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Summary

   On replacing the usual arithmetic addition by the dyadic 
addition and trigonometric functions by Walsh functions, daydic 
stationary processes defined in the sense that their covariance 
functions are invariant under the shift by the dyadic addition have 
almost the same structures as those of ordinary stationary processes. 

   However, there are some differences between finite parametric 
linear models of dyadic stationary processes and those of ordinary 
stationary processes. 

   It is shown in theorem 2 that a dyadic autoregressive process 
of finite order analogously defined to the ordinary autoregressive 
models is always inverted into a dyadic moving average process of 
finite order, and vice versa. As is well known, these results are 
not true for the ordinary stationary processes (see, e. g., Box and 

Jenkins  '11).

1. Preliminaries

   Let x and y be two non-negative real numbers and have dyadic expansions 

                   x= xk•2k , with xk=0 or 1, 
                                                k=—oo 

                    Y= E yk•2k, with y k=0 or 1. 
                                                k=—oo 

Then, the dyadic addition ED, is defined by 

(1.1)xEDY= E (xkEDyk)•2k, 
                                                              k=-«, 

where (xkeyk) denotes addition mod. 2 of {0, 1}, that is, 00)0=10)1=0 and 00)1 
=1e0=1. 

   We denote by {W(n, x), 0_x�1}, n=0, 1, 2, ••• , the system of Walsh functions. 

   The following properties of Walsh functions are well-known: 

    (i) For any non-negative integers n and m,
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               W(n,  x)W(m, x).---147(n m, x) , for a. e. xEI  , 

where by I we denote the unit interval [0, 1]. 

   (ii) For each non-negative integer n and for each yEI, 

              W(n, x)W(n, y)=W(n, xe y), for a. e. xEI. 

(For these matters, see, e. g., Gulamhusein and Fallside [3] and Harmuth [4]).

   2. Finite parametric linear models 

   We call a random process {X(n), n=0, 1, 2, ••• ,} with finite second moments to 

be dyadic stationary if its mean value function is constant and its covariance 

function 

                      R(n, m)=Cov. (X(n), X(m)), 

is invariant under the shift by the dyadic addition, that is, for any n=0, 1, 2, • • • , 

                          E[X(n)]=p, say , 

and for non-negative integers n, m and k, 

                         R(n, m)----R(nek, me k) 

                             =R(nem, 0) . 

   For simplicity, we only treat the case where mean values of dyadic stationary 

processes are zero. 
   As is shown in Nagai [6], every covariance function R(n, m) of dyadic stationary 

process has the spectral representation 

                     R(n, 
0W(nem, x)dG(x), 

where G(x), 0�x�1, is the dyadic spectral distribution which is a monotone increasing 

function with G(0)=0 and G(1)=R(0, 0). 

   It is also shown in Nagai [6] that a dyadic stationary process {X(n), n=0, 1, 2, •• • ,} 

with its dyadic spectral distribution G(x) has the following representation 

                     X(n)=4 0W(n, x)dZ(x), 
where {Z(x), 0�x�1} is a random process with orthogonal increments such that 

                         E[dZ(x)]=0, 
and 

                      EE(dZ(x))21=dG(x). 

   We call a random process {u(n), n=0, 1, 2, ••• ,} a white noise process with 

variances a', if its mean values are zero and its covariances are such that 

                     E[u(n)u(m)1=- for n=m ,                                 

, for n #m .
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   Since a white noise process  {u(n), n=0, 1, 2, ••• ,} with variances a2 is dyadic 

stationary, it has the spectral representation 

(2.1) 0W(n, x)dU(x), 

where {U(x), 0�x�1} is a random process with orthogonal increments such that 

E[dU(x)]=0 and 

(2. 2)E[(dU(x))21=a2•dx . 

