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                    Abstract 

   Rank statistics to test the null hypothesis that X and Y are 
conditionally, given Z, independent are given and their asymptotic 

properties are investigated under the model (X, Y, Z) =  (U+  anW, 
V-FbnW,W) where (U, V) and W are independent. It is shown that 
linear rank tests given by (X, Y) based on the random sample of 
size n are asymptotically distribution-free when (an,bn)=n-'12(a,b). 
It is also shown that Spearman's coefficient of rank correlation and 

Kendall's coefficient of rank correlation given by (X—czZ, Y—oZ) 
are asymptotically distribution-free when (an,bn)=(a,b) where 

(a,b)is some consistent estimator of (a,b).

   1. Introduction 

   Let (Xi, Yi, Zi), 1=-1, 2, ••• , n be a random sample of size n. Suppose we want 

to investigate the association between X and Y. When the hypothesis that X and Y 
are independent is rejected, can we say that X and Y are really correlated ? This is 
not necessarily true since X and Y may be correlated only through the third variable 
Z. For example, the number of vocabulary of a child and his height are heavily 
correlated, but they clearly depend on his age. Thus, we need to consider the problem 
of testing the null hypothesis "H; X and Y are conditionally, given Z, independent of 
each other". When H is rejected, it can be said that X and Y are associated truely. 

   If (X, Y, Z) is normally distributed, it is enough to consider the partial correlation 
coefficient. 

(1.1)r„.,--=-(r„—rxzryz)/{(1—rL)(1—rMI 1/2, 

see Anderson [1], where rx, is the sample correlation coefficient of X and Y and rx, 
and 7-5, are defined similarly. However, if the distribution is unknown, we need dis
tribution-free or at least asymptotically distribution-free procedures to test H.
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   Kendall  [8] proposed a rank analogue Txy.z of (1.1) with using Kendall's rank 

correlation coefficient. Moran [10], Hoflund [6] and Maghsoodloo [9] investigated its 

null properties in the case that all possible sets of rankings are equally probable and 

Johnson [7] considered non-null properties. However, many of the works are concerned 
only the case that X, Y and Z are independent and is a proper subhypothesis of H. 

From Hoeffding [5], the asymptotic null variance of z-xy., depends on the distribution 

even under H and hence •xy., is not asymptotically distribution-free. It is very difficult 

to standardize 7:xy., with an estimator of the variance. 

   Exactly or asymptotically distribution-free procedures will not be constructed with

out assumptions on the model of (X, Y, Z). 
   Let us consider the model that (Xi, Yi, Zi)'s satisfy 

(1.2)(Xi, Yi, Zi)-=(Ui+anWi, Vi+bniVi, Wi) i=1, 2, ••• n 

where (U, V) and IV are independent. The model (1.2) is a slight generalization of 

Shirahata [14] in which it is assumed that 

(1.3)(U, V)=-(U*, V*-FcU*) 

where U* and V* are indpendent. In the model (1.2) the influences of Z to X and Y 

are supposed to be linear and we may consider the null hypothesis "H' ; U and V are 

independent of each other". In this paper, asymptotically distribution-free tests of II' 

based on ranks are considered when the nuisance parameters satisfy (an, bn)=n-1/2(a, b) 

or (an, bn.)=(a, b) for arbitrary but fixed constants a and b. 
   Let Rix, QiY, RiU and Qiv be the ranks of Xi, Yi, Ui and Vi among X's, Y's, U's 

and V's, respectively. Let an(i) and bn(i) for i=1, 2, ••• , n be given constants and 
consider the linear rank statistics 

(1.4)                         Snxy= E an(Rix)bn(Qiy) 

and the random variable 

(1.5)Snuv= an(Riu)b.(Qiv) • 

In Section 2 the asymptotic equivalence of Snxy and Snuv is proved when (an, b.) 
=n---112(a,         b). The random variable Snuv can not be observed but its asymptotic dis

tributions are known and normal under some regularity conditions and yet it is exactly 
distribution-free under H'. Hence Snxy which is usually adopted to test the independ

ence of X and Y can be used as an asymptotically distribution-free test of H under 

