REVERSED CONTROL PROCESSES

Iwamoto, Seiichi
Department of Mathematics, Faculty of Integrated Arts and Sciences, Hiroshima University

https://doi.org/10.5109/13135
REVERSED CONTROL PROCESSES

By

Seiichi IWAMOTO*

(Received January 5, 1979)

Abstract

A reversal operation for dynamic programming (DP) transforms a (main) control process to a reversed control process. It is applied to the well known linear equation and quadratic criterion control process and to a terminal control process. Not solving the recursive equation directly, but merely applying the author's Reverse Theorem in DP, we can automatically obtain the solution of the recursive equation for reversed process.

1. Introduction

Recently the author has proposed, among other operations, a reversal operation for dynamic programming (DP) on one-dimensional state space. He [6] has established Reverse Theorem on general state DPs. These DPs are more strictly defined than those of Bellman's [1]. Therefore, the class of reversible DPs may be narrow. However, it includes an important deterministic linear equation and quadratic criterion control process and other terminal control processes.

The paper applies the author's Reverse Theorem to a discrete time finite horizon control process in § 4 and to a particular terminal optimization problem in § 5. We generalize some standard control processes in Bellman [2, p. 329; 3, p. 116, p. 193; 4, p. 20] to a nonstationary process. The latter is a modified version of the optimization problem [2, p. 305].

In § 2, we specify a (main) DP by an ordered seven-tuple satisfying some algebraically regular conditions. These conditions make the main DP reversible. A reversed DP is defined by negation of optimizer, reversion of time (consequently reversion of state spaces and reward spaces, respectively), inversion of reward functions, and substitution of optimal reward function for terminal reward function (§ 3). Thus the reversed DP of the reversed DP is an original main DP. We state Reverse Theorem between main DP and reversed DP without proof: A pair of optimal reward functions and an optimal policy for main DP characterizes a pair of them for reversed DP in a reverse sense.

In § 4 and § 5 we introduce "reversed control processes" for only two cases. However, the term "reversed" possesses wide applicabilities to more general control

* Department of Mathematics, Faculty of Integrated Arts and Sciences, Hiroshima University, Hiroshima 730, Japan.
processes by relaxing the regularity conditions stated above.

2. Reversible dynamic programming

Let S and S' be two nonempty sets. Then $\mathcal{G}(S, S')$ denotes the set of all one-to-one mappings from S onto S'. We remark that $T \in \mathcal{G}(S, S')$ if and only if $T^{-1} \in \mathcal{G}(S', S)$, where T^{-1} is the inverse mapping of T. Let R and R' be two intervals of the one-dimensional Euclidean space \mathbb{R}^1. Then $\mathcal{G}(R, R')$ denotes the set of all strictly increasing functions from R onto R'. Note that any function f in $\mathcal{G}(R, R')$ is continuous and therefore it yields a homeomorphism from R onto R'. Further, $f \in \mathcal{G}(R, R')$ if and only if $f^{-1} \in \mathcal{G}(R', R)$. We also have $\mathcal{G}(R, R') \supseteq \mathcal{G}(R, R')$. Given a two-variable mapping $h: A \times B \rightarrow C$ we define two one-variable mappings $h_a: B \rightarrow C$ and $h_b: A \rightarrow C$ by

$$h_a(b) = h(a, b), \quad h_b(a) = h(a, b),$$

respectively.

A reversible dynamic programming (DP) \mathcal{D} is specified by an ordered seven-tuple $(\text{Opt}, \{S_n\}_{n=1}^N, \{R_n\}_{n=1}^N, \{A_n\}_{n=1}^N, \{f_n\}_{n=1}^N, k, \{T_n\}_{n=1}^N)$ with the following meanings:

(i) N is a positive integer, the number of stages.

(ii) $\{S_n\}_{n=1}^N$ are nonempty sets satisfying $\mathcal{G}(S_n, S_{n+1}) \neq \emptyset$ for $1 \leq n \leq N$. S_n and its element s_n are called the n-th state space and n-th state, respectively.

