by the system at the stage of listing of deli

miters and keywords, and code (A), for example, means the code for the string assigned

to the variable A. It also makes an output function in a table form

 (os(i), OC(i))i=1, 2,

which means that a string with code oc(i) is to be detected in the state os,i). The

editor makes another array ndot(i) to keep the number n of the substrings in the i-th

keyword listing D=xi. x2° ••• ° xn.

 Then the editor constructs the failure function, and augments and sorts the

output function to complete the pattern matching machine. The logical formuale are

74S. ARIKAW .A

transformed into Polish notations.

 hTterpreter. The interpreter makes the pattern matching machine run along a

designated text string. Let keyword (i, j) be a table to check whether the j-th key

word in the i-th logical formula is detected. Then the interpreter works, using the

code, tables and array, as follows :

 (1) Clear keyword (i, j) by 0 for all i, j.

 (2) Put keyword (i, j)=1 when the j-th keyword in the i-th query is detected.

 (3) Evaluate all the logical formulae in the 'order of Z1, •-• , Zk when an input
 delimiter is detected. Then go to (1).

 (4) Send a virtual record to the output editor as a reply to the i-th query, when
 an output delimiter is detected and if the i-th logical formula Zi is true.

 Then go to (1) unless the text string is exhausted.

 As seen in the algorithm above, TEXTIR processes many queries (up to 15) at a
time. We remark that the order of occurrences of substrings x1, x2, , x„ in a key

word of the form x, x20 ••• 0 x, is also checked by the interpreter, and hence the corre

sponding keyword (i, j) is checked if and only if the substrings x1, x2, ••• , x, , are
marked in this ordering.

 Output editor. The output editor edits the virtual records sent by the interpreter

and displays them.

 3.3 Three variants of TEXTIR.

 Three variants of TEXTIR—system K, system IV and system E have been con

structed. The basic queries and functions mentioned above are all common to these

three systems. This section describes other queries and functions proper to each variant.

 3.3.1 System K.

 The system K is a standard version of TEXTIR, in which the output delimiters

also work as input ones. Hence users can omit the listing of input delimiters if they

want to substitute the output delimiters for input ones. A virtual record intervening

between the last two output delimiters is given as an output to a query with a logical

formula Z, if Z becomes true at some input delimiters between the two output delimiters.

 EXAMPLE 1. Let a text string be

 ••• acaabbaacaaabbaaaada •••

and a query be

 OUTPUT DELIMITER

 A=ac

 B=da

 INPUT DELIMITER

 ab

 KEYWORD

 A=aaaa

 B=ba

One-way sequential search systems and their powers75

 LOGICAL FORMULA

 Zi= A • B

 Z,= A+ B

Then a virtual record aaabbaaaa is obtained as an output for Z1, and two records

aabba and aaabbaaaa are for Z9.

 3.3.2 System W.

 As we shall see in Section 4, the function of the so called triple dots, which is

one of the distinctive features of the system K. is more powerful than the sequential

search system by Aho-Corasick. However K is not yet R-universal. In order to attain

the universality and to enlarge the power much more, we have extended K.

 The extended system TV can restrict the universe I* into some reasonably small

subsets and make use of other variables than the keyword variables. The output

delimiters can work properly.
 Restn:±oiis of universe. Queries in the system K define some subsets of 1*. The

real I is the set of all characters used in computers. Hence it is not small. We some

times want to restrict I into a small subset. Theoretically such a restriction is easy,

but practically it requires a long query. We have realized this retriction in the system

TV by inhibiting the loop transitions in the initial state incuced by 7 {A, B} say.

 The system TV has two retrieval modes {reset, noreset} related to the restriction.
When the noreset mode is selected at the stage of querying and once the loop transition

is taken place, the system ignores all keywords and input delimiters until it finds an

output delimiter. By use of the noreset mode users can restrict I* nearly into H*,

where H is the set of delimiters and keywords and is considerably small. The reset

mode is the same as the implicit mode in the system K.