(1.2) with (an, bn)=n-"2(a, b). 
   In Section 3 the case (an, bn)=(a, b) is considered. In this case Snxy and Snuv 

are not equivalent even in the asymptotic sense. Let (a, b) be a consistent estimator 

of (a, b) with order n-112 and consider (Xt, 171)=--(Xi— Yi—bZi). Denote by R1:1 

and Qv the rank of Xt and Kt among X*'s and Y*'s, respectively. Put 

                                                           n (1.6)S;`,xy=E a n(Rtx)b.((gy) •
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From the result in Section 2, it can be conjectured that  S'7.7xy and Snuv are asymptoti

cally equivalent. Unfortunately we can not prove this for general a n(i) and bn(i) but 

the conjecture is found to be true in the Spearman's rank correlation case a n(i)= bn(i) 
=i. The equivalence also holds in the Kendall's rank correlation case although it is 

not a linear rank statistic. 
   In Section 4, the asymptotic relative efficiency of the Spearman's rank correlation 

case in (1.6) with respect to the usual partial correlation coefficient given by (1.1) is 

calculated under (1.3). It is found that the efficiency is the same with that of Spear

man's rank correlation with the usual correlation coefficient in the test of independence 

in the bivariate model (1.3).

   2. Asymptotic equivalence of Snxy and Snuv when (an, bn)=n-1"(a, b) 

   Let us denote the model (1.2) by Ain(a, b) when (an, bn)=72,-"2(a, b). Denote, 

furthermore, by H(u, v), F(u) and G(v) the distribution functions of (U, V), U and V, 

respectively. Put J 7,(s)= a n(i) and Kn(s)=bn(i) for (i-1)/n < s�iln. The step functions 

Jn and K, are assumed to satisfy 
   ASSUNIPTION 2.1. There exist functions J(s) and K(s) such that 

                  lim Jn(s)=J(s) and lim Kn(s)=K(s) 
                                                                              n-00 

for almost everywhere s in the unit interval (0, 1). 
   Bhuchongkul [2] and Ruymgaart, Shorack and van Zwet [12] showed the asympto

tic normality 

(2.1)n-112(Snuv—np)---> dN(0, )22) 

under suitable conditions where 

                    p=.C.CJ(F)K(G)dH 
and 

     )22=Var {J(F(U))K(G(V))+Pu—FT(F)K(G)dH± .C.C(Ov—G)J(F)K'(G)dill 
for OX(Y)= 71(Y 1 or 0 according as y—x�0 or y— x < O. Therefore, the asympto

tic distribution of Srny is independent of (a, b) and hence the test of H' based on 

Snxy is asymptotically distribution-free provided Snxy and Snuy are asymptotically 
equivalent. To show the equivalence, we need the following assumptions. 

   ASSUMPTION 2.2. H(u, v) has a density function h(u, v) such that there exist 

            h1(u, v)=(a/au)h(u, v) and 112(u, v)=(a/av)h(u, v) 

and furthermore h, and h, satisfy 

         1‘1`(u, v)/h(u, v)dudv<00 and .C.CQ(u, v)/h(u, v)dudv<co 
   ASSUMPTION 2.3. The variance of W is finite.
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   The result of this section is the following 
   THEOREM 2.1. If Assumptions 2.1-2.3 hold and (F, G, H,  J,  , K„, J, K) satisfies the 

assumptions of Theorem 2.1 of Ruymgaart, Shorack and van Zwet [12], then Snxy and 
Snuv are asymptotically equivalent in probability and the convergence 

(2.2)n'"(Snxy—np)---> d1V(0. 722) 

holds under Mn(a, b) for arbitrary but fixed (a, b). 
   PROOF. It sufficies to show that n-1"(Snxv—Snuv) converges to zero in probability 

since Snuv enjoys the convergence (2.1). Clearly 

                            P(ISnxy—Snuvl�0)=-0 

under Mn,(0, 0) and hence it sufficies to show that Mn(a, b) is contiguous to A/n(0, 0) 
for any (a, b). The proof of the contiguity follows the usual method of Hajek and 