(iii) $\{R_n\}_{n=1}^N$ are intervals of \mathbb{R}^1 satisfying $\mathcal{G}(R_n, R_{n+1}) \neq \emptyset$ for $1 \leq n \leq N$. R_n and its element r_n are called the n-th reward space and n-th reward, respectively.

(iv) A_n is a nonempty set, the n-th action space, whose element a_n is called the n-th action.

(v) $f_n: S_n \times A_n \times S_{n+1} \rightarrow \mathcal{G}(R_{n+1}, R_n)$ is the n-th reward function. We frequently write $f_n(s_n, a_n, s_{n+1}, r_{n+1})$ or $f_n^*(s_n, a_n, s_{n+1}, r_{n+1})$ for $(s_n, a_n, s_{n+1}, r_{n+1}) \in S_n \times A_n \times S_{n+1} \times R_{n+1}$.

(vi) $k: S_{N+1} \rightarrow R_{N+1}$ is the terminal reward function.

(vii) $T_n: A_n \rightarrow \mathcal{G}(S_n, S_{n+1})$ is the n-th state transformation. We frequently write $T_n(a_n)(s_n), T_n(s_n, a_n)$ or $T_n(a_n)(s_n)$ for $(s_n, a_n) \in S_n \times A_n$.

(viii) Opt denotes either Max or Min, the optimizer. According as $\text{Opt}=\text{Max}$ or Min, it represents the following optimization (either maximization or minimization) problem:

Optimize

$$f_1(s_1, a_1, s_2)(f_2(s_2, a_2, s_3)(\cdots f_N(s_N, a_N, s_{N+1})(k(s_{N+1}))))$$

subject to

(i) $T_n(a_n)(s_n) = s_{n+1}$ for $1 \leq n \leq N$

(ii) $a_n \in A_n$, for $1 \leq n \leq N$.

More symbolically this problem may be written as follows:

Optimize

$$f_1^{[2]}(s_1, a_1, s_2) \circ f_2^{[2]}(s_2, a_2, s_3) \circ \cdots \circ f_N^{[2]}(s_N, a_N, s_{N+1}) \circ k(s_{N+1})$$
subject to

(i) \(T_{n+1}(s_n) = s_{n+1} \quad 1 \leq n \leq N \)

(ii) \(a_n \in A_n \quad 1 \leq n \leq N \).

Further it may also be expressed in a standard from:

Optimize

\[f_1(s_1, a_1, s_2, f_2(s_2, a_2, s_3, \ldots , f_N(s_N, a_N, s_{N+1}), k(s_{N+1}))) \]

(2.1) subject to

(i) \(T_n(s_n, a_n) = s_{N+1} \quad 1 \leq n \leq N \)

(ii) \(a_n \in A_n \quad 1 \leq n \leq N \).

We call \(\mathcal{D} \) the main DP. First it starts at a given initial state \(s_1 \in S_1 \), a first action \(a_1 \in A_1 \) is chosen, and it goes to the second state \(s_2 = T_1(s_1, a_1) \in S_2 \). A second action \(a_2 \in A_2 \) moves the main DP \(\mathcal{D} \) to the third state \(s_3 = T_2(s_2, a_2) \in S_3 \), and so on. Finally \(\mathcal{D} \) terminates at the terminal state \(s_{N+1} = T_N(s_N, a_N) \in S_{N+1} \). The experience starting at \(s_1 \) and choosing a sequence \(\{a_1, a_2, \ldots , a_N\} \) yields the ‘total’ reward

\[f_1(s_1, a_1, s_2, f_2(s_2, a_2, s_3, \ldots , f_N(s_N, a_N, s_{N+1}), k(s_{N+1}))) \]

The main DP \(\mathcal{D} \) itself wishes to optimize this total reward subject to the state-action constraint.