 Use of formula variables in formulae. In the system TV it is also possible to use

the formula variables Z1, Z2, ••• , Z15 and a special variable @ called svariable in logical

formulae and to indicate some formulae as temporary formula variables. The s

variable Et plays a special role. Its value is true only when the system, leaving the
last output delimiter, is about to start its job and becomes false after the system has

started the searching for keywords. A logical formula ending with a slant/ simply

works for a temporary memory and hence no records are edited for the query corre

sponding to the formula.
 The system evaluates the set of logical formulae in the order of Z1, Z2, ••• , Z15,

whenever it finds an input delimiter, and gives those virtual records between the last

two delimiters as the outputs for the query when it finds an output delimiter and if

the last value of the logical formula corresponding to the query is true.

 The system clears all formula variables in use by Zi :=ivz(i) whenever it finds an
output delimiter. The value ivz(i) is determined at the stage of query editing as follows.

Let Al (=A), A2 (=B), ••• , An, be keyword variables in use and Z1, Z2, • • • , Z,, be for

mula variables in use as well, and let

 Zi=fi (g ; A„ ••• , An ; Z1, ••• , Zm)

for each i. Then the values of ivz are successively determined by

76S. ARIKAWA

 ivz(1) =f1(1 ; 0, • • • , 0; 0, • •• , 0, 0)

 ivz(2) =f2(1; 0, • • • , 0; ivz(1), 0, •• • , 0, 0)

 ivz(772)=f 7,(1 ; 0, • • • , 0 ; ivz(1), .• • , ivz(77/-1), 0) .

 The extended mode of evaluating is automatically adopted if one of the following

conditions is satisfied :

 (1) The E-variable @ is used in some formulae.

 (2) There are some formulae Z,=f, in which a formula variable z, with j�i is
 used.

 If none of them is satisfied, the system IV works just like the system K. Hence

a query such as
 Zi—fi (A1, A2, ••• , An)

in the system K is equivalent to a query

 zi=zi+fi (A1, A2, ••• , An)

in system W. Hence the value of Zi in the righthand term at time t is one at time

t —1 and hence the variable works also as a memory. On the other hand, in a formula

such as
 Zi=Zi±f; (i<j)

the variable Zi does not work as a memory.

 EXAMPLE 2. The query to patient records illustrated in the finite state grammar
in Fig. 3 is realized as follows. First, select noreset mode and omit the listing of

output delimiters.

 INPUT DELIMITER

 A= b (a blank)

 KEYWORD

 A= TREAT
 B=BLEEDING

 C=LEFT

 D=RIGHT

 E=EXAM

 S4
 TREATb

EXAMbBLEEDINGb

 RIGHTb

 01111111=i0 LEFTb

 RIGHTb

Fig. 3. Finite state grammar (by A. G. Hill)

One-way sequential search systems and their powers77

 LOGICAL FORMULA
 •B

 • D/
 Z3=Z4• Z5I

 Z4=-Z5.
 Z5—Z2/

Then the query corresponding to Z, realizes the grammar in Fig. 3.

 3.3.3 System E.
 The system E which is a final version of TEXTIR, is obtained from the system

W by introducing several counters and by enlarging the operators in logical formulae.
The counters are realized only by substituting keyword (1, j) : =keyword (i, j)±1 and
Z: =Z+1 for keyword (1, j): =1 and Z: =1, respectively, and hence they count how
often a keyword is detected in between a pair of input delimiters and how often a
logical formula is satisfied in between a pair of output delimiters.

 A logical formula in the system E is composed by using the keyword variables,
formula variables and e-variable et, integers, logical operators (, comparison
operators (=, <=, > =, <, >, < >), arithmetic operators (+, *, /), and brackets

,]. The precedence and the meaning of these operators are given in Fig. 4.
 In the system E a variable a is considered to be true if a>0, and hence a logical

formula Z is satisfied if Z> O. The logical operators are interpreted as follows :

 a, j3=1 if a>0 or j3>0,

 a-13=1 if a>0 and /3>0,

 r•-•a=1 if a�0

operator precedence meaning

*1

/1arithmetic
+2operators
—2

=3

<=3

> =3>comparison

<3operators
>3

<>3#

 r....,4not logical

 5and operators

 6or

 Fig. 4. Operators in system E

78S. ARIKANN A

 EXAMPLE 3. Let a text string be

 dabdaaabbbdaaaabbbbaaaad ,

and select noreset mode. Then consider the following queries :

 OUTPUT DELIMITER

 A=d

 INPUT DELIMITER

 A= d

 KEYWORD

 _4= a
 B=b

 C=ba

 D=a0b. a

 E=boaob

 LOGICAL FORMULA

 Z1=[A=B1•[--,C1

 Z,=[A=2*/31•D•[--,E1

By a query Z1 two virtual records ab and aaabbb are retrieved, and by Z, a virtual
record aaaabbbbaaact is retrieved.