Sidak [4]. 
   Define 

           log Ln=log likelihood ratio of Mn(a, b) to M7,(0, 0) 

                 = log {h(Xi—anZi, Yi—bnZi)lh(Xi, Yi)} , 
                                    i=i 

               Wn=2 {(h(Xi—anZi, Yi—b,,Zi)/h(Xi, Yi))112-11 
                                      i=1 

and 

               T„-=—(anZihi(Xi, Yi)±bnZih2(Xi, Yi))/h(Xi, Yi) . 
                                        i=i 

Put 
             62=E(W2)E[{(ah1(U, V)+bh2(U, V))/h(U, V)12] 

Using Le Cam's second lemma in [4] and the asymptotic normality of T,,, the result 

will follow from the following two lemmas. 

   LEMMA 2.1. If Assumptions 2.2 and 2.3 hold, then 

(2.3)lim E0(W.)= o-2/4 
                                                         n—os 

Here the sign Eo denote the expectation under M7,(0, 0). 

   PROOF. Denote by M(z) the distribution function of Z=W. Then 

(2.4)E0(147n)=—n(h112(x, y)—h112(x—anz, y—b„z))2dxdydM(z). 

Put s(x, y)=h112(x, y). Then (2.4) is 

               s(x,y—bnz)  12 
(2.5)dxdydM(z). 

The function in the integrand (2.5) converges to 

                    (azh1(x, y)+bzh2(x, y))2/4h(x, y).
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Furthermore, (2.5) is, after changing the sign, 

              ,Cri'"-{on-1/2(a/.3t)s(x— az t, y—bzt)dt}dxdyd_11(z) 
                                   n1/2 (2.6)�n1/2H ((a/at)s(x—azt, y—bzt))2dtdxdyd111(z). 

                                  0 Noting that 

      (a/at)s(x—azt, y—bzt)=—Iazhi(x—azt, y—bzt)--1--bzh2(x—azt. y—bz1)) 

                             /2h1/2(x—azt, y—bzt), 
(2.6) is 

             E(Z2)(ahi(x, y)+bh2(x, y))2/4h(x, y)dxdy=0-2/4. 

Hence from the convergence theorem II 4.2 of [4], (2.3) follows. 

   LEMMA 2.2. Under the same assumptions in Lemma 2.1, it holds that 

(2.7)lirn Varo(Tn—W,,)=0 . 
                                                      n-00 

    PROOF. We have 

         Varo(Tn—Wn)-nE0{(2s(X—anZ, Y—bi,Z)/s(X, Y)-2-+(a ,Zh,(X, Y) 

                   +5,,Zh2(X, Y))/h(X, IT))2} 

                      =4.q s(x—anz, y—b„z)—s(x, y)                                                                 n-1/2 

                      azh1(x, y)+bzh2(x. Y)  12dxdydAl(z). 
                            2s(x, y) 

From the process of the proof of Lemma 2.1 and the convergence theorem VI.3 of [4], 

(2.7) follows. 
   The theorem is also true for discontinuous J and K with modifying the variance 

when the conditions of [12] are replaced with that of Ruymgaart [11] or Shirahata 

[13]. This is because they are used to ensure only the asymptotic normality of Snuv 
and the contiguity is guaranteed by Assumptions 2.2 and 2.3.

   3. Asymptotic properties of Spearman rank correlation and Kendall rank cor

relation given by (X*, Y*) when (an, bn)=(a, b) 

   From the result of the previous section we can use Snxy as an asymptotically 

distribution-free test of H' in the model (1.2) if (an, b,,)=n-"2(a, b). However, when an 

and b,, are fixed, the asymptotic distribution of Snxy depends on (an, bn)=(a, b) even 

under H' and the test is not asymptotically distribution-free. To correct this defect, 

let us consider S'7,xy given by (1.6). Many estimators used to estimate (a, b) are con
sistent with order n-112. Therefore it can be conjectured from theorem 2.1 that SI; XI' 

is asymptotically equivalent to Snuv under some regularity conditions. The test based
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on  Stxy in the Spearman's rank correlation case 