Let us now consider the \((N-n+1)\)-subproblem of (2.1) as follows:

Optimize

\[f_n(s_n, a_n, s_{n+1}, f_{n+1}(s_{n+1}, a_{n+1}, s_{n+2}, \ldots , f_N(s_N, a_N, s_{N+1}), k(s_{N+1}))) \]

(2.2) subject to

(i) \(T_n(s_n, a_n) = s_{n+1} \quad n \leq m \leq M \)

(ii) \(a_m \in A_m \quad n \leq m \leq M \),

where \(s_n \in S_n, 1 \leq n \leq N \). The optimum value function of the \((N-n+1)\)-subproblem is denoted by \(u^{N-n+1} : S_n \to R_n \) if it exists:

\[u^{N-n+1}(s_n) = \text{Opt}_{T_m(a_m) = s_{m+1}} f_n(s_n, a_n, s_{n+1}, f_{n+1}(s_{n+1}, a_{n+1}, s_{n+2}, \ldots , f_N(s_N, a_N, s_{N+1}), k(s_{N+1})) \}

\[s_n \in S_n, 1 \leq n \leq N. \]

Further, we define \(u^0 : S_{N+1} \to R_{N+1} \) by

\[u^0(s_{N+1}) = k(s_{N+1}) \quad s_{N+1} \in S_{N+1}. \]

The functions \(\{u^0, u^1, \ldots , u^N\} \) are called optimal reward functions for main DP \(\mathcal{D} \). Two adjacent optimum value functions are combined as follows:
THEOREM 1. (RECURSIVE FORMULA FOR \mathcal{D})

\begin{equation}
\tag{2.3}
\begin{aligned}
u^{n}_{N}(s_n) &= \text{Opt } f_n(s_n, a_n, T_n(s_n, a_n), u^{N-n}(T_n(s_n, a_n))) \\
s_n \in S_n, \quad 1 \leq n \leq N
\end{aligned}
\end{equation}

\[u^n(s_{N+1}) = k(s_{N+1}) \quad s_{N+1} \in S_{N+1} \]

PROOF. Easy.

A policy of \mathcal{D} is a finite sequence $\{\pi_1, \pi_2, \ldots, \pi_N\}$ of mappings $\pi_n : S_n \rightarrow A_n$ for $1 \leq n \leq N$. A policy $\{\pi_1^*, \pi_2^*, \ldots, \pi_N^*\}$ is called optimal for \mathcal{D} if for each $s_n \in S_n$, $1 \leq n \leq N$ the $\pi_n^*(s_n)$ attains the optimum value of (2.3).

3. REVERSED DYNAMIC PROGRAMMING AND REVERSE THEOREM

When the main DP \mathcal{D} has an optimum value function $u^N : S_1 \rightarrow R_1$, a reversed DP \mathcal{D}^{-1} is specified by the ordered seven-tuple $(\text{Opt}, \{S'_n\}_{i=1}^{N+1}, \{R'_n\}_{i=1}^{N+1}, \{A'_n\}_{i=1}^{N+1}, \{f'_i\}_{i=1}^{N+1}, k', \{T'_n\}_{i=1}^{N+1})$ where

- $\text{Opt} = \text{Min}$ if Opt = Max
- $\text{Opt} = \text{Max}$ if Opt = Min
- $S'_n = S_{N-n+2}$, $R'_n = R_{N-n+2}$, $A'_n = A_{N-n+1}$
- $(s'_n = s_{N-n+2}, \quad r'_n = r_{N-n+2}, \quad a'_n = a_{N-n+1})$
- $f'_n(s'_n, a'_n, s'_{n+1}) = (f_{N-n+1}(s_{N-n+1}, a_{N-n+1}, s_{N-n+2}))^{-1}$
- $T'_n(a'_n) = (T_{N-n+1}(a_{N-n+1}))^{-1}$
- $k' = u^N$.

Starting backwards at state $s'_1 = s_{N+1} \in S_{N+1} = S'_1$ and terminating at state $s'_{N+1} = s_1 \in S_1 = S_{N+1}$, the reversed DP \mathcal{D}^{-1} represents the problem:

Optimize

\[f(s'_1, a'_1, s'_2, a'_2, s'_3, \ldots, f'_n(s'_n, a'_n, s'_{n+1}, k'(s'_{N+1})) \ldots) \]

subject to

(i) $T'_n(s'_n, a'_n) = s'_{n+1} \quad 1 \leq n \leq N$

(ii) $a'_n \in A'_n \quad 1 \leq n \leq N$.