 4. Powers of the systems.

 In this section we consider the retrieving powers of the three variants of TEXTIR

as well as Aho-Corasick system from a formal language theoretic viewpoint. The Aho

Corasick system A is also taken as a variant of our TEXTIR, although it has no

function of the triple dots and the delimiters. These systems can define many languages

by various queries when we take files as I*. To make our discussion clearer we

refer to an interpretation of these systems and queries.

 A keyword assignment A= x in the system K as well as the system A can naturally

be taken as a definition of a language

11A = x II f*xf*.

 The interpretation can be extended to all formulae in the system K. A formula

assignment Z=f(ai, a2, ••• , an), where a, are variables, defines a language

 1121= a2, ••• , an)II

by the following interpretation :

 A similar interpretation is also valid in the other systems W and E. Hence let S

One-way sequential search systems and their powers79

be a system of the four, Z be a possible query, i. e., a logical formula, in the system

 and let L(Z IS) be a language

 L(Z S)= .

 Let CA(X), CK(E), Cw(f) and CE(T) be the classes of languages over I defined in

the systems A, K, IF and E, respectively, and by all possible queries, e. g.

 CK(f)= {L(Z K); Z} ,

and let CR(X) be the class of regular languages over I.

 REMARK. In this section for the sake of simplicity, we assume that output deli

miters are not in I* and release the restrictions on the length and the number of

.keywords, delimiters and formulae. As a matter of course they must be finite.
 THEOREM 1.

 (1)CA(27)=CK(f) CE(,27) if :(27)=1

 (2)CA(.17)=C„(I)--ill-C„-(f)CE(27)if (I)>1.

 PROOF. From the definitions of the systems it is clear that

 CA(/)_CK(/)_C-Cw(f)--CE(f)

for any I.
,(1) In case #(/)=1 , clearly

 Xi° ••• ••• ••• xn)

Hence

 CA(I)=-CK(f)•

Let us show that a language Li=(aa)* is not in CA({a}) . Suppose L1 is in CA({a})
and a query Z=f(Ai, A2, ••• , An) with a list of keywords Ai= arl= aa ••• a ;7-, times),

A2=ar2, • •• , An= am defines L, in the system A, i. e.,

 L(Z I A)=(a a)* .

 The formula can be written in a sum-of-products form

 Z=f(A„ •-• , An)=E ,

where eii=0 or 1 for which A7=,--Ai and A1=Ai. If eij=0, then

 Ay; •-• AV7,11)�ri,

because
 ••• A5i; •••APTilIC_IJA°,1!=-a*HIM

Hence there is at least one term

 A7:k1 ••• AV?7,

with ekj=1 for all j. Then we have

 am' ("'–'9-n)11

 — ama. a*

80S. ARucA\vA

and we have

 am, am-"elh-le,ki ••• A7e,1,7,1 L(Z/A)

for all 77l>_max ••• , in), which is a contradiction. Hence L1 is not in CA({a}).

(2) First let us show that CA(2')--C/c(f) for I= {a, To show this we prove that
a language

 L2=f*af *al*

is in CA-(I) but not in CA(X). Clearly L2GCK(I), since L2=L(Z/K) for Z=A with

A=a.a. Now suppose L2e CA(I) and a query Z=f(Ai, A2, An) with a listing of

keywords (1�i___n) defines L2 in the system A. The logical formula Z can be

written again in a sum-of-products form

 Z=f(A1, A2, • • • An)=E ACii.AP2 ••• Are,in .