   We define a linear dyadic process {X(n), n=0, 1, 2, ,} after Morettin [5] by 

(2.3)X(n), E a(k)u(n k), 
                                                      k=0 

where {u(n), n=0, 1, 2, ,} is a white noise process and a(k), k=0, 1, 2, ••, are real 

numbers such that E a (k)2 < 00. Linear dyadic processes are dyadic stationary. In 
                              k=0 

particular, if a(q)�0 and a(q+1)=a(q+2).= •-• =0, with an integer q, we call the 
linear dyadic process given by (2. 3) a dyadic moving average process of order q 

(DMA(q)-process). 
   We also define a dyadic autoregressive process of order p (DAR(p)-process) by a 

dyadic stationary process {X(n), n=0, 1, 2, • which satisfies the following equation : 

(2. 4)E b(k)X(nek)=u(n), 
                                            k=0 

where {u(n), n=0, 1, 2, ,} is a white noise process and b(k), k=0, 1, , p are real 

numbers with b(0)=1 and b(p)#0. 

   Concerning the existence condition of DAR-process and their spectral represent

ations, we have the following theorem. 

   THEOREM 1. Let us put 

(2.5)B(x), E b(k)W(k, x), 0�x�1, 
                                           k =0 

where b(k), k=0, 1, 2, ••• , p are real numbers given in (2. 4). 

   Then, if B(x)#0, a. e. x., there exists a unique dyadic stationary process {X(n), 

n=0, 1, 2, ••• ,} satisfying (2. 4). 

   The process {X(n), n=0, 1, 2, ••• ,} has the spectral representation 

(2. 6)0[W(n, x)/B(x)]dU(x), 

where {U(x), 0�x�1} is such the process given by the spectral representation (2.1) of 
the white noise process {u(n), n=0, 1, ••• ,} in (2. 4). 

   PROOF. Since by assumption B(x)#0, a. e. xEI and the values of W(n, x) are 

only +1 or —1, we have the following inequality : 

                  B(x) I >= min {I1±-b(l)1_1: b(P) II >0 .
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 Hence, 1/B(x) is square integrable and so is  147(n, x)/B(x). 

    Let us put 

(2.7)X(n)= .fl0[W(n, x)/B(x)1dU(x). 
 Then, from (2. 2) and the square integrability of 1/B(x), we see that the process 

 {X(n), n=0, 1, 2••• ,} is well-defined (see e. g., Doob [2]). Its mean values are zero 
and its covariance function is given by 

                R(n, m)=E[X(n)X(m)] 

                       --=-01CW(nem, x)I(B(x))21dx 

                                               0 This depends only on nem. Thus, it is seen that the process IX(n) , n=0, 1, 2, • ,} 
defined by (2. 7) is dyadic stationary. 

   We show next that the process satisfies the equation (2. 4). Indeed , substituting 
X(n) given by (2. 7) into (2.4), we have 

           b(k)X(n k)= E b(k)fl ETV (n k, x), B(x)1dU(x) 
                                                 k=o 

                =CIW(n,x)(kb(k)W(k, x))/ B(x)]dU(x) 

     o 

                   =N(n, x)dU(x) 

                                          0 

                           =u(n). 

Thus, we see that the process defined by (2. 7) is a dyadic stationary solution of the 
equation (2.4). In order to prove uniqueness of the dyadic stationary solution of 
(2. 4), let us suppose that there is another dyadic stationary process a(n), n=0 , 1, 2, • ,} 
satisfying (2.4). Let the spectral representation of ..(n) be given by 

(2. 8) 0x)dU(x) , 

where {.2(x), 0 x�1} is random process with orthogonal increments. Then, it 
follows from (2. 8) that 

(2. 9) b(k)X(nek)=.1W(n, x)B(x)dZ(x) 

                                                    0 

                             =u(n) 

                        =4:W(n, x)dU(x). 
From this relation (2. 9), the dyadic spectral distributions corresponding to the 

processes {U(x), 0�_x�1} and {2(x), x�1} are absolutely continuous . Hence, for 
every subinterval J of I, we have
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            U(J)4I,(x)dU(x) 

                                       0 

                              M                     =1. i. m Ec,(k)•.r1W(k, x)dU(x) 

                          

.3"- k  =00 

                             M 

                       ------1. i. mE cj(k)•1W(k, x)B(.4d2(x) 
                     m• k=00 

                   = .C1 I j(x)B(x)d2(x) , 
                                         0 where I j(x) is the indicator function of J whose Walsh-Fourier expansion is given 

by 

                     I,(x)= E cj(k)W(k, x), a. e. x , 
                                                   k=0 

with 

                       c,(k)=.f W(k, x)dx . 
                                             J Thus, we have 

                     d2(x)=[11B(x)]clU(x), 

and hence for every n, 

                     X (n)=-SoW(n, x)dU(x) 
                     = .f:[W(n, x)1B(x)1dU(x) 

                            =X(n). 