Rewriting in terms of components of the main DP \mathcal{D}, this problem reduces to

Optimize

\[(f_{N-N+1}(s_{N-N+1}, a_{N-N+1}, s_{N-N+2}))^{-1} \ldots (f_{N-N+1}(s_{N+1}, a_{N+1}, s_{N+2}))^{-1} u^N(s_1) \]

subject to
Reversed control processes

(i) \[(T_{na_n})^{-1}(s_{n+1}) = s_n \quad N \geq n \geq 1\]

(ii) \[a_n \in A_n \quad N \geq n \geq 1,\]

where \(N \geq n \geq 1\) means that the time \(n\) runs backwards \(N+1, N, \ldots, 2, 1\). Thus, we may specify the reversed DP \(\mathcal{D}_{-1}\) by

\[
\text{(Opt, } \{S_n\}_{i=1}^N, \{R_n\}_{i=1}^N, \{A_n\}_{i=1}^N, \{(f^N_{a_n, a_{n+1}})^{-1}\}_{i=1}^N, u^N, \{(T_{na_n})^{-1}\}_{i=1}^N).\]

The \((N-n+1)\)-subproblem of (3.1) becomes as follows:

Optimize

\[
f'_n(s'_n, a'_n, s'_{n+1}, f'_{n+1}(s'_{n+1}, a'_{n+1}, s'_{n+2}, \ldots, f'_{N}(s'_N, a'_N, s'_{N+1}, k'_n(s'_{N+1}))))
\]

subject to

(i) \[T'_m(s'_m, a'_m) = s'_{m+1} \quad n \leq m \leq N\]

(ii) \[a'_m \in A'_m \quad n \leq m \leq N\]

where \(s'_n \in S'_n, 1 \leq n \leq N\). The optimum value function of this subproblem is denoted by \(v^{N-n+1}: S'_n \rightarrow R'_n\) or \(v^{N-n+1}: S_{N-n+2} \rightarrow R_{N-n+2}\) if it exists:

\[
v^{N-n+1}(s_{N-n+2}) = \text{Opt} \quad \left(f^N_{a_{N-n+1}, a_{N-n+2}, s_{N-n+2}}\right)^{-1} \ast \left(f^N_{0, 0, s_{N-n+2}}\right)^{-1} \ast (f^N_{a_{N-n+1}, a_{N-n+2}, s_{N-n+2}})^{-1} s_{N-n+2} \in S_{N-n+2}, 1 \leq n \leq N.
\]

Further we define \(v^0: S_1 \rightarrow R_1\) by

\[v^0(s_i) = u_i(s_i) \quad s_i \in S_1.
\]

The functions \(\{v^0, v^1, \ldots, v^N\}\) are called optimal reward functions for reversed DP \(\mathcal{D}_{-1}\). We have the following recursive relation:

Theorem 2. (Recursive Formula for \(\mathcal{D}_{-1}\))

\[
v^{N-n+1}(s_{N-n+2}) = \text{Opt} \quad \left(f^N_{a_{N-n+1}, a_{N-n+2}, s_{N-n+2}}\right)^{-1} \ast (f^N_{0, 0, s_{N-n+2}})^{-1} s_{N-n+2} \in S_{N-n+2}, 1 \leq n \leq N
\]

\[v^0(s_i) = u_i(s_i) \quad s_i \in S_1.
\]

Proof. Easy.