We may assume without any loss of generality that

 ••• A7eiin�c5

for all i. Without losing generality we may assume that A1, ••• , A, are variables to

each of which a keyword with at most one a is assigned and A,, •-• , An are vari

ables to each of which a keyword with at least two a's is assigned. Suppose abk a
E II S II for a sufficiently large k and a term S. Then all variables Ar+i, ••• , An should

be negative in S. Since

 bkabkEl'iA1•-• A, II and bkabkEIT--Ar+ii ••• ,
we have

 bkabkE I A) ,

which is impossible. This completes the proof that L2 is not in CA(X). By (a a)*
EECA({a})=CK({a}) in the proof (1) and by Theorem 4 below, obviously CK(f)#Civ(I).

The relation Cw(i)#CE(T) follows from Theorem 4 and Example 3. In fact,

 VA= {eV' ; n�l} ,

 IlZ211= {anbnan ; n.1}

which are not regular and hence not in Cw(E). ^

 From Theorem 1 we immediately have the following :

 COROLLARY 2. The function of triple dots in the system K is independent of the

logical operators.
 THEOREM 3. Let Q1)(E) be the class of all languages over I each of which is

defined in the system K by a query with at most n uses of tri/le dots in one keyword.

Then for I with #(2')>1,

 CA(E)=Ck)(27)CEE)C2)(E) •-•

 PROOF. By a discussion analogous to the proof of (2) of Theorem 1, we can prove
that a language ••• a II (n times) is in CWI)(f) but not in U-1)(2'). ^

 THOREM 4.

 Cw(X)=CR(X) for any I .

One-way sequential search systems and their powers81

 PROOF. From the definition of the system TV, obviously Cw(T)CCR(I). Hence it

suffices to show that every finite automaton can be realized in the system TV. Let

M=(S, 6, s1, F) be a finite automaton. We define a query in TV in which L(AI) is

defined. Let S-={s1, s2, ••• , sm}, 27= {a1, a2, ••• , an} and A1(=A), --12(=B), ••• , An be

keyword variables. Set al, a2, •••, a„ as input delimiters and assign ai to each keyword

variable by _-1,= a i, and make the logical formulae as follows :

 Z1= E ArZ,k+C(/
 k):5(sk,ap=s1

 Zi= A,• Zni. k (1< in)
 (j. k):5(sk.a .);=s1

 Z2777+1= E Zi •
 siEF

The system evaluates in succession the series of logical formulae from Zi to Z277,,

each time it finds an input delimiter and the formula variables on the right work as
memories, their values being ones at the last evaluations, and so we can easily verify

that
 L(Z2.+11W)= L(A1) . ^

 EXAMPLE 4. In the above proof we have used plenty of formula variables for the

sake of simplicity. We can reduce the variables nearly down to 3/4 of them. We

give an example for a finite automaton in Fig. 5. Let a, b be input delimiters and
A= a, B=b be a list of keywords, and then make logical formulae as follows :

 Z1=[2.2• A]+EZ,• B1--Fg1

 Z2=Z4•[A+B]l

 Z3=[Z3•,41+EZ5• /31

 Z4=41

 Z5=Z2/

Then we have L(Z3/W)=L(M).

 Theorem 4 asserts that the system W and hence the system E are R-universal,

and applicable to a syntax checker of finite state languages.
 As we have just seen in the proof of Theorem 1, the system E is so powerful

that it defines context-sensitive languages such as lanbnan; n�1.1. Since the series of

logical formulae are evaluated within t(n) steps, the system E finishes its retrieving

within t(n)• n steps, where n is the length of a virtual record and t is a primitive

recursive function of n. Hence we have the following theorem :

 THEOREM 5. The class CE(X) is properly contained in the class of recursive sets

over f.

82S. ARIKA\VA

Fig. 5. Finite automaton M

 5. Implementations.

 The systems K and E have been realized in a small scale computer PANAFACOM

U-400, and FACOM M200 in Fortran at Kyushu University, and the system IF in GEC

2050 in Coral 66 at Western General Hospital. This section briefly describes how the

transition tables of pattern matching machines and the triple dots processor have been

realized in these computers.