This completes the proof of theorem 1.Q. E. D. 

   In order to prove the equivalency between DMA-processes and DAR-processes, 

we prepare some notations and a lemma. Proof of lemma will be given in the next 
section. 

   For a positive integer m, we put d(m)=2' and we denote by K(m) the set of all 

non-negative integers less than or equal to d(m)-1. 
   Let us call a function co(x), 0-_ x�1, to be of order m if it is written as 

                   co(x)=kEa( k)W( k, x), a. e. X E I , 

with an integer p E K(m). In particular, we call a function co(x) to be strictly of 

order m if it is of order m but not of order m —1. 

   LEMMA. Let a function co(x) be strictly of order m and not zero a. e. x. Then, 

we can find a function h(x) of order m strictly and satisfying that 

(2.10)h(x)•co(x)-=c *0 , a. e. x, 

where c is a non-zero constant.
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   By means of this lemma, we can establish the equivalency between DMA-processes 

and DAR-processes. 

   THEOREM 2. (i) Let {X(n),  n=0, 1, 2, ••• , be a DMA(p)-process such that d(m-1) 

 p_d(m)-1. Then, the process is a DMA(q)-precess such that d(m-1)_q___cl(m)-1. 

   (ii) Conversely, let {X(n), n=0, 1, 2, ••• ,} be a DMA(q)-process such that d(m-1) 
-qd(m) -1 and be defined by 

(2. 11)X(n)=Ea(k)u(nek), 
                                                           k=o 

with a white noise process {u(n), n-=0, 1, 2, ••• J. Then, the process is a DAR(p)-process 
such that d(m-1)<p�d(m)-1 if 

                    E a(k)W(k, x)�0 a. e. x. 
                                         k=o 

   PROOF. (i) Suppose that the DAR(p)-process {X(n), n=0, 1, 2, ••• ,} satisfies the 

equation (2.4) with d(m-1)�p�_d(m)-1. Then, the function B(x), 0�x�1, defined 

by (2. 5) in theorem 1 is strictly of order m and must not be zero a. e. x. (Otherwise, 

there exists no dyadic stationary process satisfying (2. 4).) 
   From lemma, we can find a function h(x) strictly of order m such that 

• 

                        h(x)B(x)=-e�0 , a. e. x , 

where e is a non-zero constant. The function h(x) may be written as 

(2. 12)h(x)=e/B(x) 

                                            d(770-1 

                         E a(k)W(k, x), a. e. x , 
                                                 k=0 

and it is not zero a. e. x. 

   From theorem 1, the DAR(p)-process has the spectral representation (2. 6), that is, 

                    X(n)-=.f0[W(n, x)/B(x)]dU(x), 
with the random process {U(x), 0�x_1} defined by (2. 1). Therefore, substituting 

(2. 12) into (2. 6), we have 

              X(n)= .C1 W(n, xid(1)-la(k)W(k, x)1dU(x)1e                                                               k=o 

                                       d(m)—

k 

                 =E1a(k)•CW(nek, x)dU(x)le 
                                               =o 

                                       d(m)-1 
                 = E a(k)u(nek)le 

                                           k=0 

Thus, it is seen that the DAR(p)-process turns out to be a DMA(q)-process such that 
d(m —1)< . q d(m) —1. 