Note that a policy of \(\mathcal{D}_{-1}\) is a sequence \(\{\sigma_1, \sigma_2, \ldots, \sigma_N\}\) of mappings \(\sigma_n: S_{N-n+2} \rightarrow A_{N-n+1}\) for \(1 \leq n \leq N\). Let \(U_n \in \mathcal{D}(S_{N-n+2}, S_0)\) for \(1 \leq n \leq N\). Then, clearly, \(\{\pi_1, \pi_2, \ldots, \pi_N\}\) is a policy of \(\mathcal{D}\) if and only if \(\{\pi_N \ast U_N, \pi_{N-1} \ast U_{N-1}, \ldots, \pi_1 \ast U_1\}\) is a policy of \(\mathcal{D}_{-1}\). We define \(T_{n\pi_n}: S_n \rightarrow S_{n+1}\) by
Our fundamental theorem is Reverse Theorem in dynamic programming:

Theorem 3. (Reverse Theorem) (i) The main DP \(D \) has optimal reward functions \(\{u^0, u^1, \ldots, u^N\} \) and an optimal policy \(\{\pi^0, \pi^1, \ldots, \pi^N\} \) if and only if the reversed DP \(D^- \) has optimal reward functions \(\{v^N, v^{N-1}, \ldots, v^0\} \) and an optimal policy \(\{\tau^N, \tau^{N-1}, \ldots, \tau^0\} \), provided that \(T_{n+1} = s_{n+1} + a_{n+1} \), where \(s_{n+1} \) and \(a_{n+1} \) are determined by the difference equation

\[
T_{n+1}(s_n) = T_n(s_n)(s_{n+1}), \quad s_n \in \mathcal{S}_n.
\]

(ii) The reversed DP \(D^- \) has optimal reward functions \(\{v^0, v^1, \ldots, v^N\} \) and an optimal policy \(\{\partial^0, \partial^1, \ldots, \partial^N\} \) if and only if the main DP \(D \) has optimal reward functions \(\{v^N, v^{N-1}, \ldots, v^0\} \) and an optimal policy \(\{\theta^N, \theta^{N-1}, \ldots, \theta^0\} \), provided that \(T^N_{n+1} = \mathcal{Q}(S_{n+1}, S_{n+1}) \) for \(1 \leq n \leq N \).

Proof. See Reverse Theorem in [6].

4. A linear equation quadratic criterion control process

For given two symmetric matrices \(A \) and \(B \), let \(A \geq B \) \((A > B)\) denote that \(A - B \) is non-negative (positive) definite. \((\ , \) \) denotes the inner product.

Let \(p \) and \(N \) be positive integers. Let \(A_n \) \((1 \leq n \leq N)\), \(Q_n \) \((1 \leq n \leq N)\), \(K \), \(R_n \) \((1 \leq n \leq N)\) and \(B_n \) \((1 \leq n \leq N)\) be \(p \times p \)-matrices. We assume that \(A_n \) and \(B_n \) are non-singular and that

\[
Q_n \geq 0, \quad R_n > 0, \quad K > 0
\]

where \(0 \) is the matrix of all zero elements.

Let us now consider a more general nonstationary discrete control process. The problem is to minimize a total cost by addition of the individual costs

\[
\sum_{n=1}^{N} [(x_n, Q_n x_n) + (y_n, R_n y_n)] + (x_{N+1}, K x_{N+1})
\]

subject to \(x_n \) and \(y_n \) related by the difference equation

\[
\begin{align*}
x_{n+1} &= A_n x_n + B_n y_n, \quad 1 \leq n \leq N, \quad x_1 = c \\
x_n &\in \mathbb{R}^p, \quad y_n \in \mathbb{R}^p, \quad 1 \leq n \leq N.
\end{align*}
\]

This control process is represented by an \(N \)-stage main DP \(\mathcal{D} \) starting at an initial state \(s_1 \) = \(c \), where

\[
\begin{align*}
S_n = \mathbb{R}^p, & \quad R_n = R^1, & \quad A_n = A^p, \\
f_n(s_n, a_n, s_{n+1}, r_{n+1}) = (s_n, Q_n s_n) + (a_n, R_n a_n) + r_{n+1}, \\
h(s_{N+1}) = (s_{N+1}, K s_{N+1}), & \quad T_n(s_n, a_n) = A_n s_n + B_n a_n.
\end{align*}
\]