 5.1 Transition tables.

 The transition diagram such as in Fig. 1 is realized in an array of size 3,:n if

Aho-Corasick's algorithm is directly applied, where a is nearly equal to the number of

states in a transition diagram. We have decreased the size to 2 a by deleting the

row of goto function. The deleted goto function is easily recovered by a simple

function goto (k)= k +1 for any state k. The original algorithm needs another big

array as a working space at the stage of constructing failure function. We have

deleted this working space while keeping the program in the same size and in nearly
the same speed. And keeping the transition table in the same size, we have also

deleted the redundant transitions as many as possible. Fig. 6 illustrates how the trans

ition table of the pattern matching machine in Fig. 1 is constructed. In Fig. 6 the

strings of symbols beside the double arrows show the current inputs to the constructor,

and the 0's in the rows of failure function indicate real transitions to state 1, while l's

indicate transitions to state 1 by the e-moves.

 5.2 Triple dots processing.

 In principle it is possible to construct directly finite automaton which accepts a

language defined by x1. •-• oxn, but it forces us to abandon our present approach and
to build a new theory. The directly constructed finite automaton will use many states.

Hence we have adopted a method of marking the order of occurrences of sub-keywords

x1, x2, • •• xn at the stage of retrieving by the interpreter.

 The interpreter memorizes the largest number j of the sub-keywords in the key

word x1ox2. •••, ox,, that have already occurred. This works for avoiding twice or

more checking of the occurrences of such sub-keywords in the same keyword with

triple dots However, the interpreter still works too sensitively, because the pattern

One-way sequential search systems and their powers83

 AC
'state' 1 2 3

input A C V
failure

 BA
'state' 1 2 3 4 5 6

input A C V B A V
failure 4

 ‘U,BB
`state' 1 2 3 4 5 6 7 8

input A C V B A V B V
failure 47

 BAA (Insert 'A')
`state' 1 2 3 4 5 6 7 8 9

input IA C V B A A V B V
failure 48

 ,U,BACD
`state' 1 2 3 4 5 6 7 8 9 10 11 12

input A C V B A A V B V C D V
failure 48 10

 (Complete the failure function)
`state' 1 2 3 4 5 6 7 8 9 10 11 12

input A C V B A A V B V C D V
failure 4 1 1 0 8 10 2 1 5 2 3 1

 (Optimize the transition table)
`state' 1 2 3 4 5 6 7 8 9 10 11 12

input AC V B A A V B V C D V
failure 4 1 1 0 8 10 2 0 5 4 1 1

 Fig. 6. Construction of transition table

matching machine finds out all possible occurrences of (sub-) keywords . For example
the keyword variable A with an assignment A=aaoaa is already marked when the

system reads the third occurrence of 'a' in a text aaaa. Hence strictly speaking , our
triple dots define another combination J instead of 0. It is easy to show the following

fact :
 PROPOSITION 6.

 (1) xdymxoy iff there are no x1, u, s), v, w(#s) such that

 x=xiu & y=uy1 or y=vxw

 (2) x(1 4x(2)4... jx(x)4x4),_,-___-xoy

84S. ARIKAWA

where x(i) is the i-th symbol in x and denotes the length of x, and reads "works

equivalently".

 In accordance with this proposition we have added a procedure to check the con

dition (1), and to produce the left-hand expression of (2) if the condition (1) holds.

Thus the assignment above is automatically replaced by .4=aLlaJaaiaa.

 6. Discussion.

 At Western General Hospital, a formal grammar for diabetic records has been

developed and a syntax checker of records written in the grammar has also been

developed. The records have been stored after syntax checking by the checker. The

direct motive of realizihg the system TV at the hospital was to support the patient

record system and to supply a preliminary system of the records to doctors. In this

section we briefly discuss a characteristic of patient record systems and an applicability

of our systems to such systems.

 Compared with other information systems such as document retrieval systems,

the patient record system has the following specific features :

 (1) Records should be valid and exact. In general, medical data should be stored
after some careful checking of validity.

 (2) Indexing of records is difficult and nearly meaningless. Since the records are
written in some fixed medical terms, they look quite similar to each other and almost
all terms are used for almost all records. Hence the usual indexing will prove meaning

less and redundant. However, fortunately, doctors' interest will naturally control the

file of records to an appropriate amount for the sequential searches.