(3.1) R4ixQ*cy                                                                i=1 

together with the test based on Kendall's rank correlation 

(3.2)S',21(K= EE sgn(Rtx—RIX)sgn(Viy—Q.1(y) 
                                   i�j 

was proposed in Shirahata [14]. The estimator 

(3.3) (d, b)=( Xi(Zi-7)/ (Z1-7)2,(Zi—Z)2) 
            i=ii=ii=i 

was adopted and some simulation results were given in [14]. The simulation results 

were fairly satisfactory but the proofs were not given. Here, let us show that Sts 
and .S'Tic are asymptotically equivalent to 

(3.4)Sns-= RiUQiV                                                                     i=i 

and 

(3.5)S„K= EE sg7z(Riu— Riu)sgn(Q iv— Qiv) 

respectively. 

   We need the following assumptions. 

   ASSUMPTION 3.1. There exists a consistent estimator (a, b) of (a, 5) with order 

n-"z such that (a, b) is symmetric with respect to (Xi, Yi, Zi)'s. 

   ASSUMPTION 3.2. The estimator (a, b) satisfies that Ei(n112(11—a))81 and 

E {(n1I2(b—b))81 are bounded. 

   ASSUMPTION 3.3. The estimator (a, b) satisfies that El(n112(61—a))41 and 

E {(71,112(b—b))41 are bounded. 
   ASSUMPTION 3.4. U and V have respective density functions f(u) and g(v) such 

that they are boundedly first differentiable. 
   ASSUMPTION 3.5. The distribution function of (U, V) is boundedly twice partially 

differentiable. 

   ASSUMPTION 3.6. E(W4)<cc. 

   ASSUMPTION 3.7. E(TV2)<00. 

   ASSUMPTION 3.8. Let (Elk, bk) be the estimator given by (Xi, Yi, Z1), i=k+-1, •-• , n. 
Then for any fixed k 

   ( ) ak—d=-0,(n') and bk—b=0p(n-1), 

   ( ii) For any event N which is concerning to d, a k and (Ui, Vi, Wi), 1=1, ••• , k —1 
and random variable I symmetric around the origin given by (Ui, Vi, Wi), 1=1, ••• , k-1, 
it holds that 

(3.6)P(N, bk—b<1. <b—b)— P(N, b—b<I <bk—b)=o(n'). 

   (iii) The same fact as in (ii) holds with replacing (a, ak) and (b, bk) with (b, bk) 
and (a, ak), respectively.
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   Assumption 3.8(i) is a natural one for an estimator. The estimator (3.3) satisfies 
it if E(U2),  E(V2) and E(W2) are finite. Assumption 3.8 (ii) and (iii) are rather techni

cal and are very hard to check. However, considering the fact that each term in 

(3.6) is 0(n-1), it is not so curious. 
   The results in this section are the following theorems. 

   THEOREM 3.1. When the model (1.2) is satisfied with (an, bn)=-(a, b) and Assump

tions 3.1, 3.2, 3.4, 3.6 and 3.8 hold, then St s and Sns given by (3.1) and (3.4), respectively 

are asymptotically equivalent in probability. More precisely, it holds that 

(3.7)lim n'E {(S),K,s— S7,3)2}=0 . 
                                            n— 

   THEOREM 3.2. When the model (1.2) is satisfied with (an, bn)=(a, b) and Assump
tions 3.1, 3.3, 3.5, 3.7 and 3.8 hold, then S;',K and Snic given by (3.2) and (3.5), respec

tively are asymptotically equivalent in probability. More precisely, it holds that 

(3.8)lim n-3E {(S,K—S,,K)2} =0 . 