We call \(\mathcal{D} \) the main control process. The main control process \(\mathcal{D} \) represents the problem:

Minimize
Reversed control processes

\[
\sum_{n=1}^{N} [(s_n, Q_n s_n) + (a_n, R_n a_n)] + (s_{N+1}, K_{N+1})
\]

subject to

(i) \[A_n s_n + B_n a_n = s_{n+1}, \quad 1 \leq n \leq N\]

(ii) \[a_n \in R^p, \quad 1 \leq n \leq N.\]

We follow Bellman's analysis [2, p. 329; 3, p. 193]. First

\[u^0(s_{N+1}) = k(s_{N+1})\]

\[= (s_{N+1}, K_{N+1} s_{N+1})\]

where

\[K_{N+1} = K.\]

Second we have

\[u^1(s_N) = \min_{a_N \in R^p} [(s_N, Q_N s_N) + (a_N, R_N a_N) + u^0(A_N s_N + B_N a_N)]\]

By (4.1) the minimum value is attained by \(a_N\), denoted by \(\pi^*_{x_0}(s_N)\), satisfying

\[\frac{d}{da_n} [(s_N, Q_N s_N) + (a_N, R_N a_N) + (A_N s_N + B_N a_N, K_{N+1}(A_N s_N + B_N a_N))] = 0\]

namely

(4.2) \[R_N a_N + B_N K_{N+1}(A_N s_N + B_N a_N) = 0\]

Since \(R_N + B_N K_{N+1} B_N > 0\), we obtain

\[\pi^*_{x_0}(s_N) = L_N s_N\]

where

\[L_N = -(R_N + B_N K_{N+1} B_N)^{-1} B_N K_{N+1} A_N.\]

This \(\pi^*_{x_0}(s_N)\) together with the identity (4.2) yields

\[u^1(s_N) = (s_N, K_N s_N)\]

where

\[K_N = Q_N + A_N [K_{N+1} (A_N - B_N (R_N + B_N K_{N+1} B_N)^{-1} B_N K_{N+1} A_N)]\]

\[= Q_N + A_N [K_{N+1} - K_{N+1} B_N (R_N + B_N K_{N+1} B_N)^{-1} B_N K_{N+1}] A_N\]

\[= Q_N + A_N (K_{N+1} + B_N R_N B_N^{-1}) A_N > 0.\]

In general the main control process \(\circ\) has quadratic optimal reward functions \(\{u^0, u^1, \cdots, u^N\}\) and a linear optimal policy \(\{\pi^*_0, \pi^*_1, \cdots, \pi^*_N\}\) :

\[u^{N-n+1}(s_n) = (s_n, K_n s_n)\]

\[\pi^*_n(s_n) = L_n s_n\]
where
\[K_{N+1} = K \]
\[K_n = Q_n + A_n \{ K_{n+1} - K_{n+1} - B_n (R_n + B_n^T K_{n+1} B_n)^{-1} B_n^T K_{n+1} \} A_n \]
\[L_n = -(R_n + B_n^T K_{n+1} B_n)^{-1} B_n^T K_{n+1} A_n \quad N \geq n \geq 1. \]

Note that \(A_1 = \cdots = A_N, B_1 = \cdots = B_N, Q_1 \geq \cdots \geq Q_N, R_1 \geq \cdots \geq R_N \) and \(K_{N+1} < K_N \) imply
\[0 < K_{N+1} < K_N < \cdots < K_2 < K_1. \]