 (3) Each record will increase the items each time a patient has an examination
and a treatment. The order of items in a particular record is specially significant.

The record is to be taken as a history of the patient concerning his examinations and

treatments. In this sense the record is a kind of time series of patterns by strings of

symbols.

 (4) Users of the information system are not always familiar with the specification
of the system. Some grammar for presenters of data should be given in the form not

so far away from natural language, and the question-answering should easily be under

standable. On the other hand, by analysis of several queries of doctors to the patient

record system, we can summarize their requests on the system as follows :

 (a) To see an individual patient record. That is to find out an appropriate segment
 out of one record, to read the n-th examination or treatment in one record

 for the next treatment and to see some other personal data necessary for the

 treatment.

 (b) To find out all records which satisfy some conditions or have some properties.
 (c) To make statistics on their patients, e. g., to make tables and to draw figures.

 (d) To organize sets of records under some criteria, classifications or viewpoints.
Here we should note that patient records range from 50 to more than 1000 in length.

Hence it will not be so easy for doctors to find out particular places of records unless

they use any mechanized system. The requests in (a) will be satisfied by a sequential

One-way sequential search systems and their powers85

search systems such as the systems TV and E, and so will be the requests (b) and (c).

The request (d) will be satisfied by a kind of MIR-RF system. The notion of tree

representation and organization of concepts in that system will be valid for the patient

record system.

 Acknowledgements

 The main part of this work was done while the author was visiting Machine

Intelligence Research Unit, University of Edinburgh and working at Edinburgh Western

General Hospital supported by the Japan Society of Promotion of Science. The author

should like to express his sincere thanks to Prof. D. Michie, Dr. H. R. A. Townsend

and Dr. A. G. Hill for their advice, discussion and encouragement. He is also grateful

to Dr. S. Takeya and Mr. S. Miyano for the constant co-operation.

 Ref erences

 1 _ Km :Tx, D. E., MORRIS, J. H. JR. and PRATT, V. R.: Fast pattern matching in strings, TR
 CS-74-440, Stanford Univ., (1974).

[2 _ AHo, A. V., HOPCROFT, J. E. and ULLMAN, J. D.: The design and analysis of computer
 algorithms, Addison-Wesley, (1974).

[3 [FARBER, D. J., GRISWOLD, R. E. and POLONSKY, I. P.: SNOBOL, A string manipulation
 language, J. ACM 11, (1964), 21-30.

[4 AHo, A. V. and CORASICK, M. J.: Efficient string matching : An aid to bibliographic search,
 C. ACM 18, (1975), 333-340.

[5 ARIKAWA, S., TAKEYA, S. and ISHIBASHI, M.: On an information retrieval system using
 pattern matching machines, Proc. Japan Inf. Processing Soc., (1976) , 253-254 (Japanese).

E 6 j BOYER, R. S. and MOORE, J. S.: A fast string search algorithm, C. ACM 20, (1977) , 762-772.
[7] KANIBAYASHI, Y., NAKATSU, N. and YAJIMA, S.: Hierarchical pattern matching algori

 thms for strings, Trans. Inst. Electronics and Communication Engineers of Japan, J62-D,

 (1979), 341-347 (Japanese).
 8 [TAKEYA, S. and ARIKAWA, S.: TEXTIR—A text information retrieval system using

 pattern matching machines, Res. Rept. Res. Inst. Fund. Inform. Sci. Kyushu Univ., 83,
 (1978) , 1-16.

E ARIKAWA, S., HILL, A. G. and TOW NSEND, H. R. A.: An information retrieval system
 based on one-way sequential searches, Report at MIRU, Univ. of Edinburgh (1978, un

 published) .
L10: ARIKAWA, S.: A one-way sequential search system and its applicability to medical infor

 mation processing, Proc. 13th Hawaii International Conference of System Sciences, vol. 3,
 (1980).

L11[ARIKAWA, S. and KITAGAWA, T.: Multistage information retrieval system based upon
 researcher files, Proc. 2nd USA-Japan Comp. Conf., (1975), 149-153, and also in Res. Rept.

 Res. Inst. Fund. Inform. Sci., Kyushu Univ. 51, (1975), 1-34.