   PROOF of the theorems. The proof of (3.8) is very similar to that of (3.7) and 

hence we shall prove only (3.7). It is easy to show that 

{3.9) n-5E {(Sns— •S.'g 5)2} E {(R1u— x)2-F(C) QTY)21 

                         + n-1(n —1)E 1(1? luC) RtxQty)(R2uQ 2v — R).,I-V:1-)1 • 
Now 

             R1u—Rtx= fit(Ui—Lli)—u(Ui—Ui+(a-11)(Wi—Wa 

                            Ai , say, 
                                             1=1 

where u(x)=1 or 0 according as x�0 or x <O. Thus, 

             E {(R1u— x)2} n2 E(AD 

(3.10)-= n2 {P((a— d)(Wi—W2)> U2> 0) 

                            + (2)(Wi—W2)<U1— U2<13)} • 

From Assumption 3.1, a— a=0,(n-"2) and hence (3.10) is 0(n312). Similarly we have 

E {(Q1v—Qty)2}=0(n312). Therefore the first term of (3.9) is 0(n-112). 

   On the other hand, the second term of (3.9) except the multiplicative constant is 

          EEEE EL {u(U U u(Xt —Xt)u(Yt — 
                              k, M 

                   • lit(U U k)U(V 2— V nt)—u(Xt— Xt)u(Yt—Yt)}1 

(3.11) Aijk m / say . 
                                   i j, k, 7rt 

It can be shown that (3.11) is 

                   (n — 2)(n — 3)(n — 4)(n — 5)A3456+ 0( n"2) .
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Therefore, we may show that  A3456=o(n-'). Now 

(3.12) A3456= E {u(ULIOu(V1— V4)u(U2— U5)u(172— V6)} 

                —2E {u(Ui—U3)u(171— V i)u(U2—U,--L(a— el)(1V2-1475)) 

              x u( V2— V6+(b—b)(W2—W6))} 

                 {u(U1—U3+(a— ti)(14/1— Ti73))u( V1— V4+(b—b)(Wi— W4)) 

              x u(U2-115)+(a—e1)(1172—W5))u(V2-176+(b—h)(W2—W6))1 

The first term of (3.12) is 

(3.13)( .CF(u)G(v)dH(u, v))2. 
   Consider (a6, b6) defined in Assumption 3.8 and denote the distribution function of 

n"2(a b—b6) by Qn. Then 

(3.14) E {u(U1— U3)u(V1— V4)u(U2— U5 ±(a — a6)( 2— W5))u( V,+(b —b6)(TV2—W6))} 

         4CFGdHMF(u+n-"2tw1)G(ti+n-"sw2)dH(u, v)dM(wi, w2)dQn(t, s) 
where 1./(w1, w2) is the distribution function of (TV2—W5, W2-1476). 

   Denote the events {U1—U3>0, 171—V4 > , {U2—U5+(a—d)(W2—W5)>01, V2 V6 

+(b—b)(T172—TV6)>01, 1U2-1/6±(a—a6)(W2—W5)>O1 and {V2— V6+(b—b6)(W2—TV,)>O1 
by B, C, D, C6 and D,, respectively. Then the second term of (3.12) except the con

stant —2 minus (3.14) is 

(3.15) {P(B, C, D, Cs, Dg)—P(B, Cc, DC, C6, D,)}± {P(B, C, D, C6, Dg) 

             —P(B , C, DC, C6, D6)} {P(B, C, D, Cg, D6)— P(B, Cc, D, C„ D6)} 

The first term of (3.15) is 0(n-2) from Assumption 3.8(i). The second and the third 

terms of (3.15) are, from Assumption 3.8(ii) and (iii), o(u-1). Hence we may consider 

(3.14) in the place of the second term of (3.12). 
   As in the second term, the third term of (3.12) can be replaced by 

    E U3+ (a — 6)(W1—W 3))u(V1— V 4+ (b —b 6)(TV 1— W4)) 

           xu(U2—U5+(a-116)(W2—W5))u(V2—V6+(b—b6)(W2—T476))1 

(3.16) =CMF(u+n-"2tw1)G(v+n-'12sw2)dH(u, r)d11.1(w1, w2)12 dQ,i(t, s). 
Combining (3.13), (3.14) and (3.16), we have 

(3.17)A3456-1{H(F(u+n-112tw1)G(v+n-1/2sw2)—F(u)G(v)) 

                                                        2                  

• dH(u, v)dM(ivi, w2)1dC27,(t, s)±o(n-'). 
Taylor expansions give
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 F(u+n-"2tw1)=F(u)-Fn-i"twif(u)+0(ii-1) 
and 

                  G(v+n-112sw2)=G(v)±n-1"sw2g(v)±0(n-1). 