On the other hand, let us consider another control process. The problem is in turn to maximize a net gain by subtraction of the individual costs from the total cost
\[(x_1, K_1 x_1) - \sum_{n=1}^{N} [(x_n, Q_n x_n) + (y_n, R_n y_n)] \]
subject to \(x_n \) and \(y_n \) related by the difference equation
\[x_n = A_n^{-1}(x_{n+1} - B_n y_n) \quad N \geq n \geq 1, \quad x_{N+1} = \epsilon \]
\[x_n \in \mathbb{R}^p, \quad y_n \in \mathbb{R}^p \quad N \geq n \geq 1 \]
where \(K_1 \) is determined backwards by (4.3) with initial condition \(K_{N+1} = K \). This maximization problem can be represented by the reversed DP \(\mathcal{O}_1 = \{ \text{Max}, \{ S_n \}_{N+1}, \{ R_n \}_{N+1}, \{ A_n \}_N, \{ (f_{n-1} a_n s_n + s_{n+1})^{-1} \}_{N+1}, u^N, \{(T_{n a_n})^{-1}\}_{N+1}\} \) starting at 'terminal' state \(s_{N+1} = \epsilon \), where
\[(f_{n-1} a_n s_n + s_{n+1})^{-1}(r_n) = r_n - (s_n, Q_n s_n) - (a_n, R_n a_n) \]
\[u^N(s_1) = (s_1, K_1 s_1) \]
\[(T_{n a_n})^{-1}(s_{n+1}) = A_n^{-1}(s_{n+1} - B_n a_n). \]

We call this reversed DP the reversed control process. Thus the reversed control process \(\mathcal{O}_1 \) represents the problem:
Maximize
\[-\sum_{n=1}^{N} [(s_n, Q_n s_n) + (a_n, R_n a_n)] + (s_1, K_1 s_1) \]
subject to
(i) \[A_n^{-1}(s_{n+1} - B_n a_n) = s_n \quad N \geq n \geq 1 \]
(ii) \[a_n \in \mathbb{R}^p \quad N \geq n \geq 1 \].

The problem is also written in the following forward process:
Maximize
\[\sum_{n=1}^{N} [-(y_n, R_{N-n+1} y_n) - (x_{n+1}, Q_{N-n+1} x_{n+1})] + (x_{N+1}, K_1 x_{N+1}) \]
subject to

(i) \[A_{n-1}^{n+1}(x_n - B_{n-1}^{n-1}y_n) = x_{n+1} \quad 1 \leq n \leq N \]

(ii) \[y_n \in \mathbb{R}^p \quad 1 \leq n \leq N. \]

A simple linear algebraic calculation shows us that

\[T_{n, n+1}(s_n) = \left[K_{n+1}^{-1} - (K_{n+1}^{-1} + \left(B_n R_n B_n^T\right)^{-1})^{-1}\right] K_{n+1} A_n s_n. \]

Thus the coefficient matrix is nonsingular. That is,

\[T_{n, n+1}(s_n) \in \mathcal{O}(s_n, s_{n+1}) \quad 1 \leq n \leq N. \]

Therefore, the REVERSE THEOREM gives the reversed control process \(\mathcal{O}^{-1} \) optimal reward functions \(\{v^0, v^1, \ldots, v^N\} \) and an optimal policy \(\{\sigma_1, \sigma_2, \ldots, \sigma_N\} \), where

\[v^{N-n+1}(s_{N-n+2}) = \max_{\mathbb{R}^p} \left\{ -(a_{n-1}^{n+1}, R_{n-1}^{n+1}a_{n-1}^{n+1}) \right\} \]

Of course the optimal solutions are also obtained by solving the recursive formula:

\[v^N(s_1) = (s_1, K_is_1) \]

\[v^{n-N+1}(s_{N-n+2}) = \max_{a_{n-1}^{n+1} \in \mathbb{R}^p} \left\{ -(a_{n-1}^{n+1}, R_{n-1}^{n+1}a_{n-1}^{n+1}) \right\} \]

Concluding this section we remark that the 'reversible' result and analysis stated above also remain valid for many deterministic control processes [2, p. 329, p. 330], [3, p. 193, p. 195] and [4, p. 20, p. 21], which correspond to the case \(K=0 \) in our process.