   (ii) Since the white noise process {u(n), n=0, 1, 2, • • • ,} has the spectral represent
ation (2. 1), the spectral representation of the DMA(q)process (2. 11) is given by
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 (2.  13)X(n)-=)s0W(n, x)A(x)dU(x), 
where we put 

                      A(x)= a ( k)W( k, x). 
                                                        k=0 

The function A(x) is strictly of order m. If we assume that A(x),t-0, a. e. x, then 

from lemma we can find a function B(x), x�1, strictly of order in such that 

                 B(x)=cil A(x) 

                                            d(m)-1                         ---= E b(k)W(k, x), a. e. x , 
                                                 k=0 

where c1 is a non-zero constant. Thus, we have 

(2. 14)A(x)=-cil B(x), a. e. x . 

   Substituting (2. 14) into (2. 13), we see that X(n) has the spectral representation 

(2.15)X(n)4[ciW(n, x)IB(x)]dU(x). 

                                              0 

   It follows from theorem 1 that the dyadic stationary process IX(n), n=0, 1, 2, • • • , } 

having the spectral representation (2. 15) satisfies the following equation : 

                                         d(m)-1 

                      E b(k)X(nek)=ciu(n). 
                                              k=0 

Thus, the DMA(q)-process has turned out to be a DAR(p)-process such that d(m-1) 

�p�d(m)-1.Q. E. D.

   3. Proof of lemma 

   For m=1, a function w(x) of order 1 may be written as 

                   yo(x)=a(0)±a(1)W(1, x) , a. e. x , 

with some constants a(0) and a(1). Let us put 

                     h(x)=a(0)—a(1)W(1, x). 

Then, h(x) is of order 1. If co(x)#0, a. e. x, clearly h(x)�0 a. e. x and the product 
of ca(x) and h(x) is a non-zero constant a. e. x, that is, 

                    co(x)h(x)=-a(0)2— a(1)2*0 , a. e. x . 

Thus, lemma holds for m=1. 
   Suppose that for some positive integer in, our lemma holds. 

   Let us consider a function co(x) being strictly of order in+1 and such that 

(3. 1)co(x) 0 , a. e. x .
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Then, it is written as 

 co(x)= kExon,E+1,a(k)W(k, x) 

                                                 a(m+i)-1 
        = E a(k)W(k , x)± E a(k)W(k, x) 

          kEK Cm)k=d (lt) 

        = E a(k)W(k , x)+ E a(d(m)±k)W(d(m)±k, x), a. e. x . 
          kEl Cm)kEl COn) 

By noting that for every nEK(m), d(m)d-ii=d(m)en and therefore IIT(d(m)-1 , x) 
=W(d(m) , x)W(n, x), we have 

                  co(x)=g(x)+W(d(m), x)f(x), a. e. x , 
where we put 

                     g(x)= E a(k)W(k, x),                                              kElf Cm) 

and 

                  f(x)= E a(d(m)+k)W(k, x). 
                                      kEK (n) 

Both g(x) and f(x) are of order in and f(x) is not identically zero. 

   Let us put 

(3.2)h,(x)=g(x)—W(d(m), x(f(x). 

Then, h1(x) is strictly of order m+1 and not zero a. e. x since W(d(m), x)=+1 or 
—1. The product of co(x) and h1(x) is therefore not zero a. e. x and 

(3.3)co(x)hi(x)=g(x)2—W(d(m, x)2f(x)2 

                            =g(x)2— f (x)2 . 

Since K(m) is closed under the dyadic addition ED, we see that g(x)2, f(x)2 and there

fore g(x)2—f(x)2 are of order m. Thus, we see that the product co(x)hi(x) is of order 

in and not zero a. e. x. 

   From the assumption for induction, we can find a function h2(x) of order m such 

that 

(3.4)h2(x)-�0,a. e. x , and 

(3. 5)[Co(x)hi(x)] • h2(x)=c2�0, a. e. x , 

where c2 is a non-zero constant. Let us put h(x)=hi(x)h2(x). Then, h(x) is strictly 

of order m+1, since h1(x) is strictly of order m+1 and h2(x) of order in. From (3. 1) 

and (3. 4) together with the fact that the product co(x)hi(x)�0, a. e. x, it follows that 

h(x)=h1(x)h2(x)�0, a. e. x. It is clear from (3. 5) that h(x) satisfies (2. 10). This 
completes the proof of lemma.Q. E. D.
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