Using the facts ,C.CwidM(wi, w2)=w 2dM(u, 1, w2)=0 and the above expansions, it is 
shown that the formula in the square in (3.17) is 0(n-1) and hence A3456=0(n'). 
Thus, (3.7) is established. 

   Unfortunately we can not prove Theorem 3.1 for general linear rank statistics 
(Stxy, Snuv)• The calculations in the proof of Theorem 3.1 depend on the fact that 
the statistic is of Spearman . However, the theorem will hold for fairly general rank 
statistics. It is also conjectured that the same conclusion holds for a more general 

model (X, Y, Z)=(U+an(W) , V-Fbn(W), W) if the functions a7,(•) and bn(•) allow 
consistent estimators of order 72,-"2.

   4. Asymptotic relative efficiency 

   In the usual normal distribution theory, the partial correlation coefficient rxy, 

given by (1.1) is used to test H. In this section we shall compare S1',s given by (3.1) 
with rxy., in the model (1.2) with additional assumption (1.3). The random variable U 
and V are positively or negatively correlated according as c>0 or c<0 and they are 
independent when c=0. Let us consider the one-sided alternative "c>0" . Then the 
critical regions of the tests are of the forms {Sts� constant} and {rxy.,�constant} . For 
simplicity the distribution of (a—a , b—b) is assumed to be independent of (a, b). The 
estimator (3.3) has this property. Then , since rxy., and Sl'is are location-free, we may 
assume that EU*=EV*=EW=O without loss of generality . 

   Denote by F, G and G* the distribution functions of U= U*, V and V* and by f 
and g* the density functions of U* and V*, respectively. Furthermore , let us assume 
that every regularity conditions such as the exchangeability of the differentiation and 

the integration and the continuity of the asymptotic variances of test statistics at 

c=0 are satisfied. Then n-512(Sl'is—n(n+1)2/4) is asymptotically normal with mean 

(4.1)mc(S13)= n112 .C.C(F(u)-2XG*(v)—2)f(u)g*(v — cu)dud v 
and null variance 1/144. Differentiate (4.1) with c, we have 

(4.2)(dIdc)mc(Sts)/c=0=n"2.1.(g*(v))2dv .CuF(u)dF(u). 
Here we used the assumption EU*=0. Hence the efficacy of Sts is 

(4.3)s)=144{ .C(g*(v))2c/v.uF(u)dF(u)}2. 
   On the other hand, nii2r,y., is asymptotically equivalent to 

      n'i2{n-1 ±Yi—n-2 XiWi YiWilVar(W)}/(Var(U)Vav(V))" 
        i=1i=1i=1
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which is asymptotically 

(4.4) 77,-312(Var(U)Var(V)Var(W))-1" 

      • EE(U, + V; — . 

From U-statistic theory in Hoeffding [5], (4.4) is asymptotically normal with mean 

n1"Cor(U, V) and unit variance where by Cor we denote the correlation coefficient. 

Simple calculation shows that the efficacy of r„., is 

(4.5)e(rxy.,)=-(Var(U*)Var(V*))1'2 . 

Therefore, from (4.3) and (4.5), Pitman efficiency of S'7',5 with respect to rxy., is 

(4.6) e(S13, rxy.,)=144Var(V*)(C(g*(v))2cIvCuF(u)dF(u))21Var(LI*). 

It is worth noted that (4.6) is the same with Pitman efficiency of Spearman rank cor
relation with respect to the usual correlation coefficient for the bivariate population 

model (1.3). This can be established by easy calculations. Also note that it is enough 

to consider the case Var(U*)=-Var(V*)=1 to calculate (4.6). If the underlying dis

tribution of (X, Y, Z) is normal, (4.6) is found to be 9/7r2.
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