5. A terminal control process

We consider the case in which \(R_1=R_2=\cdots=R_{N+1}=R \) and each \(f_n(s_n, a_n, s_{n+1}) \) is the identity function on the interval \(R \) for the main DP \(\mathcal{O} \) in §2. We call this restricted DP the terminal DP. In particular we consider the following problem as a terminal DP (see [2, p. 305]): Let \(p \) and \(N \) be positive integers. Let \(b \) be a \(p \)-vector and \(A, B \) be two \(p \times p \)-nonsingular matrices with \(AB \neq BA \).
Maximize
\[(Z_NZ_{N-1}\cdots Z_1c, b) \]
(5.1) subject to
(i) \[Z_n = A \text{ or } B \quad 1 \leq n \leq N \quad (c \in R^p). \]

This problem is represented by an \(N \)-stage main DP \(\mathcal{D} = \text{(Max, } \{S_n\}^{N+1}, \{R_n\}^{N+1}, \{A_n\}^{N}, \{f_n\}^{N}, k, \{T_n\}^{N}) \) starting at initial state \(s_1 = c \), where
\[
S_n = R^p, \quad R_n = R^1, \quad A_n = \{A, B\},
\]
\[
f_n(s_n, a_n, s_{n+1})(r_{n+1}) = r_{n+1},
\]
\[
k(s_{N+1}) = (s_{N+1}, b),
\]
\[
T_n(a_n)(s_n) = a_n s_n.
\]

We call \(\mathcal{D} \) the main terminal control process. The recursive formula becomes
\[
u^{N-n+1}(s_n) = \text{Max} (\nu^{N-n}(A s_n), \nu^{N-n}(B s_n)) \quad s_n \in R^p \quad 1 \leq n \leq N
\]
\[
u^n(s_{N+1}) = (s_{N+1}, b) \quad s_{N+1} \in R^p.
\]

Thus the main terminal control process \(\mathcal{D} \) has optimal reward functions \(\{u^0, u^1, \ldots, u^N\} \) and an optimal policy \(\{\pi_0^*, \pi_1^*, \ldots, \pi_N^*\} \), where \(\pi_n^*(s_n) = A \text{ or } B \) according as \(u^{N-n}(A s_n) \geq u^{N-n}(B s_n) \) or not. The desired maximum value of the problem (5.1) is \(u^N(c) \).

On the hand, the problem
Minimize
\[u^N(Z_1^1Z_2^1\cdots Z_N^1c) \]
(5.2) subject to
(i) \[Z_n = A \text{ or } B \quad N \geq n \geq 1 \quad (c \in R^p) \]

is represented by the reversed DP \(\mathcal{D}_{-1} = \text{(Min, } \{S_{n+1}\}^{N+1}, \{R_{n+1}\}^{N+1}, \{A_{n+1}\}^{N}, \{(f_{n+1}^{n-a_{n+1},s_{n+1}})^{-1}\}^{N}, \nu^N, \{(T_{n+1}^{-1})\}^{N-1}) \) starting at terminal (with respect to \(\mathcal{D} \)) state \(s_{N+1} = c \), where
\[
(f_{n+1}^{n-a_{n+1},s_{n+1}})^{-1}(r_n) = r_n
\]
\[
(T_{n+1}^{-1})(s_{n+1}) = a_n s_{n+1}.
\]

We call \(\mathcal{D}_{-1} \) the reversed terminal control process. If \(T_{n+1}^\# \in \mathcal{D}(S_n, S_{n+1}) \), then the REVERSE THEOREM yields the reversed terminal control process \(\mathcal{D}_{-1} \), optimal reward functions \(\{u^N, u^{N-1}, \ldots, u^0\} \) and an optimal policy \(\{\pi_0^*, \pi_1^*, \ldots, \pi_N^*\} \), \((T_{n+1}^{-1}) \ldots (T_{1}^{-1}) \). Therefore, the problem (5.2) has the minimum value \(k(c) = (c, b) \). Note that the recursive formula becomes
\[
u^{N-n+1}(s_{N-n+2}) = \text{Min} (\nu^{N-n}(A^{-1}s_{N-n+2}), \nu^{N-n}(B^{-1}s_{N-n+2})) \quad s_{N-n+2} \in R^p \quad 1 \leq n \leq N
\]
\[
u^0(s_1) = u^N(s_1) \quad s_1 \in R^p.
\]
References